
Math. J. Okayama Univ. 56 (2014), 179–198

ON THE SOLVABILITY OF CERTAIN (SSIE) WITH

OPERATORS OF THE FORM B(r, s)

Bruno de Malafosse and Eberhard Malkowsky

Abstract. Given any sequence z = (zn)n≥1 of positive real numbers
and any set E of complex sequences, we write Ez for the set of all
sequences y = (yn)n≥1 such that y/z = (yn/zn)n≥1 ∈ E; in particular,

s
(c)
z denotes the set of all sequences y such that y/z converges. In this
paper we deal with sequence spaces inclusion equations (SSIE), which
are determined by an inclusion each term of which is a sum or a sum
of products of sets of sequences of the form χa(T ) and χx(T ) where
a is a given sequence, the sequence x is the unknown, T is a given
triangle, and χa(T ) and χx(T ) are the matrix domains of T in the set
χ. Here we determine the set of all positive sequences x for which the

(SSIE) s
(c)
x (B(r, s)) ⊂ s

(c)
x (B(r′, s′)) holds, where r, r′, s′ and s are real

numbers, and B(r, s) is the generalized operator of the first difference
defined by (B(r, s)y)n = ryn+syn−1 for all n ≥ 2 and (B(r, s)y)1 = ry1.
We also determine the set of all positive sequences x for which

ryn + syn−1

xn

→ l implies
r′yn + s′yn−1

xn

→ l (n → ∞) for all y

and for some scalar l. Finally, for a given sequence a, we consider the
a–Tauberian problem which consists of determining the set of all x such

that s
(c)
x (B(r, s)) ⊂ s

(c)
a .

1. Introduction

As usual we denote by ω the set of all complex sequences x = (xn)n≥1, and
by c0, c and ℓ∞ the subsets of all null, convergent and bounded sequences,
respectively; we write cs for the set of all convergent complex series. Also
let U+ denote the set of all sequences u = (un)n≥1 with un > 0 for all n.
Given a sequence a ∈ ω and a subset E of ω, Wilansky [15] introduced the
notation a−1 ∗ E = {y ∈ ω : ay = (anyn)n≥1 ∈ E}. The sets sa, s

0
a and

s
(c)
a were introduced in [3] by ((1/an)n≥1)

−1 ∗ E for any sequence a ∈ U+

and E ∈ {ℓ∞, c0, c}. In [4, 5] the sum χa + χ′
b and the product χa ∗ χ

′
b were

defined, where χ and χ′ are any of the symbols s, s0, or s(c); also matrix

transformations in the sets sa+s0b(∆
q) and sa+s

(c)
b (∆q) were characterized,

where ∆ is the operator of the first difference. In [9] de Malafosse and
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Malkowsky gave the properties of the spectrum of the matrix of weighted
means N q considered as an operator in the set sa. In [10] characterizations
can be found of the classes of matrix transformations from sa(∆

q) into χb,

where χ is any of the symbols s, s0, or s(c). Using the spectral properties of

the operator of the first difference in the sets s0α and s
(c)
β , in [5] we were able

to simply the set s0α((∆−λI)h)+ s
(c)
β ((∆−µI)l), where h and l are complex

numbers, and α and β are given sequences; also matrix transformations in
this set were characterized in [5]. In [11] de Malafosse and Rakočević gave
applications of the measure of noncompactness to operators on the spaces sα,

s0α, s
(c)
α and ℓpα to determine compact operators between some of these spaces.

Sequence spaces inclusion equations (SSIE) and sequence spaces equations
(SSE) were introduced and studied in [2, 8, 7]. They are determined by an
inclusion or identity each term of which is a sum or a sum of products of sets
of the form χa(T ) and χf(x)(T ) where χ is any of the symbols s, s0, or s(c),

a is a given sequence in U+, x is the unknown, f maps U+ to itself, and T
is a triangle. In this paper we use the operator represented by the triangle
B(r, s), called the generalized operator of the first difference and defined by
(B(r, s)y)n = ryn+ syn−1 for all n ≥ 2 and (B(r, s)y)1 = ry1. Then we deal

with the (SSIE) s
(c)
x (B(r, s)) ⊂ s

(c)
x (B(r′, s′)), which is equivalent to

ryn + syn−1

xn
→ l implies

r′yn + s′yn−1

xn
→ l′ (n → ∞) for all y.

We then obtain extensions of results stated in [3, 2, 8, 7, 6]. The notion of an
a–Tauberian theorem was introduced in [6] as follows. For a given sequence
a, an a–Tauberian theorem is one in which the convergence of a sequence
y/a = (yn/an)n≥1 is deduced from the convergence of some transform of
the sequence together with some side conditions, the so–called a–Tauberian
conditions. In [6], for given sequences λ and µ, we determined the set of all
sequences a such that

1

λn

n∑

k=1

µk

(
∞∑

i=k

yi

)
→ l implies

yn
an

→ l′ (n → ∞)

for all y ∈ cs. In [6] a–Tauberian theorem is an extension of Hardy’s Taube-
rian theorem. In Hardy’s Tauberian theorem it is shown that under some
condition for y = (yn)n≥1, we have n−1

∑n
k=1 yk → l implies yn → l as n

tends to infinity. In a similar way, for a given sequence a, we will determine
the set of all positive sequences x for which

ryn + syn−1

xn
→ l implies

yn
an

→ l (n → ∞) for all y.
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If an = 1 for all n we obtain the classical Tauberian problems. In [14] we
considered the (C, λ, µ) summability that generalizes the (C, 1) summability
and established conditions for the equivalence between the convergence of
xn/µn and the convergence of the sequence

µ′
n = 1/λn

n∑

m=1

µ̂m(x),

where µ̂n(x) = (x1+ ....+ xn)/µn, and also for the equivalence between the
convergence of µ̂n(x) and the convergence of µ′

n.
This paper is organized as follows. In Section 2 we recall some results

on AK and BK spaces and on the set Sa,b. In Section 3 we consider the
operator C(ξ) and its inverse ∆(ξ), and recall the definitions and properties

of the sets Γ̂, Ĉ, Γ and Ĉ1. In Section 4 we solve the (SSIE) s
(c)
x (B(r, s)) ⊂

s
(c)
x (B(r′, s′)) where B(r, s) is the generalized operator of the first difference
defined above. In Section 5 we determine the set of all sequences x of positive
real numbers such that (ryn+syn−1)/xn → l implies (r′yn+s′yn−1)/xn → l
as n tends to infinity, for some scalar l and for given reals r, s, r′ and s′.
Finally in Section 6 we consider some a–Tauberian theorems; this is achieved

by determining the set of all x such that s
(c)
x (B(r, s)) ⊂ s

(c)
a .

2. Notations and preliminary results

Let A = (ank)n,k≥1 be an infinite matrix and y = (yk)k≥1 be a sequence.
Then we write

(2.1) Any =
∞∑

k=1

ankyk for any integer n ≥ 1

and Ay = (Any)n≥1 provided all the series in (2.1) converge.
Let E and F be any subsets of ω. Then we write (E,F ) for the class of

all infinite matrices A for which the series in (2.1) converge for all y ∈ E
and all n, and Ay ∈ F for all y ∈ E. So if A ∈ (E,F ) then we are led to the
study of the operator Λ = ΛA : E → F defined by Λy = Ay and we identify
the operator Λ with the matrix A.

A Banach space E of complex sequences is said to be a BK space if each
projection Pn : E → C defined by Pn(y) = yn for all y = (yn)n≥1 ∈ E
is continuous. A BK space E is said to have AK if every sequence y =
(yk)k≥1 ∈ E has a unique representation y =

∑∞
k=1 yke

(k) where e(k) is the
sequence with 1 in the k-th position and 0 otherwise.
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If u and v are sequences and E and F are two subsets of ω, then we write
uv = (unvn)n≥1 and

M(E,F ) = {u = (un)n≥1 : uv ∈ F for all v ∈ E},

for the multiplier space of E and F .
To simplify notations, we use the diagonal matrix Da defined by [Da]nn =

an for all n, write

Da ∗E = (1/a)−1 ∗ E = {(yn)n≥1 ∈ ω : (yn/an)n ∈ E}

for any a ∈ U+ and any E ⊂ ω, and define sa = Da ∗ ℓ∞, s0a = Da ∗ c0 and

s
(c)
a = Da ∗ c, (see, for instance, [4, 3, 11]). Each of the spaces Dα ∗χ, where
χ ∈ {ℓ∞, c0, c}, is a BK space normed by ‖ξ‖sa = supn≥1(|ξn|/an) and s0a
has AK (see [15, Theorem 4.3.6]).

Now let a = (an)n≥1, b = (bn)n≥1 ∈ U+. By Sa,b we denote the set of all
infinite matrices Λ = (λnk)n,k≥1 such that

‖Λ‖Sa,b
= sup

n≥1

(
1

bn

∞∑

k=1

|λnk|ak

)
< ∞.

It is well known that Λ ∈ (sa, sb) if and only if Λ ∈ Sa,b. So we can write
(sa, sb) = Sa,b.

When sa = sb we obtain the Banach algebra with identity Sa,b = Sa (see
[3]), normed by ‖Λ‖Sa = ‖Λ‖Sa,a . We also have Λ ∈ (sa, sa) if and only if
Λ ∈ Sa.

If a = (rn)n≥1, the sets Sa, sa, s
0
a and s

(c)
a are denoted by Sr, sr, s

0
r and

s
(c)
r , respectively (see [4]). When r = 1, we obtain s1 = ℓ∞, s01 = c0 and

s
(c)
1 = c, and witing e = (1, 1, ...) we have S1 = Se. It is well known that
(s1, s1) = (c0, s1) = (c, s1) = S1 (see, for instance, [15, Example 8.4.5A]).

In the sequel we will frequently use the obvious fact that Λ ∈ (χa, χ
′
b) if

and only if D1/bΛDa ∈ (χe, χ
′
e) where χ, χ′ are any of the symbols s0, s(c),

or s.
For any subset E of ω, we put ΛE = {η ∈ ω : η = Λy for some y ∈ E}.

If F is a subset of ω, we write F (Λ) = FΛ = {y ∈ ω : Λy ∈ F} for the
matrix domain of Λ in F .

3. The operators C(ξ), ∆(ξ) and the sets Γ̂, Ĉ, Γ and Ĉ1

An infinite matrix T = (tnk)n,k≥1 is said to be a triangle if tnk = 0 for
k > n and tnn 6= 0 for all n. Now let U be the set of all sequences (un)n≥1 ∈ ω
with un 6= 0 for all n. If ξ = (ξn)n≥1 ∈ U , we write C(ξ) for the triangle
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with

[C(ξ)]nk =





1

ξn
if k ≤ n,

0 otherwise,

(see, for instance, [12]-[14]). It is easy to see that the triangle ∆(ξ) defined
by

[∆(ξ)]nk =





ξn if k = n,

−ξn−1 if k = n− 1 and n ≥ 2,

0 otherwise,

is the inverse of C(ξ), that is, C(ξ)(∆(ξ)y) = ∆(ξ)(C(ξ)y) = y for all y ∈ ω.
If ξ = e we get ∆(e) = ∆, where ∆ is the well–known operator of the first
difference defined by ∆ny = yn − yn−1 for all y ∈ ω and all n ≥ 1, with the
convention y0 = 0. It is usual to write Σ = C(e). We note that ∆ and Σ
are inverse to one another, and ∆,Σ ∈ SR for any R > 1.

To simplify notation, for t > 0 and ξ ∈ U+, we write ξ′n = t−nξn and

cn(t, ξ) =
[
C
(
ξ′
)
ξ′
]
n
=

tn

ξn

n∑

k=1

ξk
tk

for all n,

and

cn(ξ) = cn(1, ξ) =
1

ξn

n∑

k=1

ξk for all n.

We also consider the sets

Ĉ =
{
ξ ∈ U+ : cn(ξ) → l (n → ∞) for some scalar l

}
,

Ĉ1 =

{
ξ ∈ U+ : sup

n
cn(ξ) < ∞

}
,

Γ̂ =

{
ξ ∈ U+ : lim

n→∞

(
ξn−1

ξn

)
< 1

}
,

Γ =

{
ξ ∈ U+ : lim sup

n→∞

(
ξn−1

ξn

)
< 1

}

and

G1 =
{
ξ ∈ U+ : there are C > 0 and γ > 1 such that ξn ≥ Cγn for all n

}
.

We obtain the next lemma by [3, Proposition 2.1, p. 1786] and [9, Propo-
sition 2.2, p. 88].

Lemma 3.1. We have Ĉ = Γ̂ ⊂ Γ ⊂ Ĉ1 ⊂ G1.
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4. On the (SSIE) s
(c)
x (B(r, s)) ⊂ s

(c)
x (B(r′, s′)) for real numbers r, s,

r′ and s′

In this subsection we determine, for given real numbers r, s, r′ and s′,
the set of all x ∈ U+ such that

ryn + syn−1

xn
→ l implies

r′yn + s′yn−1

xn
→ l′ (n → ∞) for all y

and for some scalars l and l′. We will see that this is equivalent to deter-
mining the set of all x ∈ U+ that satisfy the (SSIE)

(4.1) s(c)x (B(r, s)) ⊂ s(c)x (B(r′, s′)),

where B(r, s) and B(r′, s′) are the generalized operators of the first differ-
ence.

We recall the next result which is a direct consequence of the famous
Silverman-Toeplitz theorem.

Lemma 4.1. We have:

i) Λ ∈ (c, c) if and only if

Λ ∈ S1, lim
n→∞

∞∑

k=1

λnk = l and lim
k→∞

λnk = lk for all k ≥ 1

for some scalars l and lk (see, for instance, [15, Theorem 1.3.6]).
ii) Let Λ ∈ (c, c) and y ∈ c. If limk→∞ λnk = 0 for all k ≥ 1, then

lim
n→∞

yn = L implies lim
n→∞

Λny = lL

(see, for instance, [15, Theorem 1.3.8]).

To state the next theorem we need the following result.

Proposition 4.2. Let x ∈ U+. Then

cn(x) =
1

xn

n∑

k=1

xk → l if and only if
xn−1

xn
→ 1−

1

l
(n → ∞)

for some scalar l.

Proof. We put L = 1 − 1/l and Σn =
∑n

k=1 xk and note that l ≥ 1, since
Σn/xn = 1 + Σn−1/xn ≥ 1 for all n.
It was shown in [3, Proposition 2.1, p. 1786] that cn(x) → l (n → ∞) implies
xn−1/xn → 1− 1/l (n → ∞).
To show the converse implication, we assume xn−1/xn → 1− 1/l (n → ∞).
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Since we have Ĉ = Γ̂ by Lemma 3.1, we can write Σn/xn → l1 (n → ∞) for
some scalar l1, and must show l1 = l. We have for every n > 2

xn−1

xn
=

Σn−1 − Σn−2

xn
=

Σn−1

xn−1

xn−1

xn
−

Σn−2

xn−2

xn−2

xn−1

xn−1

xn

and
Σn−1 − Σn−2

xn
→ l1L− l1L

2 = L (n → ∞).

If L 6= 0 then we have l1 = 1/(1 − L) and since L = 1− 1/l, we conclude

l1 =
1

1−

(
1−

1

l

) = l.

If L = 0 then we have l = 1 and
Σn

xn
=

Σn−1

xn−1

xn−1

xn
+ 1 → 1 (n → ∞).

�

We recall that B(r, s), where r and s are real numbers, is the lower tri-
angular matrix

B(r, s) =




r
s r 0

s r
0 . .

. .




.

For r, s 6= 0, the matrix B(r, s) was introduced by Altay and Basar [1] and
was called the generalized operator of the first difference.

In the next theorem we confine our studies to the case when α = −s/r > 0
if δ = rs′ − r′s 6= 0.

Theorem 4.3. Let r, s, r′ and s′ be real numbers with r, s 6= 0, and δ =
rs′ − r′s.

i) If δ = 0, then (SSIE) (4.1) holds for all x.
ii) If δ 6= 0 and α = −s/r > 0, then (4.1) holds if and only if

lim
n→∞

xn−1

xn
<

1

α
.

Proof. Inclusion (4.1) is equivalent to I ∈ (s
(c)
x (B(r, s)), s

(c)
x (B(r′, s′))), that

is, to

B̃ = B(r′, s′)B−1(r, s) ∈
(
s(c)x , s(c)x

)
.

This means

(4.2) D1/xB̃Dx ∈ (c, c).
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Since r 6= 0, the matrix B(r, s) is invertible, its inverse is a triangle and
elementary calculations give

[
B−1(r, s)

]
nk

=
1

r
αn−k for 1 ≤ k ≤ n.

Then we obtain B̃nn = r′/r, and have for k ≤ n− 1

B̃nk = s′
[
B−1(r, s)

]
n−1,k

+ r′
[
B−1(r, s)

]
nk

= s′
1

r
αn−k−1 +

r′

r
αn−k

= αn−k−1

(
s′

r
+

r′

r
α

)
= αn−k−1 δ

r2
.

It follows that

[
D1/xB̃Dx

]
nk

=





1

xn
αn−k−1 δ

r2
xk for k ≤ n− 1,

r′

r
for k = n.

We deduce from the characterization of (c, c) in Lemma 4.1 (i) that (4.2)
holds if and only if

(4.3)
n∑

k=1

[
D1/xB̃Dx

]
nk

=
r′

r
−

δ

rs
c̃n(α, x) → l (n → ∞)

for some scalar l, where

c̃n(α, x) = cn(α, x) − 1 =
1
xn
αn

n−1∑

k=1

xk
αk

.

Indeed this condition implies D1/xB̃Dx ∈ S1 and (xn/α
n)n ∈ Ĉ. Since we

have Ĉ ⊂ G1 by Lemma 3.1, we deduce xn/α
n → ∞ (n → ∞) and have for

each k and for n > k
[
D1/xB̃Dx

]
nk

=
1

xn
αn−k−1 δ

r2
xk =

αn

xn

(
α−k−1 δ

r2
xk

)
= o(1) (n → ∞).

i) If δ = 0 then the sum in (4.3) reduces to r′/r and inclusion (4.1)
holds for all x.

ii) If δ 6= 0 then inclusion (4.1) means that (4.3) is convergent and

c̃n(α, x) → −
l −

r′

r
1

rs
δ

(n → ∞),
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so we have (xn/α
n)n ∈ Ĉ. By Lemma 3.1 we have Ĉ = Γ̂, and so

(4.2) is equivalent to

lim
n→∞

xn−1

αn−1

αn

xn
= α lim

n→∞

xn−1

xn
< 1.

This shows ii).

�

The following result can easily be shown when r = 0 or s = 0.

Theorem 4.4. Let r, s, r′ and s′ be real numbers.

i) Let r 6= 0 and s = 0.
a) If s′ 6= 0, then (4.1) holds if and only if

xn−1

xn
→ l (n → ∞) for some scalar l.

b) If s′ = 0, then (4.1) holds for all x.
ii) Let r = 0 and s 6= 0.

a) If r′ 6= 0, then (4.1) holds if and only if
xn

xn−1
→ l′ (n → ∞) for some scalar l′.

b) If r′ = 0, then (4.1) holds for all x.
iii) Let r = s = 0.

a) If r′ 6= 0, or s′ 6= 0, then (4.1) has no solution.
b) If r′ = s′ = 0, then (4.1) holds for all x.

Proof. We only prove Part i), the proofs of the other parts are left to the
reader.

i) Let r 6= 0 and s = 0.

Since B(r, s) = rI we have s
(c)
x (B(r, s)) = s

(c)
x . So inclusion (4.1)

is equivalent to D1/xB(r′, s′)Dx ∈ (c, c). This means that there are
K ≥ 0 and L such that

(*)





|r′|+ |s′|
xn−1

xn
≤ K for all n,

r′ + s′
xn−1

xn
→ L (n → ∞).

a) If s′ 6= 0 then we have

xn−1

xn
→

L− r′

s′
(n → ∞).

b) If s′ = 0 then the system (*) is satisfied for all x.

�

In the general case when r, s, δ, α 6= 0 we can state the following remark.
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Remark. Condition (4.1) holds if and only if

(i)
αn

xn

n−1∑

k=1

xk
αk

→ l (n → ∞),

(ii)
|α|n

xn

n−1∑

k=1

xk
|α|k

≤ K for all n

and

(iii)
αn

xn
→ l′ (n → ∞)

for some scalars l and l′, and a constant K > 0. This result is a direct
consequence of condition (4.2) in the proof of Theorem 4.3.

5. The case of regularity

5.1. The set of all x ∈ U+ such that x−1
n B(r, s)yn → l implies

x−1
n B(r′, s′)yn → l (n → ∞) for all y and for some l. A matrix A ∈ (c, c)

and the corresponding operator Λ are said to be regular if yn → l implies
Any → l (n → ∞) for all y ∈ ω and for some scalar l. We then write
A ∈ (c, c)reg . As a direct consequence of Lemma 4.1, we have the known
result (see, for instance, [15, Theorem 1.3.9])

Lemma 5.1. We have Λ ∈ (c, c)reg if and only if the next statements hold,
a) Λ ∈ S1,
b)
∑∞

k=1 λnk → 1 (n → ∞),
c) λnk → 0 (n → ∞) for k = 1, 2, . . . .

Now we consider the next question, where r, s, r′ and s′ are real numbers.
What is the set of all x ∈ U+ such that

(5.1)
ryn + syn−1

xn
→ l implies

r′yn + s′yn−1

xn
→ l (n → ∞) for all y

and for some scalar l? The answer to this question is given by the following
theorem where we confine our studies to the case −s/r > 0 when δ 6= 0.

Theorem 5.2. Let r, s, r′ and s′ be real numbers.

i) Let δ 6= 0 and α = −s/r > 0.
a) If τ = (r − r′)/(s − s′) ≤ 0, then (5.1) holds if and only if

lim
n→∞

xn−1

xn
= −τ .

b) If τ > 0, then (5.1) has no solutions.
ii) Let δ = 0 and r 6= 0.

a) If r = r′, then (5.1) holds for all x.
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b) If r 6= r′, then (5.1) has no solution.

Proof. First we note that statement (5.1) obviously means that
(5.2)

zn =
[
D1/xB(r, s)y

]
n
→ l implies tn =

[
D1/xB(r′, s′)y

]
n
→ l (n → ∞)

for all y and for some scalar l. Since y = B−1(r, s)Dxz, for r 6= 0 statement
(5.2) is equivalent to

zn → l implies
[
D1/xB̃Dxz

]
n
→ l (n → ∞)

where B̃ = B(r′, s′)B−1(r, s). Then (5.1) is equivalent to

(5.3) D1/xB̃Dx ∈ (c, c)reg ,

which, by Lemma 5.1, is equivalent to

D1/xB̃Dx ∈ S1,
n∑

k=1

[
D1/xB̃Dx

]
nk

→ 1 (n → ∞),

and [
D1/xB̃Dx

]
nk

→ 0 (n → ∞) for all k.

Using this characterization of (c, c)reg and reasoning as in Theorem 4.3, we
deduce that (5.3) holds if and only if

(5.4)

n∑

k=1

[
D1/xB̃Dx

]
nk

=
r′

r
−

δ

rs
c̃n(α, x) → 1 (n → ∞).

i) Now we can show a) and b).
Putting zn = xnα

−n, we have

c̃n(z) =
1

zn

n−1∑

k=1

zk → L (n → ∞),

where

(5.5) L =
1−

r′

r

−
δ

rs

= −
r − r′

δ
s ≥ 0.

Then we obtain cn(z) = c̃n(z) + 1 → L+1 (n → ∞), and deduce by
Proposition 4.2 that (5.1) is equivalent to

zn−1

zn
→ 1−

1

L+ 1
=

L

L+ 1
(n → ∞).
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Using (5.5) we immediately obtain L/(L+ 1) = −ατ . We conclude

xn−1

xn
=

zn−1

zn

1

α
→ −τ ≥ 0 (n → ∞).

ii) If δ = 0 the sum defined in (5.4) reduces to r′/r = 1, that is, r = r′.
We then have s = s′ and (5.1) holds for all x.

�

Now give a remark in which we consider a Tauberian problem using the
operator of the generalized difference sequence.

Remark. If r > 1 or r < 0, then ryn + (1 − r)yn−1 → l implies yn → l
(n → ∞) for all y and for some scalar l. Indeed, it is enough to take r′ = 1,
s′ = 0 and x = e in Theorem 4.3. Then we have 1 = −(r − 1)/s with
−s/r > 0.

Now we consider the equivalence

(5.6)
ryn + syn−1

xn
→ l if and only if

r′yn + s′yn−1

xn
→ l (n → ∞) for all y

and for some scalar l. Note that in [3] we determined the set of all x ∈ U+

such that s
(c)
x (∆) = s

(c)
x . In [7] we gave a necessary and sufficient condition

under which a, b ∈ U+ satisfy s
(c)
a (∆) = s

(c)
b . Since we have B (−1, 1) = ∆

and B (1, 0) = I, then s
(c)
x (B (−1, 1)) = s

(c)
x (∆) and s

(c)
x (B (1, 0)) = s

(c)
x .

Thus we see that condition (5.6) is an extension of [3, 7].
We obtain the next result as a direct consequence of Theorem 5.2.

Theorem 5.3. Let r, s, r′ and s′ be real numbers, all different from zero.

i) Let δ 6= 0 and r/s, r′/s′ < 0.
a) If τ = (r − r′)/(s − s′) ≤ 0, then the solutions of (5.6) are

defined by

lim
n→∞

xn−1

xn
= −τ .

b) If τ > 0, then (5.6) has no solutions.
ii) Let δ = 0.

a) If r = r′, then (5.6) holds for all x.
b) If r 6= r′, then (5.6) has no solution.

Now we deal with the case when r = 0 or s = 0.

Theorem 5.4. i) We assume r 6= 0 and s = 0.
a) Let s′ 6= 0.

α) If τ1 = (r − r′)/s′ ≥ 0, then (5.1) holds if and only if

(5.7) lim
n→∞

xn−1

xn
= τ1.
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β) If τ1 < 0, then (5.1) has no solution.
b) Let s′ = 0.

α) If r = r′, then (5.1) holds for all x.
β) If r 6= r′, then (5.1) has no solution.

(ii) We assume r = 0 and s 6= 0.
a) Let r′ 6= 0.

α) If l = 0, then (5.1) is equivalent to (xn/xn−1)n ∈ ℓ∞.
β) If l 6= 0, then condition (5.1) holds if and only if

lim
n→∞

xn
xn−1

=
s− s′

r′
≥ 0.

b) Let r′ = 0.
α) If s′ = s, then (5.1) holds for all x.
β) If s′ 6= s, then (5.1) has no solution.

(iii) Let r = s = 0.
a) If r′ 6= 0, or s′ 6= 0, then (5.1) has no solution.
b) If r′ = s′ = 0, then (5.1) holds for all x.

Proof. i) We assume r 6= 0 and s = 0. Since B(r, s) = rI, statement
(5.1) is equivalent to D1/xB(r′/r, s′/r)Dx ∈ (c, c)reg, that is,

(5.8)

∣∣∣∣
r′

r

∣∣∣∣+
∣∣∣∣
s′

r

∣∣∣∣
xn−1

xn
≤ K for all n,

(5.9)
r′

r
+

s′

r

xn−1

xn
→ 1 (n → ∞).

a) Let s′ 6= 0. Since condition (5.9) implies (5.8), statement (5.1)
is equivalent to (5.7).

b) Let s′ = 0.
α) If r = r′, then the previous system holds for all x.
β) If r 6= r′, then the system has no solution.

ii) We assume r = 0 and s 6= 0.
a) Let r′ 6= 0. Then statement (5.1) reduces to

(5.10) s
yn−1

xn
→ l implies tn =

r′yn + s′yn−1

xn
→ l (n → ∞).

α) If l = 0, then we have

s0x (B(0, s)) =

{
y ∈ ω :

yn
xn+1

= o(1) (n → ∞)

}
= sx+ ,

where x+ = (xn+1)n. Then statement (5.1) with l = 0
is equivalent to s0x+ ⊂ s0x(B(r′, s′)), B(r′, s′) ∈ (s0x+ , s

0
x),
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that is, to

(5.11) |r′|
xn+1

xn
+ |s′| ≤ K for all n.

Obviously the condition in (5.11) is equivalent to

(xn/xn−1) ∈ ℓ∞.

β) If l 6= 0, we put zn = syn−1/xn. Then (5.1) is equivalent
to

zn → l implies tn =
r′

s
zn+1

xn+1

xn
+

s′

s
zn → l (n → ∞),

that is, to

xn+1

xn
=

tn −
s′

s
zn

r′

s
zn+1

→
s− s′

r′
(n → ∞).

b) Let r′ = 0. Then zn = syn−1/xn → l implies s′yn−1/xn → l =
ls′/s (n → ∞).
α) If s′ = s, then statement (5.1) holds for all x ∈ U+.
β) If s′ 6= s, then (5.1) has no solution.

iii) We assume r = s = 0. Then we must have B(r′, s′) ∈ (ω, s0x) which
implies r′ = s′ = 0. Indeed we assume either r′ 6= 0 or s′ 6= 0.
Let r′ 6= 0. We consider the cases s′/r′ ≥ 0 and s′/r′ < 0.
If s′/r′ ≥ 0, then we take y = (Rnxn)n ∈ ω with R > 1, and obtain

∣∣∣∣
B(r′, s′)yn

xn

∣∣∣∣ =
|r′|

xn

∣∣∣∣yn +
s′

r′
yn−1

∣∣∣∣ ≥ |r′|Rn for all n.

Then we have |B(r′, s′)yn/xn| → ∞ (n → ∞) and ω ⊂sx(B(r′, s′))
is impossible.
If s′/r′ < 0, then we take yn = (−R)nxn with R > 1, and obtain

∣∣∣∣
B(r′, s′)yn

xn

∣∣∣∣ =
∣∣∣∣
r′

xn

(
yn +

s′

r′
yn−1

)∣∣∣∣ = |r′|Rn

(
1−

s′

r′
xn−1

Rxn

)

≥ |r′|Rn for all n,

and we conclude as above.
The case s′ 6= 0 can be treated similarly.

�
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5.2. Applications. Let r < 0 and s > −1, and different from 0 and consider
the sets

S1(r) =

{
x ∈ U+ :

ryn + yn−1

xn
→ l implies

∆yn
xn

→ l (n → ∞)

for all y ∈ ω and for some scalar l}

and

S2(s) =

{
x ∈ U+ :

∆yn
xn

→ l implies
syn
xn

→ l (n → ∞)

for all y ∈ ω and for some scalar l} .

We can determine the set S1(r) ∩ S2(s). Since δ = −r + 1 6= 0, we have by
Theorem 5.2

S1(r) =

{
x ∈ U+ :

xn−1

xn
→

1− r

2
(n → ∞)

}
,

and similarly

S2(s) =

{
x ∈ U+ :

xn−1

xn
→

1

1 + s
(n → ∞)

}
.

We conclude

S1(r) ∩ S2(s) =

{
S2(s) if s = (1 + r)/(1− r),

∅ otherwise.

Note that if r < 0, then S1(r) ∩ S2(s) 6= ∅ implies |s| < 1 and s 6= 0.

6. The a-Tauberian (SSIE) s
(c)
x (B(r, s)) ⊂ s

(c)
a

6.1. a-Tauberian (SSIE) with operators of the form B(r, s). Here we
consider the a-Tauberian (SSIE) problem for given a ∈ U+, (see [6]), stated
as follows. Let r, s, r′ and s′ be real numbers, and let a be a given sequence;
what is the set Sa of all x ∈ U+ such that

ryn + syn−1

xn
→ l implies

yn
an

→ l′ (n → ∞) for all y,

and for some scalars l and l′? This statement is equivalent to the solvability
of the (SSIE)

(6.1) s(c)x (B(r, s)) ⊂ s(c)a .

As we will see in Proposition 6.1, since the condition on the sequence a is

less restrictive for (6.1) than for the (SSIE) s
(c)
a (B(r, s)) ⊂ s

(c)
x it is natural

to begin with the study of the set Sa. To state the next result, we use the
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set csb of all x ∈ U+ such that
∑∞

k=1 xk/bk < ∞, where b ∈ U+. For b = e
we obtain csb = cs∩U+. Throughout this section we assume α = −s/r > 0.

Proposition 6.1. We assume (αn/an)n ∈ c. Then x ∈ Sa if and only if

(6.2)

(
αn

an

n∑

k=1

xk
αk

)

n

∈ c.

Moreover if an ∼ λαn (n → ∞) for λ > 0, that is, an/λα
n → 1 (n → ∞),

then we have

Sa = cs(αn)n .

Proof. We have x ∈ Sa if and only if (6.1) holds, which is equivalent to

(6.3) B−1(r, s) ∈
(
s(c)x , s(c)a

)
,

that is, to D1/aB
−1(r, s)Dx ∈ (c, c). From the expression of B−1(r, s) in

the proof of Theorem 5.2, and the characterization of (c, c), condition (6.3)
is equivalent to (6.2) and (αn/an)n ∈ c. Now we assume an/α

n → λ > 0
(n → ∞). Then we have x ∈ Sa if and only if

un =
αn

an

n∑

k=1

xk
αk

→ L (n → ∞)

for some scalar L, that is,

n∑

k=1

xk
αk

=
un
αn

an

→
L

λ
(n → ∞),

and x ∈ cs(αn)n . �

When a = e, we obtain the next Tauberian result.

Corollary 6.2. i) If 0 < α ≤ 1, then x ∈ Se if and only if
(
αn

n∑

k=1

xk
αk

)

n

∈ c.

ii) If α = 1, then Se = cs ∩ U+.

As a direct application we also have the next result,

Corollary 6.3. We assume 0 < α < 1. Then (xn)n ∈ Se if and only if
0 < x ≤ 1.
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Proof. First we assume x 6= α. Since xk = xk for all k, we have (xn)n ∈ Se

if and only if

αn
n∑

k=1

xk
αk

= αn x

α

1

1−
x

α

− αn
(x
α

)n+1 1

1−
x

α

= αn−1x
1

1−
x

α

−
xn+1

α

1

1−
x

α

,

is convergent as n tends to infinity, that is, for 0 < x ≤ 1 and x 6= α.
If x = α < 1, we have αn

∑n
k=1(x/α)

k = nαn = o(1) (n → ∞). �

We immediately deduce the next examples.

Example. Let u, v > 0. Then x ∈ U+ satisfies the condition

uyn − vyn−1

xn
→ l implies

(u
v

)n
yn → l′ (n → ∞)

for all y and for some scalars l and l′,

if and only if
∑∞

k=1(u/v)
kxk < ∞. This result can be obtained writing

α = v/u and an = αn in Proposition 6.1. In particular, if u = v = 1, then
the set of all x ∈ U+ such that

∆yn
xn

→ l implies yn → l′ (n → ∞) for all y and for some scalars l and l′

is equal to cs ∩ U+.

Remark. We obtain a similar result when a and x are interchanged in (SSIE)
(6.1). Indeed, let a ∈ cs(αn)n and let Sa be the set of all x ∈ U+ such that

the (SSIE) s
(c)
a (B(r, s)) ⊂ s

(c)
x holds. Then x ∈ Sa if and only if

(6.4)

(
αn

xn

)

n

∈ c.

This result follows from the fact that here the condition D1/xB
−1(r, s)Da ∈

(c, c) is equivalent to (6.4) and

(6.5)

(
αn

xn

n∑

k=1

ak
αk

)

n

∈ c,

and we conclude since (6.4) implies (6.5).

We immediately deduce the following Tauberian result.
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Remark. If a ∈ cs(αn)n , then

B(r, s)yn
an

→ l implies yn → l′ (n → ∞)

for all y and for some scalars l and l′, if and only if

(6.6) 0 < −s/r ≤ 1.

This result comes from the fact that e ∈ Sa if and only if (6.6) holds.

6.2. The case of the operator of the first difference.

6.2.1. The general case. If r = −s = 1, then we obtain B(r, s) = ∆. We

confine our studies to the case when an → ∞ (n → ∞). We denote by S̃a

the set of all x ∈ U+ such that

(6.7)
∆yn
xn

→ l implies
yn
an

→ l′ (n → ∞)

for all y and for some scalars l and l′.
We state the next elementary result.

Proposition 6.4. We assume an → ∞ (n → ∞). Then the set S̃a is equal
to the set of all x ∈ U+ such that

(6.8)
1

an

n∑

k=1

xk → L (n → ∞) for some scalar L;

moreover we have l′ = lL in (6.7).

Proof. It is enough to apply Proposition 6.1 with α = 1, and αn/an =
1/an → 0 (n → ∞). By Lemma 4.1, we have l′ = lL. �

6.2.2. Applications to the case when an = nβ+1 with β > −1, or an = lnn.
It is well known that if ξ > −1, then

(6.9)
n∑

k=1

kξ ∼
nξ+1

ξ + 1
(n → ∞).

The next result is a direct consequence of Proposition 6.4 and (6.9).

Corollary 6.5. Let β be a real number.

i) If β > −1, then

∆yn
nβ

→ l implies
yn

nβ+1
→

l

β + 1
(n → ∞)

for all y and for some scalar l.
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ii) If β = −1, then

∆yn
nβ

= n∆yn → l implies
yn
lnn

→ l (n → ∞)

for all y and for some scalar l.

Proof. i) Part i) is a direct consequence of Proposition 6.4 and (6.9),
since

vn =
1

nβ+1

n∑

k=1

kβ →
1

β + 1
(n → ∞).

ii) Trivially we have

1 + ln

(
n+ 1

2

)
= 1 +

∫ n+1

2

dx

x
≤ sn =

n∑

k=1

1

k
≤ 1 +

∫ n

1

dx

x

= 1 + lnn for all n.

We immediately deduce that sn/ lnn → 1 (n → ∞) and n∆yn → l
imply

yn
lnn

→ l lim
n→∞

sn
lnn

= l (n → ∞)

for all y.
�

As a direct consequence of the preceding result we obtain,

Corollary 6.6. i) If β > −1, then

yn −

(
1−

1

n

)β

yn−1 → L implies
yn
n

→
L

β + 1
(n → ∞)

for all y.
ii) If β = −1, then

yn −

(
1−

1

n

)β

yn−1 = yn −
n

n− 1
yn−1 → L

implies
yn

n lnn
→ L (n → ∞)

for all y.
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