ON THE SOLVABILITY OF CERTAIN (SSIE) WITH OPERATORS OF THE FORM B(r, s)

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

ABSTRACT. Given any sequence $z = (z_n)_{n\geq 1}$ of positive real numbers and any set E of complex sequences, we write E_z for the set of all sequences $y = (y_n)_{n\geq 1}$ such that $y/z = (y_n/z_n)_{n\geq 1} \in E$; in particular, $\mathbf{s}_z^{(c)}$ denotes the set of all sequences y such that y/z converges. In this paper we deal with sequence spaces inclusion equations (SSIE), which are determined by an inclusion each term of which is a sum or a sum of products of sets of sequences of the form $\chi_a(T)$ and $\chi_x(T)$ where a is a given sequence, the sequence x is the unknown, T is a given triangle, and $\chi_a(T)$ and $\chi_x(T)$ are the matrix domains of T in the set χ . Here we determine the set of all positive sequences x for which the (SSIE) $\mathbf{s}_x^{(c)}(B(r,s)) \subset \mathbf{s}_x^{(c)}(B(r',s'))$ holds, where r, r', s' and s are real numbers, and B(r,s) is the generalized operator of the first difference defined by $(B(r,s)y)_n = ry_n + sy_{n-1}$ for all $n \geq 2$ and $(B(r,s)y)_1 = ry_1$. We also determine the set of all positive sequences x for which

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{r'y_n + s'y_{n-1}}{x_n} \to l \ (n \to \infty) \text{ for all } y$$

and for some scalar l. Finally, for a given sequence a, we consider the a-Tauberian problem which consists of determining the set of all x such that $\mathbf{s}_x^{(c)}(B(r,s)) \subset \mathbf{s}_a^{(c)}$.

1. INTRODUCTION

As usual we denote by ω the set of all complex sequences $x = (x_n)_{n\geq 1}$, and by c_0 , c and ℓ_{∞} the subsets of all null, convergent and bounded sequences, respectively; we write cs for the set of all convergent complex series. Also let U^+ denote the set of all sequences $u = (u_n)_{n\geq 1}$ with $u_n > 0$ for all n. Given a sequence $a \in \omega$ and a subset E of ω , Wilansky [15] introduced the notation $a^{-1} * E = \{y \in \omega : ay = (a_n y_n)_{n\geq 1} \in E\}$. The sets \mathbf{s}_a , \mathbf{s}_a^0 and $\mathbf{s}_a^{(c)}$ were introduced in [3] by $((1/a_n)_{n\geq 1})^{-1} * E$ for any sequence $a \in U^+$ and $E \in \{\ell_{\infty}, c_0, c\}$. In [4, 5] the sum $\chi_a + \chi'_b$ and the product $\chi_a * \chi'_b$ were defined, where χ and χ' are any of the symbols \mathbf{s} , \mathbf{s}^0 , or $\mathbf{s}^{(c)}$; also matrix transformations in the sets $\mathbf{s}_a + \mathbf{s}_b^0(\Delta^q)$ and $\mathbf{s}_a + \mathbf{s}_b^{(c)}(\Delta^q)$ were characterized, where Δ is the operator of the first difference. In [9] de Malafosse and

Mathematics Subject Classification. 40H05, 46A45.

Key words and phrases. Matrix transformations; BK space; the spaces \mathbf{s}_a , \mathbf{s}_a^0 and $\mathbf{s}_a^{(c)}$; (SSIE); (SSE) with operator; band matrix B(r, s); Tauberian result.

Research of the second author supported by the research project #174007 of the Serbian Ministry of Science, Technology and Environmental Development.

Malkowsky gave the properties of the spectrum of the matrix of weighted means \overline{N}_{q} considered as an operator in the set \mathbf{s}_{a} . In [10] characterizations can be found of the classes of matrix transformations from $\mathbf{s}_a(\Delta^q)$ into χ_b , where χ is any of the symbols s, s^0 , or $s^{(c)}$. Using the spectral properties of the operator of the first difference in the sets \mathbf{s}^{0}_{α} and $\mathbf{s}^{(c)}_{\beta}$, in [5] we were able to simply the set $\mathbf{s}^0_{\alpha}((\Delta - \lambda I)^h) + \mathbf{s}^{(c)}_{\beta}((\Delta - \mu I)^l)$, where h and l are complex numbers, and α and β are given sequences; also matrix transformations in this set were characterized in [5]. In [11] de Malafosse and Rakočević gave applications of the measure of noncompactness to operators on the spaces \mathbf{s}_{α} , $\mathbf{s}_{\alpha}^{0}, \mathbf{s}_{\alpha}^{(c)}$ and ℓ_{α}^{p} to determine compact operators between some of these spaces. Sequence spaces inclusion equations (SSIE) and sequence spaces equations (SSE) were introduced and studied in [2, 8, 7]. They are determined by an inclusion or identity each term of which is a sum or a sum of products of sets of the form $\chi_a(T)$ and $\chi_{f(x)}(T)$ where χ is any of the symbols \mathbf{s}, \mathbf{s}^0 , or $\mathbf{s}^{(c)}$, a is a given sequence in U^+ , x is the unknown, f maps U^+ to itself, and T is a triangle. In this paper we use the operator represented by the triangle B(r,s), called the generalized operator of the first difference and defined by $(B(r,s)y)_n = ry_n + sy_{n-1}$ for all $n \ge 2$ and $(B(r,s)y)_1 = ry_1$. Then we deal with the (SSIE) $\mathbf{s}_x^{(c)}(B(r,s)) \subset \mathbf{s}_x^{(c)}(B(r',s'))$, which is equivalent to

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{r'y_n + s'y_{n-1}}{x_n} \to l' \ (n \to \infty) \text{ for all } y.$$

We then obtain extensions of results stated in [3, 2, 8, 7, 6]. The notion of an a-Tauberian theorem was introduced in [6] as follows. For a given sequence a, an a-Tauberian theorem is one in which the convergence of a sequence $y/a = (y_n/a_n)_{n\geq 1}$ is deduced from the convergence of some transform of the sequence together with some side conditions, the so-called a-Tauberian conditions. In [6], for given sequences λ and μ , we determined the set of all sequences a such that

$$\frac{1}{\lambda_n} \sum_{k=1}^n \mu_k \left(\sum_{i=k}^\infty y_i \right) \to l \text{ implies } \frac{y_n}{a_n} \to l' \ (n \to \infty)$$

for all $y \in cs$. In [6] *a*-Tauberian theorem is an extension of Hardy's Tauberian theorem. In Hardy's Tauberian theorem it is shown that under some condition for $y = (y_n)_{n\geq 1}$, we have $n^{-1}\sum_{k=1}^n y_k \to l$ implies $y_n \to l$ as ntends to infinity. In a similar way, for a given sequence a, we will determine the set of all positive sequences x for which

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{y_n}{a_n} \to l \ (n \to \infty) \text{ for all } y.$$

If $a_n = 1$ for all *n* we obtain the classical *Tauberian problems*. In [14] we considered the (C, λ, μ) summability that generalizes the (C, 1) summability and established conditions for the equivalence between the convergence of x_n/μ_n and the convergence of the sequence

$$\mu'_n = 1/\lambda_n \sum_{m=1}^n \widehat{\mu}_m(x).$$

where $\hat{\mu}_n(x) = (x_1 + \dots + x_n)/\mu_n$, and also for the equivalence between the convergence of $\hat{\mu}_n(x)$ and the convergence of μ'_n .

This paper is organized as follows. In Section 2 we recall some results on AK and BK spaces and on the set $S_{a,b}$. In Section 3 we consider the operator $C(\xi)$ and its inverse $\Delta(\xi)$, and recall the definitions and properties of the sets $\widehat{\Gamma}$, \widehat{C} , Γ and $\widehat{C_1}$. In Section 4 we solve the (SSIE) $s_x^{(c)}(B(r,s)) \subset$ $\mathbf{s}_x^{(c)}(B(r',s'))$ where B(r,s) is the generalized operator of the first difference defined above. In Section 5 we determine the set of all sequences x of positive real numbers such that $(ry_n + sy_{n-1})/x_n \to l$ implies $(r'y_n + s'y_{n-1})/x_n \to l$ as n tends to infinity, for some scalar l and for given reals r, s, r' and s'. Finally in Section 6 we consider some a-Tauberian theorems; this is achieved by determining the set of all x such that $s_x^{(c)}(B(r,s)) \subset \mathbf{s}_a^{(c)}$.

2. NOTATIONS AND PRELIMINARY RESULTS

Let $A = (a_{nk})_{n,k\geq 1}$ be an infinite matrix and $y = (y_k)_{k\geq 1}$ be a sequence. Then we write

(2.1)
$$A_n y = \sum_{k=1}^{\infty} a_{nk} y_k \text{ for any integer } n \ge 1$$

and $Ay = (A_n y)_{n>1}$ provided all the series in (2.1) converge.

Let E and F be any subsets of ω . Then we write (E, F) for the class of all infinite matrices A for which the series in (2.1) converge for all $y \in E$ and all n, and $Ay \in F$ for all $y \in E$. So if $A \in (E, F)$ then we are led to the study of the operator $\Lambda = \Lambda_A : E \to F$ defined by $\Lambda y = Ay$ and we identify the operator Λ with the matrix A.

A Banach space E of complex sequences is said to be a BK space if each projection $P_n : E \to \mathbb{C}$ defined by $P_n(y) = y_n$ for all $y = (y_n)_{n\geq 1} \in E$ is continuous. A BK space E is said to have AK if every sequence $y = (y_k)_{k\geq 1} \in E$ has a unique representation $y = \sum_{k=1}^{\infty} y_k e^{(k)}$ where $e^{(k)}$ is the sequence with 1 in the k-th position and 0 otherwise. If u and v are sequences and E and F are two subsets of ω , then we write $uv = (u_n v_n)_{n>1}$ and

$$M(E,F) = \{ u = (u_n)_{n \ge 1} : uv \in F \text{ for all } v \in E \},\$$

for the multiplier space of E and F.

To simplify notations, we use the diagonal matrix D_a defined by $[D_a]_{nn} = a_n$ for all n, write

$$D_a * E = (1/a)^{-1} * E = \{(y_n)_{n \ge 1} \in \omega : (y_n/a_n)_n \in E\}$$

for any $a \in U^+$ and any $E \subset \omega$, and define $\mathbf{s}_a = D_a * \ell_\infty$, $\mathbf{s}_a^0 = D_a * c_0$ and $\mathbf{s}_a^{(c)} = D_a * c$, (see, for instance, [4, 3, 11]). Each of the spaces $D_\alpha * \chi$, where $\chi \in \{\ell_\infty, c_0, c\}$, is a BK space normed by $\|\xi\|_{\mathbf{s}_a} = \sup_{n\geq 1}(|\xi_n|/a_n)$ and \mathbf{s}_a^0 has AK (see [15, Theorem 4.3.6]).

Now let $a = (a_n)_{n \ge 1}, b = (b_n)_{n \ge 1} \in U^+$. By $S_{a,b}$ we denote the set of all infinite matrices $\Lambda = (\lambda_{nk})_{n,k \ge 1}$ such that

$$\|\Lambda\|_{S_{a,b}} = \sup_{n \ge 1} \left(\frac{1}{b_n} \sum_{k=1}^{\infty} |\lambda_{nk}| a_k\right) < \infty.$$

It is well known that $\Lambda \in (\mathbf{s}_a, \mathbf{s}_b)$ if and only if $\Lambda \in S_{a,b}$. So we can write $(\mathbf{s}_a, \mathbf{s}_b) = S_{a,b}$.

When $\mathbf{s}_a = \mathbf{s}_b$ we obtain the Banach algebra with identity $S_{a,b} = S_a$ (see [3]), normed by $\|\Lambda\|_{S_a} = \|\Lambda\|_{S_{a,a}}$. We also have $\Lambda \in (\mathbf{s}_a, \mathbf{s}_a)$ if and only if $\Lambda \in S_a$.

If $a = (r^n)_{n \ge 1}$, the sets S_a , \mathbf{s}_a , \mathbf{s}_a^0 and $\mathbf{s}_a^{(c)}$ are denoted by S_r , \mathbf{s}_r , \mathbf{s}_r^0 and $\mathbf{s}_r^{(c)}$, respectively (see [4]). When r = 1, we obtain $\mathbf{s}_1 = \ell_{\infty}$, $\mathbf{s}_1^0 = c_0$ and $\mathbf{s}_1^{(c)} = c$, and witing e = (1, 1, ...) we have $S_1 = S_e$. It is well known that $(\mathbf{s}_1, \mathbf{s}_1) = (c_0, \mathbf{s}_1) = (c, \mathbf{s}_1) = S_1$ (see, for instance, [15, Example 8.4.5A]).

In the sequel we will frequently use the obvious fact that $\Lambda \in (\chi_a, \chi'_b)$ if and only if $D_{1/b}\Lambda D_a \in (\chi_e, \chi'_e)$ where χ, χ' are any of the symbols $\mathbf{s}^0, \mathbf{s}^{(c)},$ or **s**.

For any subset E of ω , we put $\Lambda E = \{\eta \in \omega : \eta = \Lambda y \text{ for some } y \in E\}$. If F is a subset of ω , we write $F(\Lambda) = F_{\Lambda} = \{y \in \omega : \Lambda y \in F\}$ for the matrix domain of Λ in F.

3. The operators $C(\xi)$, $\Delta(\xi)$ and the sets $\widehat{\Gamma}$, \widehat{C} , Γ and $\widehat{C_1}$

An infinite matrix $T = (t_{nk})_{n,k\geq 1}$ is said to be a triangle if $t_{nk} = 0$ for k > n and $t_{nn} \neq 0$ for all n. Now let U be the set of all sequences $(u_n)_{n\geq 1} \in \omega$ with $u_n \neq 0$ for all n. If $\xi = (\xi_n)_{n\geq 1} \in U$, we write $C(\xi)$ for the triangle

with

$$[C(\xi)]_{nk} = \begin{cases} \frac{1}{\xi_n} & \text{if } k \le n, \\ 0 & \text{otherwise} \end{cases}$$

(see, for instance, [12]-[14]). It is easy to see that the triangle $\Delta(\xi)$ defined by

$$[\Delta(\xi)]_{nk} = \begin{cases} \xi_n & \text{if } k = n, \\ -\xi_{n-1} & \text{if } k = n-1 \text{ and } n \ge 2, \\ 0 & \text{otherwise,} \end{cases}$$

is the inverse of $C(\xi)$, that is, $C(\xi)(\Delta(\xi)y) = \Delta(\xi)(C(\xi)y) = y$ for all $y \in \omega$. If $\xi = e$ we get $\Delta(e) = \Delta$, where Δ is the well-known operator of the first difference defined by $\Delta_n y = y_n - y_{n-1}$ for all $y \in \omega$ and all $n \ge 1$, with the convention $y_0 = 0$. It is usual to write $\Sigma = C(e)$. We note that Δ and Σ are inverse to one another, and $\Delta, \Sigma \in S_R$ for any R > 1.

To simplify notation, for t > 0 and $\xi \in U^+$, we write $\xi'_n = t^{-n} \xi_n$ and

$$c_n(t,\xi) = \left[C\left(\xi'\right)\xi'\right]_n = \frac{t^n}{\xi_n}\sum_{k=1}^n \frac{\xi_k}{t^k} \text{ for all } n,$$

and

$$c_n(\xi) = c_n(1,\xi) = \frac{1}{\xi_n} \sum_{k=1}^n \xi_k$$
 for all n .

We also consider the sets

$$\widehat{C} = \left\{ \xi \in U^+ : c_n(\xi) \to l \ (n \to \infty) \text{ for some scalar } l \right\},$$
$$\widehat{C}_1 = \left\{ \xi \in U^+ : \quad \sup_n c_n(\xi) < \infty \right\},$$
$$\widehat{\Gamma} = \left\{ \xi \in U^+ : \quad \lim_{n \to \infty} \left(\frac{\xi_{n-1}}{\xi_n} \right) < 1 \right\},$$
$$\Gamma = \left\{ \xi \in U^+ : \quad \limsup_{n \to \infty} \left(\frac{\xi_{n-1}}{\xi_n} \right) < 1 \right\}$$

and

 $G_1 = \left\{ \xi \in U^+ : \text{there are } C > 0 \text{ and } \gamma > 1 \text{ such that } \xi_n \ge C\gamma^n \text{ for all } n \right\}.$

We obtain the next lemma by [3, Proposition 2.1, p. 1786] and [9, Proposition 2.2, p. 88].

Lemma 3.1. We have $\widehat{C} = \widehat{\Gamma} \subset \Gamma \subset \widehat{C_1} \subset G_1$.

4. On the (SSIE)
$$\mathbf{s}_x^{(c)}(B(r,s)) \subset \mathbf{s}_x^{(c)}(B(r',s'))$$
 for real numbers r, s, r' and s'

In this subsection we determine, for given real numbers r, s, r' and s', the set of all $x \in U^+$ such that

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{r'y_n + s'y_{n-1}}{x_n} \to l' \ (n \to \infty) \text{ for all } y$$

and for some scalars l and l'. We will see that this is equivalent to determining the set of all $x \in U^+$ that satisfy the (SSIE)

(4.1)
$$\mathbf{s}_x^{(c)}(B(r,s)) \subset \mathbf{s}_x^{(c)}(B(r',s')),$$

where B(r, s) and B(r', s') are the generalized operators of the first difference.

We recall the next result which is a direct consequence of the famous Silverman-Toeplitz theorem.

Lemma 4.1. We have:

i) $\Lambda \in (c, c)$ if and only if $\Lambda \in S_1, \lim_{n \to \infty} \sum_{k=1}^{\infty} \lambda_{nk} = l \text{ and } \lim_{k \to \infty} \lambda_{nk} = l_k \text{ for all } k \ge 1$

for some scalars l and l_k (see, for instance, [15, Theorem 1.3.6]). ii) Let $\Lambda \in (c, c)$ and $y \in c$. If $\lim_{k\to\infty} \lambda_{nk} = 0$ for all $k \ge 1$, then

$$\lim_{n \to \infty} y_n = L \text{ implies } \lim_{n \to \infty} \Lambda_n y = lL$$

(see, for instance, [15, Theorem 1.3.8]).

To state the next theorem we need the following result.

Proposition 4.2. Let $x \in U^+$. Then

$$c_n(x) = \frac{1}{x_n} \sum_{k=1}^n x_k \to l \text{ if and only if } \frac{x_{n-1}}{x_n} \to 1 - \frac{1}{l} \ (n \to \infty)$$

for some scalar l.

Proof. We put L = 1 - 1/l and $\Sigma_n = \sum_{k=1}^n x_k$ and note that $l \ge 1$, since $\Sigma_n/x_n = 1 + \Sigma_{n-1}/x_n \ge 1$ for all n.

It was shown in [3, Proposition 2.1, p. 1786] that $c_n(x) \to l \ (n \to \infty)$ implies $x_{n-1}/x_n \to 1 - 1/l \ (n \to \infty)$.

To show the converse implication, we assume $x_{n-1}/x_n \to 1 - 1/l \ (n \to \infty)$.

Since we have $\widehat{C} = \widehat{\Gamma}$ by Lemma 3.1, we can write $\Sigma_n / x_n \to l_1 \ (n \to \infty)$ for some scalar l_1 , and must show $l_1 = l$. We have for every n > 2

$$\frac{x_{n-1}}{x_n} = \frac{\sum_{n-1} - \sum_{n-2}}{x_n} = \frac{\sum_{n-1} x_{n-1}}{x_n} - \frac{\sum_{n-2} x_{n-2}}{x_{n-2}} \frac{x_{n-1}}{x_n}$$

and

$$\frac{\Sigma_{n-1} - \Sigma_{n-2}}{x_n} \to l_1 L - l_1 L^2 = L \ (n \to \infty).$$

If $L \neq 0$ then we have $l_1 = 1/(1-L)$ and since L = 1 - 1/l, we conclude

$$l_1 = \frac{1}{1 - \left(1 - \frac{1}{l}\right)} = l$$

If L = 0 then we have l = 1 and $\frac{\sum_n}{x_n} = \frac{\sum_{n-1} x_{n-1}}{x_{n-1}} + 1 \to 1 \quad (n \to \infty).$

We recall that B(r, s), where r and s are real numbers, is the lower triangular matrix

$$B(r,s) = \begin{pmatrix} r & & & \\ s & r & & 0 \\ & s & r & \\ 0 & & . & . \\ & & & . & . \end{pmatrix}$$

For $r, s \neq 0$, the matrix B(r, s) was introduced by Altay and Basar [1] and was called the *generalized operator of the first difference*.

In the next theorem we confine our studies to the case when $\alpha = -s/r > 0$ if $\delta = rs' - r's \neq 0$.

Theorem 4.3. Let r, s, r' and s' be real numbers with $r, s \neq 0$, and $\delta = rs' - r's$.

- i) If $\delta = 0$, then (SSIE) (4.1) holds for all x.
- ii) If $\delta \neq 0$ and $\alpha = -s/r > 0$, then (4.1) holds if and only if

$$\lim_{n \to \infty} \frac{x_{n-1}}{x_n} < \frac{1}{\alpha}$$

Proof. Inclusion (4.1) is equivalent to $I \in (\mathbf{s}_x^{(c)}(B(r,s)), \mathbf{s}_x^{(c)}(B(r',s')))$, that is, to

$$\widetilde{B} = B(r', s')B^{-1}(r, s) \in \left(\mathbf{s}_x^{(c)}, \mathbf{s}_x^{(c)}\right).$$

This means

$$(4.2) D_{1/x}BD_x \in (c,c).$$

185

Since $r \neq 0$, the matrix B(r, s) is invertible, its inverse is a triangle and elementary calculations give

$$[B^{-1}(r,s)]_{nk} = \frac{1}{r} \alpha^{n-k} \text{ for } 1 \le k \le n.$$

Then we obtain $\widetilde{B}_{nn} = r'/r$, and have for $k \leq n-1$

$$\widetilde{B}_{nk} = s' \left[B^{-1}(r,s) \right]_{n-1,k} + r' \left[B^{-1}(r,s) \right]_{nk}$$
$$= s' \frac{1}{r} \alpha^{n-k-1} + \frac{r'}{r} \alpha^{n-k}$$
$$= \alpha^{n-k-1} \left(\frac{s'}{r} + \frac{r'}{r} \alpha \right) = \alpha^{n-k-1} \frac{\delta}{r^2}.$$

It follows that

$$\left[D_{1/x}\widetilde{B}D_x\right]_{nk} = \begin{cases} \frac{1}{x_n} \alpha^{n-k-1} \frac{\delta}{r^2} x_k & \text{for } k \le n-1, \\ \frac{r'}{r} & \text{for } k = n. \end{cases}$$

We deduce from the characterization of (c, c) in Lemma 4.1 (i) that (4.2) holds if and only if

(4.3)
$$\sum_{k=1}^{n} \left[D_{1/x} \widetilde{B} D_x \right]_{nk} = \frac{r'}{r} - \frac{\delta}{rs} \widetilde{c}_n(\alpha, x) \to l \ (n \to \infty)$$

for some scalar l, where

$$\widetilde{c}_n(\alpha, x) = c_n(\alpha, x) - 1 = \frac{1}{\frac{x_n}{\alpha^n}} \sum_{k=1}^{n-1} \frac{x_k}{\alpha^k}$$

Indeed this condition implies $D_{1/x} \tilde{B} D_x \in S_1$ and $(x_n/\alpha^n)_n \in \hat{C}$. Since we have $\hat{C} \subset G_1$ by Lemma 3.1, we deduce $x_n/\alpha^n \to \infty$ $(n \to \infty)$ and have for each k and for n > k

$$\left[D_{1/x}\widetilde{B}D_x\right]_{nk} = \frac{1}{x_n}\alpha^{n-k-1}\frac{\delta}{r^2}x_k = \frac{\alpha^n}{x_n}\left(\alpha^{-k-1}\frac{\delta}{r^2}x_k\right) = o(1) \ (n \to \infty).$$

- i) If $\delta = 0$ then the sum in (4.3) reduces to r'/r and inclusion (4.1) holds for all x.
- ii) If $\delta \neq 0$ then inclusion (4.1) means that (4.3) is convergent and

$$\widetilde{c}_n(\alpha, x) \to -\frac{l - \frac{r'}{r}}{\frac{1}{rs}\delta} \ (n \to \infty),$$

so we have $(x_n/\alpha^n)_n \in \widehat{C}$. By Lemma 3.1 we have $\widehat{C} = \widehat{\Gamma}$, and so (4.2) is equivalent to

$$\lim_{n \to \infty} \frac{x_{n-1}}{\alpha^{n-1}} \frac{\alpha^n}{x_n} = \alpha \lim_{n \to \infty} \frac{x_{n-1}}{x_n} < 1.$$

This shows ii).

The following result can easily be shown when r = 0 or s = 0.

Theorem 4.4. Let r, s, r' and s' be real numbers.

- ii) Let r = 0 and s ≠ 0.
 a) If r' ≠ 0, then (4.1) holds if and only if

 xn/xn-1
 xn + l' (n → ∞) for some scalar l'.

 b) If r' = 0, then (4.1) holds for all x.
- iii) Let r = s = 0. a) If $r' \neq 0$, or $s' \neq 0$, then (4.1) has no solution. b) If r' = s' = 0, then (4.1) holds for all x.

Proof. We only prove Part i), the proofs of the other parts are left to the reader.

i) Let $r \neq 0$ and s = 0. Since B(r,s) = rI we have $\mathbf{s}_x^{(c)}(B(r,s)) = \mathbf{s}_x^{(c)}$. So inclusion (4.1) is equivalent to $D_{1/x}B(r',s')D_x \in (c,c)$. This means that there are $K \geq 0$ and L such that

(*)
$$\begin{cases} |r'| + |s'| \frac{x_{n-1}}{x_n} \le K \text{ for all } n, \\ r' + s' \frac{x_{n-1}}{x_n} \to L \ (n \to \infty). \end{cases}$$

a) If $s' \neq 0$ then we have

$$\frac{x_{n-1}}{x_n} \to \frac{L-r'}{s'} \ (n \to \infty).$$

b) If s' = 0 then the system (*) is satisfied for all x.

In the general case when $r, s, \delta, \alpha \neq 0$ we can state the following remark.

187

Remark. Condition (4.1) holds if and only if

(i)
$$\frac{\alpha^n}{x_n} \sum_{k=1}^{n-1} \frac{x_k}{\alpha^k} \to l \ (n \to \infty),$$

(ii) $\frac{|\alpha|^n}{x_n} \sum_{k=1}^{n-1} \frac{x_k}{|\alpha|^k} \le K \text{ for all } n$

and

(iii)
$$\frac{\alpha^n}{x_n} \to l' \ (n \to \infty)$$

for some scalars l and l', and a constant K > 0. This result is a direct consequence of condition (4.2) in the proof of Theorem 4.3.

5. The case of regularity

5.1. The set of all $x \in U^+$ such that $x_n^{-1}B(r,s)y_n \to l$ implies $x_n^{-1}B(r',s')y_n \to l \ (n \to \infty)$ for all y and for some l. A matrix $A \in (c,c)$ and the corresponding operator Λ are said to be *regular* if $y_n \to l$ implies $A_n y \to l \ (n \to \infty)$ for all $y \in \omega$ and for some scalar l. We then write $A \in (c,c)_{reg}$. As a direct consequence of Lemma 4.1, we have the known result (see, for instance, [15, Theorem 1.3.9])

Lemma 5.1. We have $\Lambda \in (c, c)_{reg}$ if and only if the next statements hold, a) $\Lambda \in S_1$, b) $\sum_{k=1}^{\infty} \lambda_{nk} \to 1 \ (n \to \infty)$,

c)
$$\lambda_{nk} \to 0 \ (n \to \infty)$$
 for $k = 1, 2, \dots$

Now we consider the next question, where r, s, r' and s' are real numbers. What is the set of all $x \in U^+$ such that

(5.1)
$$\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{r'y_n + s'y_{n-1}}{x_n} \to l \ (n \to \infty) \text{ for all } y$$

and for some scalar l? The answer to this question is given by the following theorem where we confine our studies to the case -s/r > 0 when $\delta \neq 0$.

Theorem 5.2. Let r, s, r' and s' be real numbers.

- i) Let $\delta \neq 0$ and $\alpha = -s/r > 0$. a) If $\tau = (r - r')/(s - s') \leq 0$, then (5.1) holds if and only if $\lim_{n \to \infty} \frac{x_{n-1}}{x_n} = -\tau.$
 - b) If $\tau > 0$, then (5.1) has no solutions.
- ii) Let $\delta = 0$ and $r \neq 0$.
 - a) If r = r', then (5.1) holds for all x.

b) If $r \neq r'$, then (5.1) has no solution.

Proof. First we note that statement (5.1) obviously means that (5.2)

$$z_n = \left[D_{1/x} B(r, s) y \right]_n \to l \text{ implies } t_n = \left[D_{1/x} B(r', s') y \right]_n \to l \ (n \to \infty)$$

for all y and for some scalar l. Since $y = B^{-1}(r,s)D_x z$, for $r \neq 0$ statement (5.2) is equivalent to

$$z_n \to l \text{ implies } \left[D_{1/x} \widetilde{B} D_x z \right]_n \to l \ (n \to \infty)$$

where $\widetilde{B} = B(r', s')B^{-1}(r, s)$. Then (5.1) is equivalent to

$$(5.3) D_{1/x}BD_x \in (c,c)_{reg}.$$

which, by Lemma 5.1, is equivalent to

$$D_{1/x} \widetilde{B} D_x \in S_1,$$

$$\sum_{k=1}^n \left[D_{1/x} \widetilde{B} D_x \right]_{nk} \to 1 \ (n \to \infty),$$

and

$$\left[D_{1/x}\widetilde{B}D_x\right]_{nk} \to 0 \ (n \to \infty) \text{ for all } k.$$

Using this characterization of $(c, c)_{reg}$ and reasoning as in Theorem 4.3, we deduce that (5.3) holds if and only if

(5.4)
$$\sum_{k=1}^{n} \left[D_{1/x} \widetilde{B} D_x \right]_{nk} = \frac{r'}{r} - \frac{\delta}{rs} \widetilde{c}_n(\alpha, x) \to 1 \ (n \to \infty).$$

i) Now we can show a) and b). Putting $z_n = x_n \alpha^{-n}$, we have

$$\widetilde{c}_n(z) = \frac{1}{z_n} \sum_{k=1}^{n-1} z_k \to L \ (n \to \infty),$$

where

(5.5)
$$L = \frac{1 - \frac{r'}{r}}{-\frac{\delta}{rs}} = -\frac{r - r'}{\delta}s \ge 0.$$

Then we obtain $c_n(z) = \tilde{c}_n(z) + 1 \to L + 1 \ (n \to \infty)$, and deduce by Proposition 4.2 that (5.1) is equivalent to

$$\frac{z_{n-1}}{z_n} \to 1 - \frac{1}{L+1} = \frac{L}{L+1} \ (n \to \infty).$$

Using (5.5) we immediately obtain $L/(L+1) = -\alpha\tau$. We conclude

$$\frac{x_{n-1}}{x_n} = \frac{z_{n-1}}{z_n} \frac{1}{\alpha} \to -\tau \ge 0 \ (n \to \infty).$$

ii) If $\delta = 0$ the sum defined in (5.4) reduces to r'/r = 1, that is, r = r'. We then have s = s' and (5.1) holds for all x.

Now give a remark in which we consider a Tauberian problem using the operator of the generalized difference sequence.

Remark. If r > 1 or r < 0, then $ry_n + (1 - r)y_{n-1} \rightarrow l$ implies $y_n \rightarrow l$ $(n \rightarrow \infty)$ for all y and for some scalar l. Indeed, it is enough to take r' = 1, s' = 0 and x = e in Theorem 4.3. Then we have 1 = -(r - 1)/s with -s/r > 0.

Now we consider the equivalence

(5.6)
$$\frac{ry_n + sy_{n-1}}{x_n} \to l$$
 if and only if $\frac{r'y_n + s'y_{n-1}}{x_n} \to l \ (n \to \infty)$ for all y

and for some scalar *l*. Note that in [3] we determined the set of all $x \in U^+$ such that $\mathbf{s}_x^{(c)}(\Delta) = \mathbf{s}_x^{(c)}$. In [7] we gave a necessary and sufficient condition under which $a, b \in U^+$ satisfy $\mathbf{s}_a^{(c)}(\Delta) = \mathbf{s}_b^{(c)}$. Since we have $B(-1,1) = \Delta$ and B(1,0) = I, then $\mathbf{s}_x^{(c)}(B(-1,1)) = \mathbf{s}_x^{(c)}(\Delta)$ and $\mathbf{s}_x^{(c)}(B(1,0)) = \mathbf{s}_x^{(c)}$. Thus we see that condition (5.6) is an extension of [3, 7].

We obtain the next result as a direct consequence of Theorem 5.2.

Theorem 5.3. Let r, s, r' and s' be real numbers, all different from zero.

- i) Let $\delta \neq 0$ and r/s, r'/s' < 0.
 - a) If $\tau = (r r')/(s s') \le 0$, then the solutions of (5.6) are defined by

$$\lim_{n \to \infty} \frac{x_{n-1}}{x_n} = -\tau$$

- b) If $\tau > 0$, then (5.6) has no solutions.
- ii) Let $\delta = 0$. a) If r = r', then (5.6) holds for all x. b) If $r \neq r'$, then (5.6) has no solution.

Now we deal with the case when r = 0 or s = 0.

Theorem 5.4. i) We assume
$$r \neq 0$$
 and $s = 0$.
a) Let $s' \neq 0$.
 α) If $\tau_1 = (r - r')/s' \geq 0$, then (5.1) holds if and only if
(5.7)
$$\lim_{n \to \infty} \frac{x_{n-1}}{x_n} = \tau_1.$$

$$\begin{array}{ll} \beta) \quad If \ \tau_1 < 0, \ then \ (5.1) \ has \ no \ solution. \\ b) \ Let \ s' = 0. \\ a) \quad If \ r = r', \ then \ (5.1) \ has \ no \ solution. \\ (ii) \ We \ assume \ r = 0 \ and \ s \neq 0. \\ a) \ Let \ r' \neq 0. \\ a) \ Let \ r' \neq 0. \\ b) \ If \ l = 0, \ then \ (5.1) \ is \ equivalent \ to \ (x_n/x_{n-1})_n \in \ell_{\infty}. \\ \beta) \ If \ l \neq 0, \ then \ condition \ (5.1) \ holds \ if \ and \ only \ if \ l = 0. \\ b) \ Let \ r' = 0. \\ a) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s, \ then \ (5.1) \ holds \ for \ all \ x. \\ \beta) \ If \ s' = s = 0. \ and \ s = 0. \ Since \ B(r, s) = rI, \ statement \ (5.1) \ is \ equivalent \ to \ D_{1/x}B(r',r, s'/r)D_x \in (c, c)_{reg}, \ that \ is, \ (5.8) \ \left| \frac{r'}{r} + \frac{s'}{r} \frac{x_{n-1}}{x_n} \to 1 \ (n \to \infty). \ a) \ Let \ s' = 0. \ a) \ If \ r = r', \ then \ the \ previous \ system \ holds \ for \ all \ x. \ \beta) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ Let \ s' = 0. \ a) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ Let \ s' = 0. \ a) \ Let \ s' = 0. \ a) \ If \ r \neq r', \ then \ the \ system \ has \ no \ solution. \ a) \ If \ r = r', \ then \ the \ system \ has \ solution. \ a$$

that is, to

(5.11)
$$|r'|\frac{x_{n+1}}{x_n} + |s'| \le K \text{ for all } n.$$

Obviously the condition in (5.11) is equivalent to

 $(x_n/x_{n-1}) \in \ell_{\infty}.$

 β) If $l \neq 0$, we put $z_n = sy_{n-1}/x_n$. Then (5.1) is equivalent to

$$z_n \to l$$
 implies $t_n = \frac{r'}{s} z_{n+1} \frac{x_{n+1}}{x_n} + \frac{s'}{s} z_n \to l \ (n \to \infty),$

that is, to

$$\frac{x_{n+1}}{x_n} = \frac{t_n - \frac{s'}{s} z_n}{\frac{r'}{s} z_{n+1}} \to \frac{s - s'}{r'} \ (n \to \infty).$$

- b) Let r' = 0. Then $z_n = sy_{n-1}/x_n \to l$ implies $s'y_{n-1}/x_n \to l = ls'/s \ (n \to \infty)$.
 - α) If s' = s, then statement (5.1) holds for all $x \in U^+$.
 - β) If $s' \neq s$, then (5.1) has no solution.
- iii) We assume r = s = 0. Then we must have $B(r', s') \in (\omega, \mathbf{s}_x^0)$ which implies r' = s' = 0. Indeed we assume either $r' \neq 0$ or $s' \neq 0$. Let $r' \neq 0$. We consider the cases $s'/r' \geq 0$ and s'/r' < 0. If $s'/r' \geq 0$, then we take $y = (R^n x_n)_n \in \omega$ with R > 1, and obtain

$$\left|\frac{B(r',s')y_n}{x_n}\right| = \frac{|r'|}{x_n} \left|y_n + \frac{s'}{r'}y_{n-1}\right| \ge |r'|R^n \text{ for all } n.$$

Then we have $|B(r',s')y_n/x_n| \to \infty \ (n \to \infty)$ and $\omega \subset s_x(B(r',s'))$ is impossible.

If s'/r' < 0, then we take $y_n = (-R)^n x_n$ with R > 1, and obtain

$$\left|\frac{B(r',s')y_n}{x_n}\right| = \left|\frac{r'}{x_n}\left(y_n + \frac{s'}{r'}y_{n-1}\right)\right| = |r'|R^n\left(1 - \frac{s'}{r'}\frac{x_{n-1}}{Rx_n}\right)$$
$$\ge |r'|R^n \text{ for all } n,$$

and we conclude as above.

The case $s' \neq 0$ can be treated similarly.

5.2. Applications. Let r < 0 and s > -1, and different from 0 and consider the sets

$$S_1(r) = \left\{ x \in U^+ : \frac{ry_n + y_{n-1}}{x_n} \to l \text{ implies } \frac{\Delta y_n}{x_n} \to l \ (n \to \infty) \right.$$
for all $y \in \omega$ and for some scalar l

and

$$S_2(s) = \left\{ x \in U^+ : \frac{\Delta y_n}{x_n} \to l \text{ implies } \frac{sy_n}{x_n} \to l \ (n \to \infty) \right.$$
for all $y \in \omega$ and for some scalar $l \right\}.$

We can determine the set $S_1(r) \cap S_2(s)$. Since $\delta = -r + 1 \neq 0$, we have by Theorem 5.2

$$S_1(r) = \left\{ x \in U^+ : \frac{x_{n-1}}{x_n} \to \frac{1-r}{2} \ (n \to \infty) \right\},$$

and similarly

$$S_2(s) = \left\{ x \in U^+ : \frac{x_{n-1}}{x_n} \to \frac{1}{1+s} \ (n \to \infty) \right\}.$$

We conclude

$$S_1(r) \cap S_2(s) = \begin{cases} S_2(s) & \text{if } s = (1+r)/(1-r), \\ \emptyset & \text{otherwise.} \end{cases}$$

Note that if r < 0, then $S_1(r) \cap S_2(s) \neq \emptyset$ implies |s| < 1 and $s \neq 0$.

6. The *a*-Tauberian (SSIE) $\mathbf{s}_x^{(c)}(B(r,s)) \subset \mathbf{s}_a^{(c)}$

6.1. *a*-Tauberian (SSIE) with operators of the form B(r, s). Here we consider the *a*-Tauberian (SSIE) problem for given $a \in U^+$, (see [6]), stated as follows. Let r, s, r' and s' be real numbers, and let a be a given sequence; what is the set \mathbb{S}_a of all $x \in U^+$ such that

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{y_n}{a_n} \to l' \ (n \to \infty) \text{ for all } y_n$$

and for some scalars l and l'? This statement is equivalent to the solvability of the (SSIE)

(6.1)
$$\mathbf{s}_x^{(c)} \left(B(r,s) \right) \subset \mathbf{s}_a^{(c)}.$$

As we will see in Proposition 6.1, since the condition on the sequence a is less restrictive for (6.1) than for the (SSIE) $\mathbf{s}_a^{(c)}(B(r,s)) \subset \mathbf{s}_x^{(c)}$ it is natural to begin with the study of the set \mathbb{S}_a . To state the next result, we use the set cs_b of all $x \in U^+$ such that $\sum_{k=1}^{\infty} x_k/b_k < \infty$, where $b \in U^+$. For b = e we obtain $cs_b = cs \cap U^+$. Throughout this section we assume $\alpha = -s/r > 0$.

Proposition 6.1. We assume $(\alpha^n/a_n)_n \in c$. Then $x \in \mathbb{S}_a$ if and only if

(6.2)
$$\left(\frac{\alpha^n}{a_n}\sum_{k=1}^n \frac{x_k}{\alpha^k}\right)_n \in c$$

Moreover if $a_n \sim \lambda \alpha^n$ $(n \to \infty)$ for $\lambda > 0$, that is, $a_n/\lambda \alpha^n \to 1$ $(n \to \infty)$, then we have

$$S_a = cs_{(\alpha^n)_n}$$

Proof. We have $x \in \mathbb{S}_a$ if and only if (6.1) holds, which is equivalent to

(6.3)
$$B^{-1}(r,s) \in \left(\mathbf{s}_x^{(c)}, \mathbf{s}_a^{(c)}\right),$$

that is, to $D_{1/a}B^{-1}(r,s)D_x \in (c,c)$. From the expression of $B^{-1}(r,s)$ in the proof of Theorem 5.2, and the characterization of (c,c), condition (6.3) is equivalent to (6.2) and $(\alpha^n/a_n)_n \in c$. Now we assume $a_n/\alpha^n \to \lambda > 0$ $(n \to \infty)$. Then we have $x \in \mathbb{S}_a$ if and only if

$$u_n = \frac{\alpha^n}{a_n} \sum_{k=1}^n \frac{x_k}{\alpha^k} \to L \ (n \to \infty)$$

for some scalar L, that is,

$$\sum_{k=1}^{n} \frac{x_k}{\alpha^k} = \frac{u_n}{\frac{\alpha^n}{a_n}} \to \frac{L}{\lambda} \ (n \to \infty),$$

and $x \in cs_{(\alpha^n)_n}$.

When a = e, we obtain the next Tauberian result.

Corollary 6.2. i) If $0 < \alpha \leq 1$, then $x \in \mathbb{S}_e$ if and only if

$$\left(\alpha^n \sum_{k=1}^n \frac{x_k}{\alpha^k}\right)_n \in c.$$

ii) If $\alpha = 1$, then $\mathbb{S}_e = cs \cap U^+$.

As a direct application we also have the next result,

Corollary 6.3. We assume $0 < \alpha < 1$. Then $(x^n)_n \in \mathbb{S}_e$ if and only if $0 < x \leq 1$.

Proof. First we assume $x \neq \alpha$. Since $x_k = x^k$ for all k, we have $(x^n)_n \in \mathbb{S}_e$ if and only if

$$\alpha^{n} \sum_{k=1}^{n} \frac{x_{k}}{\alpha^{k}} = \alpha^{n} \frac{x}{\alpha} \frac{1}{1 - \frac{x}{\alpha}} - \alpha^{n} \left(\frac{x}{\alpha}\right)^{n+1} \frac{1}{1 - \frac{x}{\alpha}}$$
$$= \alpha^{n-1} x \frac{1}{1 - \frac{x}{\alpha}} - \frac{x^{n+1}}{\alpha} \frac{1}{1 - \frac{x}{\alpha}},$$

is convergent as n tends to infinity, that is, for $0 < x \le 1$ and $x \ne \alpha$. If $x = \alpha < 1$, we have $\alpha^n \sum_{k=1}^n (x/\alpha)^k = n\alpha^n = o(1) \ (n \to \infty)$.

We immediately deduce the next examples.

Example. Let u, v > 0. Then $x \in U^+$ satisfies the condition

$$\frac{uy_n - vy_{n-1}}{x_n} \to l \text{ implies } \left(\frac{u}{v}\right)^n y_n \to l' \ (n \to \infty)$$
for all y and for some scalars l and l',

if and only if $\sum_{k=1}^{\infty} (u/v)^k x_k < \infty$. This result can be obtained writing $\alpha = v/u$ and $a_n = \alpha^n$ in Proposition 6.1. In particular, if u = v = 1, then the set of all $x \in U^+$ such that

$$\frac{\Delta y_n}{x_n} \to l$$
 implies $y_n \to l' \ (n \to \infty)$ for all y and for some scalars l and l'

is equal to $cs \cap U^+$.

Remark. We obtain a similar result when a and x are interchanged in (SSIE) (6.1). Indeed, let $a \in cs_{(\alpha^n)_n}$ and let $\overline{\mathbb{S}}_a$ be the set of all $x \in U^+$ such that the (SSIE) $\mathbf{s}_a^{(c)}(B(r,s)) \subset \mathbf{s}_x^{(c)}$ holds. Then $x \in \overline{\mathbb{S}}_a$ if and only if

(6.4)
$$\left(\frac{\alpha^n}{x_n}\right)_n \in c.$$

This result follows from the fact that here the condition $D_{1/x}B^{-1}(r,s)D_a \in (c,c)$ is equivalent to (6.4) and

(6.5)
$$\left(\frac{\alpha^n}{x_n}\sum_{k=1}^n\frac{a_k}{\alpha^k}\right)_n\in c,$$

and we conclude since (6.4) implies (6.5).

We immediately deduce the following Tauberian result.

195

Remark. If $a \in cs_{(\alpha^n)_n}$, then

$$\frac{B(r,s)y_n}{a_n} \to l \text{ implies } y_n \to l' \quad (n \to \infty)$$

for all y and for some scalars l and l', if and only if

$$(6.6) 0 < -s/r \le 1.$$

This result comes from the fact that $e \in \overline{\mathbb{S}}_a$ if and only if (6.6) holds.

6.2. The case of the operator of the first difference.

6.2.1. The general case. If r = -s = 1, then we obtain $B(r,s) = \Delta$. We confine our studies to the case when $a_n \to \infty$ $(n \to \infty)$. We denote by $\widetilde{\mathbb{S}}_a$ the set of all $x \in U^+$ such that

(6.7)
$$\frac{\Delta y_n}{x_n} \to l \text{ implies } \frac{y_n}{a_n} \to l' \quad (n \to \infty)$$

for all y and for some scalars l and l'.

We state the next elementary result.

Proposition 6.4. We assume $a_n \to \infty$ $(n \to \infty)$. Then the set \mathbb{S}_a is equal to the set of all $x \in U^+$ such that

(6.8)
$$\frac{1}{a_n} \sum_{k=1}^n x_k \to L \ (n \to \infty) \ for \ some \ scalar \ L;$$

moreover we have l' = lL in (6.7).

Proof. It is enough to apply Proposition 6.1 with $\alpha = 1$, and $\alpha^n/a_n = 1/a_n \to 0 \ (n \to \infty)$. By Lemma 4.1, we have l' = lL.

6.2.2. Applications to the case when $a_n = n^{\beta+1}$ with $\beta > -1$, or $a_n = \ln n$. It is well known that if $\xi > -1$, then

(6.9)
$$\sum_{k=1}^{n} k^{\xi} \sim \frac{n^{\xi+1}}{\xi+1} \ (n \to \infty).$$

The next result is a direct consequence of Proposition 6.4 and (6.9).

Corollary 6.5. Let β be a real number.

i) If $\beta > -1$, then $\frac{\Delta y_n}{n^{\beta}} \to l \text{ implies } \frac{y_n}{n^{\beta+1}} \to \frac{l}{\beta+1}(n \to \infty)$

for all y and for some scalar l.

ii) If $\beta = -1$, then

$$\frac{\Delta y_n}{n^{\beta}} = n\Delta y_n \to l \text{ implies } \frac{y_n}{\ln n} \to l \ (n \to \infty)$$

for all y and for some scalar l.

Proof. i) Part i) is a direct consequence of Proposition 6.4 and (6.9), since

$$v_n = \frac{1}{n^{\beta+1}} \sum_{k=1}^n k^\beta \to \frac{1}{\beta+1} \ (n \to \infty).$$

ii) Trivially we have

$$1 + \ln\left(\frac{n+1}{2}\right) = 1 + \int_{2}^{n+1} \frac{dx}{x} \le s_n = \sum_{k=1}^{n} \frac{1}{k} \le 1 + \int_{1}^{n} \frac{dx}{x}$$
$$= 1 + \ln n \text{ for all } n.$$

We immediately deduce that $s_n/\ln n \to 1 \ (n \to \infty)$ and $n\Delta y_n \to l$ imply

$$\frac{y_n}{\ln n} \to l \lim_{n \to \infty} \frac{s_n}{\ln n} = l \qquad (n \to \infty)$$

for all y.

As a direct consequence of the preceding result we obtain,

Corollary 6.6. i) If $\beta > -1$, then

$$y_n - \left(1 - \frac{1}{n}\right)^{\beta} y_{n-1} \to L \text{ implies } \frac{y_n}{n} \to \frac{L}{\beta + 1} \ (n \to \infty)$$

for all y. ii) If $\beta = -1$, then

$$y_n - \left(1 - \frac{1}{n}\right)^{\beta} y_{n-1} = y_n - \frac{n}{n-1}y_{n-1} \to L$$

implies

$$\frac{y_n}{n\ln n} \to L \quad (n \to \infty)$$

for all y.

References

- [1] Altay, B., Başar, F., On the space of sequences of p-bounded variation and related *matrix mappings*, Ukrainian Math. J. **55** (2003), 1, 136–147
- [2] Farés A., de Malafosse, B., Sequence spaces equations and application to matrix transformations Int. Forum 3, (2008) 19 911-927.
- [3] de Malafosse, B., On some BK space, Int. J. Math. Math. Sc. 28 (2003) 1783-1801.
- [4] de Malafosse, B., Sum of sequence spaces and matrix transformations, Acta Math. Hung. **113 (3)** (2006) 289-313.
- [5] de Malafosse, B., Sum of sequence spaces and matrix transformations mapping in $\mathbf{s}_{\alpha}^{0}\left(\left(\Delta-\lambda I\right)^{h}\right)+\mathbf{s}_{\beta}^{(c)}\left(\left(\Delta-\mu I\right)^{l}\right),$ Acta Math. Hung. **122** (2008) 217-230
- [6] de Malafosse, $B., \alpha$ -Tauberian results, Stud. Univ. Babeş-Bolyai Math. 56 (4) (2011) 95-111.
- [7] de Malafosse, B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik 64, 1 (2012) 39-52.
- [8] de Malafosse, B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. 46, 2 (2013).
- [9] de Malafosse, B., Malkowsky, E., Matrix transformations in the sets $\chi(\overline{N}_p \overline{N}_q)$ where χ is in the form \mathbf{s}_{ξ} , or \mathbf{s}_{ξ}^{0} , or $\mathbf{s}_{\xi}^{(c)}$, Filomat **17** (2003) 85-106. [10] de Malafosse, B., Malkowsky, E., Sets of difference sequences of order m, Acta Sci.
- Math. (Szeged) 70 (2004) 659-682.
- [11] de Malafosse, B., Rakočević, V., Applications of measure of noncompactness in operators on the spaces \mathbf{s}_{α} , \mathbf{s}_{α}^{0} , $\mathbf{s}_{\alpha}^{(c)}$ and l_{α}^{p} , J. Math. Anal. Appl. **323** (2006) 131-145.
- [12] de Malafosse, B., Rakočević V., A generalization of a Hardy theorem, Linear Algebra Appl. **421** (2007) 306-314.
- [13] de Malafosse, B., Rakočević V., Matrix Transformations and Statistical convergence, Linear Algebra Appl. 420 (2007) 377-387.
- [14] de Malafosse, B., Rakočević V., Series summable (C, λ, μ) and applications, Linear Algebra Appl. (2011), doi: 10,1016/j.aa.2011.11.006.
- [15] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

Bruno de Malafosse LMAH UNIVERSITÉ DU HAVRE 25 RUE PHILIPPE LEBON, BP 540 76058 LE HAVRE CEDEX, FRANCE e-mail address: bdemalaf@wanadoo.fr

> Eberhard Malkowsky FATIH UNIVERSITY 34500 Büyükçekmece ISTANBUL TURKEY

e-mail address: eberhard.malkowsky@math.uni-giessen.de

(Received March 28, 2012) (Revised November 13, 2012)