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A MODEL FOR THE WHITEHEAD PRODUCT IN

RATIONAL MAPPING SPACES

Takahito Naito

Abstract. We describe the Whitehead products in the rational homo-
topy group of a connected component of a mapping space in terms of
the André-Quillen cohomology. As a consequence, an upper bound for
the Whitehead length of a mapping space is given.

1. Introduction

We assume that all spaces in this paper are path connected CW-complexes
with a nondegenerate base point ∗. Let X and Y be simply-connected spaces
and map(X,Y ; f) the path component of the space of free maps from X
to Y containing the based map f : X → Y . We denote by ΛV and B
a minimal Sullivan model for Y and a CDGA model for X, respectively.
Let f : ΛV → B be a model for f and Der∗(ΛV,B; f) the complex of
f -derivations; see next section for precise definitions and details. The co-
homology of Der∗(ΛV,B; f) is called the André-Quillen cohomology of ΛV
with coefficients in B, denoted by H∗

AQ(ΛV,B; f) [2].
Suppose that X is a finite CW-complex. The n-th rational homotopy

group of map(X,Y ; f) is isomorphic to H−n
AQ(ΛV,B; f ) as abelian groups

for n ≥ 2. This fact has been proved by Block and Lazarev [2], Buijs and
Murillo [4], Lupton and Smith [12]. Moreover Buijs and Murillo [4] defined
a bracket in the André-Quillen cohomology H∗

AQ(ΛV,B; f) which coincides

with the Whitehead product in π∗(map(X,Y ; f))⊗Q. We mention that the
isomorphism due to Buijs and Murillo is constructed relying on the Sullivan
model for map(X,Y ; f) due to Haefliger [7] and Brown and Szczarba [5]. To
this end, the finiteness of a model B for the source space X is assumed in
the result [5, Theorem 1.3] and also [7, §3].

On the other hand, the finiteness hypothesis on X assures that
πn(map(X,Y ; f))⊗Q is isomorphic to πn(map(X,YQ; lf)), where l : Y → YQ
the localization map; see [9, II. Theorem 3.11] and [14, Theorem 2.3]. Then
the isomorphism constructed in [2] and [12] factors as follows:

πn(map(X,Y ; f))⊗Q πn(map(X,YQ; lf)) H−n
AQ(ΛV,B; f ).∼=

//
∼=

Φ //
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The precise definition of Φ is described in Section 2. By the proof of [12,
Theorem 2.1], we see that the second map Φ is an isomorphism without a
finiteness hypothesis on X. Also the assertion of [2, Theorem 3.8] is that
the map Φ is an isomorphism. In this paper, we introduce a bracket in the
André-Quillen cohomology which coincides with the Whitehead product in
π∗(map(X,YQ; f)) up to the isomorphism Φ without assuming that X has
a finite dimensional commutative model.

Let X be a simply-connected space with a CDGA model B and Y be
a Q-local, simply-connected space of finite type. Then we have a model
f : ΛV → B for a based map f : X → Y . Now, we define a bracket in
H∗

AQ(ΛV,B; f)

[ , ] : Hn
AQ(ΛV,B; f)⊗Hm

AQ(ΛV,B; f) −→ Hn+m+1
AQ (ΛV,B; f)

by

(1.1) [ϕ,ψ](v) = (−1)n+m−1

×
∑(∑

i 6=j

(−1)εijf(v1 · · · vi−1)ϕ(vi)f(vi+1 · · · vj−1)ψ(vj)f(vj+1 · · · vs)
)
,

where v is a basis of V , dv =
∑
v1v2 · · · vs and

εij =





|ϕ|(
i−1∑

k=1

|vk|) + |ψ|(

j−1∑

k=1

|vk|) + |ϕ||ψ| (i < j)

|ϕ|(
i−1∑

k=1

|vk|) + |ψ|(

j−1∑

k=1

|vk|) (j < i).

The following is our main result of this paper.

Theorem 1.1. The isomorphism Φ : πn(map(X,Y ; f)) → H−n
AQ(ΛV,B; f) is

compatible with the Whitehead product in πn(map(X,Y ; f)) and the bracket

in H−n
AQ(ΛV,B; f) defined by the formula (1.1).

If X is finite, then the bracket in H∗
AQ(ΛV,B; f ) coincides with that due

to Buijs and Murillo [4] up to sign. Thus Theorem 1.1 is regarded as a
generalization of [4, Theorem 2]. Let map∗(X,Y ; f) be the path-component
of the space of based maps from X to Y containing the based map f : X →
Y . We apply the same argument to the case of the based mapping space
map∗(X,Y ; f); see the last of Section 3 for details.

As an application of the main result, we study the Whitehead length
of a mapping space. The Whitehead length of a space Z, written WL(Z),
is the length of non-zero iterated Whitehead products in π≥2(Z). By the
definition, WL(Z) = 1 means that all Whitehead products vanish. In [13],
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Lupton and Smith give some results and examples related to a Whitehead
length of mapping spaces map(X,Y ; f) using a Quillen model. We will
give another proof of their results using the bracket in the André-Quillen
cohomology; see Proposition 4.1. To give an upper bound for the Whitehead
length of map∗(X,Y ; f), we introduce a numerical invariant.

Definition 1.2 ([6, p315]). The product length of a connected graded alge-
bra A, written nilA, is the greatest integer n such that A+A+ · · ·A+ 6= 0 (n
factors).

In [3], Buijs proved the following theorem.

Theorem 1.3 ([3, Theorem 0.3]). Let X and Y be simply-connected spaces

with finite type over Q and B a CDGA model for X. If WL(YQ) = 1, then

WL(map∗(X,Y ; f)Q) ≤ nilB − 1.

Using the bracket in the André-Quillen cohomology, we can prove the
following proposition, which refines the above result; see Remark 4.4.

Proposition 1.4. Let X and Y be simply-connected spaces with finite type

over Q, ΛV a minimal Sullivan model for Y and B a CDGA model for X.

Assume further that Y is Q-local and the differential of ΛV is not zero. If

WL(Y ) = 1 and nilB ≥ 2, then

WL(map∗(X,Y ; f)) ≤
1

ω − 1
(nilB − 1) + 1,

where ω = min{n ≥ 2 | d(V ) ⊂ Λ≥nV }.

We here remark that the equation WL(Y ) = 1 implies that ω ≥ 3. Fur-
thermore, ω is the largest number such that all Whitehead products of order
less than ω vanish in Y [1, Proposition 6.4]. If Y has a minimal Sullivan
model with a zero differential, we readily see that WL(map∗(X,Y ; f)) = 1
by the bracket (1.1). As computational examples, we will compute the
Whitehead length of mapping spaces map(CP∞ × CPm,CP∞

Q × CPn
Q; f).

The organization of this paper is as follows. In Section 2, we will recall
several fundamental results on rational homotopy theory. The isomorphism
Φ in [2] and [12] is also described. In Section 3, we prove Theorem 1.1.
To this end, a model for the Whitehead product of mapping spaces will
be constructed in the section. The Whitehead length of mapping spaces is
considered in Section 4. A computational example of the Whitehead length
is presented in Section 5.

2. Preliminaries

We refer the reader to the book [6] for the fundamental facts on ratio-
nal homotopy theory. A Sullivan algebra is a free commutative differential
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graded algebra over the field of rational numbers Q (or simply CDGA in
this paper), (ΛV, d), with a Q-graded vector space V =

⊕
i≥1 V

i where V

has an increasing sequence of subspaces V (0) ⊂ V (1) ⊂ · · · which satisfy
the conditions that V =

⋃
i≥0 V (i), d = 0 in V (0) and d : V (i) → ΛV (i− 1)

for any i ≥ 1.
We recall a minimal Sullivan model for a simply-connected space X with

finite type. It is a Sullivan algebra of the form (ΛV, d) with V =
⊕

i≥2 V
i

where each V i is of finite dimension and d is decomposable; that is,
d(V ) ⊂ Λ≥2V . Moreover, (ΛV, d) is equipped with a quasi-isomorphism

(ΛV, d)
≃

−→ APL(X) to the CDGA APL(X) of differential polynomial forms
on X. Observe that, as algebras, H∗(ΛV, d) ∼= H∗(APL(X)) ∼= H∗(X;Q).
For instance, a minimal Sullivan model for the n-sphere Sn, M(Sn), is the
form (Λ(en), 0) if n is odd and (Λ(en, e2n−1), de2n−1 = e2n) if n is even, where
|en| = n and |e2n−1| = 2n − 1.

A CDGA model for a space X is a connected CDGA (B, d) such that
there is a quasi-isomorphism from a minimal Sullivan model for X to B.
The two maps of CDGA ϕ1 and ϕ2 from a Sullivan algebra ΛV to a CDGA
A are homotopic if there exists a CDGA map H : ΛV → A ⊗ Λ(t, dt) such
that (1 · εi)H = ϕi for i = 0, 1. Here, Λ(t, dt) is the free CDGA with
|t| = 0, |dt| = 1 and the differential d of Λ(t, dt) sends t to dt. The map
εi : Λ(t, dt) → Q defined by εi(t) = i. Denote [ΛV,A] by the set of homotopy
classes of CDGA maps from ΛV to A.

Let f : X → Y be a map between spaces of finite type. Then there exists

a CDGA map f̃ from a minimal Sullivan model (ΛVY , d) for Y to a minimal
Sullivan model (ΛVX , d) for X which makes the diagram

APL(Y )
APL(f) // APL(Y )

ΛVY

≃

OO

ef

// ΛVX

≃

OO

commutative up to homotopy. Let ρ : ΛVX
≃

−→ B a CDGA model for X,

we call ρf̃ a model for f associated with models ΛVY and B and denote it
by f .

We use the following result when constructing a model for the Whitehead
product of a mapping space.

Proposition 2.1 ([6, Proposition 12.9]). Let A and C be CDGAs, ΛV a

Sullivan algebra and π : A→ C a quasi-isomorphism. Then the map

π∗ : [ΛV,A] −→ [ΛV,C]
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induced by π is bijective.

Remark 2.2. If π is a surjective quasi-isomorphism and ΛV is a minimal
Sullivan model, we can construct a CDGA map φ : ΛV → A such that
πφ = ψ for any CDGA map ψ : ΛV → C by induction on a degree of V
[6, Lemma 12.4]. Let v be a basis of V and assume that φ is constructed in

ΛV <|v|. Then φd(v) is defined. Since π is a surjective quasi-isomorphism and
πφd(v) = dψ(v), we can find a ∈ A such that d(a) = φd(v) and π(a) = ψ(v).
Then, we extend φ with φ(v) = a.

We next recall the definition of the Whitehead product. Let α ∈ πn(X)
and β ∈ πm(X) be elements represented by a : Sn → X and b : Sm →
X, respectively. Then the Whitehead product [α, β]w is defined to be the
homotopy class of composite

Sn+m−1 Sn ∨ Sm X
η // ∇(a∨b) //

where η is the universal example and ∇ : X ∨X → X is the folding map.
Recall that the differential d of ΛV can be written by d =

∑
i≥1 di with

di(V ) ⊂ Λi+1V . The map d1 is called the quadratic part of d. We see that
the quadratic part d1 is related with the Whitehead products in π∗(X). We
denote by Q(g)n : V n → Qen the linear part of a model g for g, where
g : ΛV →M(Sn). Define a paring and a trilinear map

〈 ; 〉 : V × π∗(X) −→ Q,

〈 ; , 〉 : Λ2V × π∗(X)× π∗(X) −→ Q

by

〈v;α〉en =

{
Q(a)nv (|v| = n)

0 (|v| 6= n)

and
〈vw;α, β〉 = 〈v;α〉〈w;β〉 + (−1)|w||α|〈w;α〉〈v;β〉,

respectively.

Proposition 2.3 ([6, Proposition 13.16]). The following holds

〈d1v;α, β〉 = (−1)n+m−1〈v; [α, β]w〉,

where v ∈ V , α ∈ πn(X), β ∈ πm(X).

We conclude this section by recalling the isomorphism Φ defined in [2] and
[12] from πn(map(X,Y ; f)) to H−n

AQ(ΛV,B; f ) in the setting of a simply-
connected space X and a Q-local, simply-connected space Y with finite
type. We here recall the complex of f -derivations from ΛV to B which
denoted by Der∗(ΛV,B; f). An element θ ∈ Dern(ΛV,B; f) is a Q-linear

map of degree n with θ(xy) = θ(x)f(y)+(−1)n|x|f(x)θ(y) for any x, y ∈ ΛV .
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The differentials ∂ : Dern(ΛV,B; f) → Dern+1(ΛV,B; f) are defined by
∂(θ) = dθ − (−1)nθd.

Let α ∈ πn(map(X,Y ; f)) and g : Sn×X → Y the adjoint of α. We note
that g satisfy g|X = f . Then there exists a model g : ΛV →M(Sn)⊗B for
g such that the following diagram is strictly commutative;

ΛV M(Sn)⊗B

B,

g //

f ##HHHHHHHH

ε·1{{vvvvvvvv

where ε : M(Sn) → Q is the augmentation; see Lemma 3.1. Since Sn is
formal, there is a quasi-isomorphism φ : M(Sn) → (H∗(Sn;Q), 0) and, for
any v ∈ ΛV , we may write

(φ⊗ 1)g(v) = 1⊗ f(v) + en ⊗ θ(v).

Then we see that θ is a f -derivation of degree −n and also a cycle in
Der∗(ΛV,B; f). Put Φ(α) = θ.

Theorem 2.4 ([2, Theorem 3.8] [12, Theorem 2.1] ). The map

Φ : πn(map(X,Y ; f)) −→ H−n
AQ(ΛV,B; f)

is an isomorphism of abelian groups for n ≥ 2.

3. A model for the adjoint of the Whitehead product

We retain the notation and terminology described in the previous section.
In order to consider the image of the Whitehead product in π∗(map(X,Y ; f))
by the isomorphism Φ, we construct an appropriate model for the adjoint
of the Whitehead product. This is the key to proving Theorem 1.1. Let X
be a simply-connected space, Y a Q-local, simply-connected space of finite
type and f : X → Y a based map. We denote by (ΛV, d) and (B, d) a
minimal Sullivan model for Y and a CDGA model for X, respectively. Let
f : ΛV → B be a model for f associated with such the models.

We prepare for proving Theorem 1.1. We see that a minimal Sullivan
model for Sn ∨ Sm has the form

M(Sn ∨ Sm) = (M(Sn)⊗M(Sm)⊗ Λ(ιn+m−1, x1, x2, · · · ), d)

in which dιn+m−1 = enem and |ιn+m−1| = n +m − 1 < |xi| for any i ≥ 1;
see [6, p177].
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Lemma 3.1. Let g : Sn × X −→ Y be a map with g|X = f . Then there

exists a model g for g such that the diagram is strictly commutative:

ΛV M(Sn)⊗B

B,

g //

f ))SSSSSSSSSS

ε·1uukkkkkkkkkk

where ε : M(Sn) → Q is the augmentation. Moreover, if g satisfy g|X = f
and g|Sn = ∗, where ∗ : Sn → Y is the constant map to the base point, then

there is a model g for g such that the following diagram commute strictly:

M(Sn)

ΛV M(Sn)⊗B

B,

g //

f ))SSSSSSSSSS

ε·1uukkkkkkkkkk

uε
55kkkkkkkkkk

1·εjjUUUUUUUUUU

where u : Q →M(Sn) is the unit map.

Proof. Let g′ be a model for g. We define the map g : ΛV →M(Sn)⊗B by

g(v) = 1⊗ (f − (ε · 1)g′)(v) + g′(v).

Then g and g′ are homotopic. Indeed, f and (ε · 1) ◦ g′ are homotopic and
let H : ΛV −→ B ⊗ Λ(t, dt) be a its homotopy. Then, the map H : ΛV −→
M(Sn)⊗B ⊗ Λ(t, dt) defined by

H(v) = 1⊗H(v) + g′(v) ⊗ 1− 1⊗ (ε · 1)g′(v)⊗ 1

is a homotopy from g′ to g. A similar argument shows the second assertion.
�

Given α ∈ πn(map(X,Y ; f)) and β ∈ πm(map(X,Y ; f)). Let g : Sn ×
X → Y and h : Sm ×X → Y be the adjoint maps of α and β, respectively.
In order to consider the image of [α, β]w by Φ, we construct a model for the
adjoint of [α, β]w

ad([α, β]w) : S
n+m−1 ×X (Sn ∨ Sm)×X Y,

η×1 // (g|h) //

where (g|h) is a map defined by (g|h)(un, x) = g(un, x) and (g|h)(um, x) =
h(um, x) for any un ∈ Sn, um ∈ Sm and x ∈ X. It is readily seen that the
canonical map

π :M(Sn ∨ Sm) −→M(Sn)×Q M(Sm)

is a surjective quasi-isomorphism, where M(Sn)×QM(Sm) is the pull-back
of the augmentations M(Sn) → Q and M(Sm) → Q. By Proposition 2.1,
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we have the following homotopy commutative square

APL(S
n ∨ Sm)

(APL(i1),APL(i2)) // APL(S
n)×Q APL(S

m)

M(Sn ∨ Sm)

≃

OO

π
// M(Sn)×Q M(Sm),

≃

OO

where i1 : Sn → Sn ∨ Sm and i2 : Sm → Sn ∨ Sm are the inclusions. The
commutative diagram

(Sn ∨ Sm)×X Sm ×XSn ×X

Y

i2×1ooi1×1 //

(g|h)

�� h
ttjjjjjjjjjjjjjjjjjjjj

g
**TTTTTTTTTTTTTTTTTTTT

(3.1)

enables us to give the following homotopy commutative diagram:

M(Sn ∨ Sm)⊗B

π⊗1
��

ΛV
(g,h)

//

(g|h)
33gggggggggggggggggggggggg

(M(Sn)×Q M(Sm))⊗B,

(3.2)

where (g, h) is the map defined by (g, h)(v) = −1 ⊗ f(v) + (j1 ⊗ 1)g(v) +
(j2 ⊗ 1)h(v) for any v ∈ V and j1 : M(Sn) → M(Sn) ×Q M(Sm) and
j2 :M(Sm) →M(Sn)×QM(Sm) are the inclusion. Indeed, by the diagram
(3.1), we see that the diagram

M(Sn)⊗B (M(Sn)×Q M(Sm))⊗B M(Sm)⊗B

ΛV

p1⊗1oo p2⊗1 //

(π⊗1)(g|h)

OO

g

kkWWWWWWWWWWWWWWWWWWWWWWWWW h

33ggggggggggggggggggggggggg

is homotopy commutative, where p1 and p2 are the projection. Let H1 and
H2 be homotopies from (p1π ⊗ 1)(g|h) to g and from (p2π ⊗ 1)(g|h) to h,
respectively. Then, a CDGA map H : ΛV → (M(Sn) ×Q M(Sm)) ⊗ B ⊗
Λ(t, dt) defined by

H(v) = −1⊗ f(v) ⊗ 1 + (j1 ⊗ 1⊗ 1)H1(v) + (j2 ⊗ 1⊗ 1)H2(v)

for any v ∈ V is a homotopy from (π ⊗ 1)(g|h) to (g, h). If there is a map

φ : ΛV → M(Sn ∨ Sm) ⊗ B such that (π ⊗ 1)φ = (g, h), φ and (g|h) is
homotopic by Proposition 2.1. Therefore, it is only necessary to construct
of a lift φ of the diagram (3.2) for getting a model for (g|h).
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Lemma 3.2. There is a model φ for (g|h) such that for any v ∈ V , φ(v)
has no term of the form enem⊗u for some u ∈ B and the following diagram

commutes strictly:

ΛV M(Sn ∨ Sm)⊗B

B.

φ //

f ##HHHHHHHH

ε·1uukkkkkkkkkkkkk

Proof. First, we recall the construction of a lift φ′ in Remark 2.2. For any
basis v of V , we can find a ∈ M(Sn ∨ Sm) ⊗ B so that da = φ′dv and
(π ⊗ 1)a = (g, h)v. We may write

a = 1⊗ f(a) + en ⊗ a2 + em ⊗ a3 + ιn+m−1 ⊗ a4 + enem ⊗ a5 +Oa,

where ai ∈ B and Oa denote other terms. We put

(3.3) a′ = 1⊗ f(a) + en ⊗ a2 + em ⊗ a3 + ιn+m−1 ⊗ (a4 + da5) +Oa.

Then it follows that d(a) = d(a′) and (π ⊗ 1)(a) = (π ⊗ 1)(a′). Hence, the
map φ defined by

φ(v) = a′

satisfies the condition that (π⊗ 1)φ = (g, h). Thus we see that φ is a model
for (g|h). The second assertion is shown using the equation (3.3). �

Combining these results we prove our main result.

Proof of Theorem 1.1. Given two elements α ∈ πn(map(X,Y ; f)) and β ∈
πm(map(X,Y ; f)). Let g : Sn×X → Y and h : Sm×X → Y be the adjoint
maps of α and β, respectively. First, by the proof of Proposition 2.3, we see
that a model η for the universal example η sends ιn+m−1 ∈M(Sn ∨ Sm) to
(−1)n+m−1en+m−1 ∈ M(Sn+m−1). We choose a model φ for the map (g|h)
as in Lemma 3.2. We may write, modulo the ideal generated by elements
of M(Sn ∨ Sm) of degree greater than n+m− 1 and generators e2n−1 and
e2m−1 if there exists,

φ(v) ≡ 1⊗ f(v) + en ⊗ u2 + em ⊗ u3 + ιn+m−1 ⊗ u4,

φ(vi) ≡ 1⊗ f(vi) + en ⊗ ui2 + em ⊗ ui3 + ιn+m−1 ⊗ ui4

for any v ∈ V and dv =
∑
v1v2 · · · vs. Since, (η ⊗ 1)φ(v) = 1 ⊗ f(v) +

en+m−1 ⊗ (−1)n+m−1u4, it follows that Φ([α, β]w)(v) = (−1)n+m−1u4. On
the other hand, φ is a CDGA map and satisfies the condition of Lemma 3.2.
We then have

enem ⊗ u4 =

enem ⊗
∑(∑

i 6=j

(−1)εijf(v1 · · · vi−1)ui2f(vi+1 · · · vj−1)uj3f(vj+1 · · · vs)
)
.
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By commutativity of the diagram (3.2) and the definition of Φ, we see that
ui2 = Φ(α)(vi) and uj3 = Φ(β)(vj). Therefore,

Φ([α, β]w)(v) = (−1)n+m−1u4 = [Φ(α),Φ(β)](v).

This completes the proof. �

In the rest of this section, we also consider the Whitehead product in a
based mapping space map∗(X,Y ; f). Given α ∈ πn(map∗(X,Y ; f)) and let
g : Sn × X → Y be the adjoint map of α. Since g satisfy g|X = f and
g|Sn = ∗, by Lemma 3.1, there exists a model for g, g, such that (ε · 1)g = f
and (1 · ε)g = uε. The second equation shows that Φ(α) is a f -derivation of
degree −n from ΛV to the augmentation ideal B+ of B. We then get the
map of abelian groups

Φ′ : πn(map∗(X,Y ; f)) −→ H−n
AQ(ΛV,B

+; f); Φ′(α) = Φ(α)

for n ≥ 2 and a straight-forward modification of Theorem 2.4 shows the
following proposition:

Proposition 3.3. The map Φ′ : πn(map∗(X,Y ; f)) → H−n
AQ(ΛV,B

+; f) is

an isomorphism for n ≥ 2.

This proposition also enables us to get the following corollary.

Corollary 3.4. The restriction of the bracket defined by the formula (1.1)
in H∗

AQ(ΛV,B; f) to H∗
AQ(ΛV,B

+; f) corresponds the Whitehead product

in π∗(map∗(X,Y ; f)) via the isomorphism Φ′ from πn(map∗(X,Y ; f)) to

H−n
AQ(ΛV,B

+; f).

Proof. Given α ∈ πn(map∗(X,Y ; f)) and β ∈ πm(map∗(X,Y ; f)). Since
εΦ′(α) = 0 and εΦ′(β) = 0, it follows that εΦ′([α, β]w) = 0 by the formula
(1.1). �

4. The Whitehead length of mapping spaces

In this section, we consider the Whitehead length of mapping spaces. We
recall the definition of the Whitehead length; see Section 1. Now we consider
a upper bound of WL(map(X,Y ; f)). The following result is proved by
Lupton and Smith.

Proposition 4.1 ([13, Theorem 6.4]). Let X and Y be Q-local, simply-

connected spaces with finite type. If Y is coformal; that, is a minimal Sulli-

van model for Y of the form (ΛV, d1), then

WL(map(X,Y ; f)) ≤ WL(Y ).
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We give another proof of Proposition 4.1 using the bracket defined by
Theorem 1.1. Before proving the proposition, we introduce a numerical
invariant which is called the d1-depth for a simply-connected space Z and
recall the relationship between the Whitehead length and the d1-depth.

Definition 4.2. Let (ΛV, d) be a minimal Sullivan model for a simply-
connected space Z and d1 the quadratic part of d. The d1-depth of Z,
denoted by d1-depth(Z), is the greatest integer n such that Vn−1 is a proper
subspace of Vn with

V−1 = 0, V0 = {v ∈ V | d1v = 0} and Vi = {v ∈ V | d1v ∈ ΛVi−1} (i ≥ 1).

Theorem 4.3 ([10, Theorem 4.15][11, Theorem 2.5]). Let Y be a Q-local,

simply-connected space. Then d1-depth(Y ) + 1 = WL(Y ).

Proof of Proposition 4.1. Let ΛV be a minimal Sullivan model for Y and
m = d1-depth(Y ). For any v ∈ V , we may write d1(v) =

∑n
j=1 uj1uj2 · · · ujkj

where uji are basis of V . Then, put

T ′
d1
(v) = {uj1uj2 · · · ujkj | j = 1 . . . n}

and

Td1(u1u2 · · · us) =
⋃

i=1...s

{u1 · · · ui−1u
′ui+1 · · · us | u

′ ∈ T ′
d1
(ui)}.

We also set
Td1(U) =

⋃

u∈U

Td1(u)

where U is a set of terms of ΛV . By the definition of d1-depth, T
(m+1)
d1

(v) =

{0} and it follows that

[ϕ1, [ϕ2, · · · [ϕm+1, ϕm+2] · · · ]](v) = 0

for any ϕ1, ϕ2, . . . , ϕm+2 ∈ H≤−2
AQ (ΛV,B; f). Hence, by Theorem 1.1 and

Theorem 4.3, we have WL(map(X,Y ; f)) ≤ m+ 1 = WL(Y ). �

We next prove Proposition 1.4.

Proof of Proposition 1.4. Let m = WL(map∗(X,Y ; f)). If m = 1, then the
assertion is trivial and so we may assume that m ≥ 2. By Corollary 3.4,
there are elements ϕ1, ϕ2, · · · , ϕm in H≤−2

AQ (ΛV,B+; f) such that

(4.1) [ϕ1, [ϕ2, · · · , [ϕm−1, ϕm] · · · ]](v) 6= 0

for some v ∈ V . For any element u1u2 · · · us ∈ Tm
d1
(v), the length s of

u1u2 · · · us is greater than or equal to (m − 2)(ω − 1) + ω by the definition
of ω. Therefore, the equation (4.1) implies that

nilB ≥ (m− 2)(ω − 1) + ω
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and hence we have

m ≤
1

ω − 1
(nilB − 1) + 1.

�

Remark 4.4. Suppose that WL(Y ) = 1 and WL(map∗(X,Y ; f)) > 1. The
proof of Proposition 1.4 enables us to conclude that nilB ≥ ω and that ω ≥ 3
since V = Kerd1. Moreover we have

WL(map∗(X,Y ; f)) ≤
1

ω − 1
(nilB − 1) + 1 ≤ nilB − 1.

Thus our upper bound of the Whitehead length of the mapping space may
be less than that described in Theorem 1.3.

5. Computational examples

We shall determine the Whitehead length of the mapping space from
CP∞×CPn to CP∞

Q ×CPm
Q . For this, we first compute the homotopy group

of the mapping space. Recall that the CDGAs (Λ(x2, x
′
2n+1), dx

′
2n+1 =

xn+1
2 ) and (Q[z2], 0) are minimal Sullivan models for CPn and CP∞, re-

spectively. Here, |x2| = |z2| = 2 and |x′2n+1| = 2n+ 1. Since CPn is formal,
that is the CDGA map ρ

(Λ(x2, x
′
2n+1), dx

′
2n+1 = xn+1

2 ) −→ (Q[x2]/(x
n+1
2 ), 0) = H∗(CPn;Q)

defined by ρ(x2) = x2, ρ(x
′
2n+1) = 0 is a quasi-isomorphism, the CDGA

(Q[z2]⊗Q[x2]/(x
n+1
2 ), 0) is a CDGA model for CP∞ × CPn.

Proposition 5.1. Let k ≥ 2 and m < n. Then

πk(map(CP∞ × CPn,CP∞
Q × CPm

Q ; f))

=





Q (k = 2 and q2 6= 0)
Q⊕Q (k = 2 and q2 = 0)
n−l+1⊕

0≤i=n−m−l+1

Q (k = 2l − 1, 2 ≤ l ≤ n+ 1)

0 (otherwise).

Here, the map f is the realization of the CDGA map f

M(CP∞ × CPn) = Q[z2]⊗ Λ(x2, x
′
2n+1)

−→ Q[w2]⊗ Λ(y2, y
′
2m+1) =M(CP∞ × CPm)

defined by f(z2) = q1(w2⊗1), f(x2) = q2(w2⊗1)+q3(1⊗y2) and f(x
′
2n+1) =

0 for some q1, q2, q3 ∈ Q.
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Proof. We put Dern = Dern(Q[z2]⊗Λ(x2, x
′
2n+1), Q[w2]⊗Q[y2]/(y

m+1
2 ); ρf)

for convenience. For any elements θr,s ∈ Der−2, we may write

θr,s(z2) = r, θr,s(x2) = s and θr,s(x
′
2n+1) = 0

for some r, s ∈ Q. Then,

∂θr,s(z2) = ∂θr,s(x2) = 0, ∂θr,s(x
′
2n+1) = −ns

( ∑

i+j=n

qi2q
j
3w

i
2 ⊗ yj2

)
.

When q2 6= 0, we see that θr,s is a cycle if and only if s = 0, that is all cycles of
Der−2 generated by θ1,0. When q2 = 0, θr,s(x

′
2n+1) = 0 since yn2 = 0. Hence,

θ1,0 and θ0,1 are generators of all cycles of Der−2. In general, Der−2l = 0 for
l ≥ 2 by degree reasons. It follows that

π2l(map(CP∞ × CPn,CP∞
Q × CPm

Q ; f)) ∼= H−2l(Der∗) = 0 (l ≥ 2).

For any θ ∈ Der−2l+1, we may write

θ(z2) = 0, θ(x2) = 0 and θ(x′2n+1) =

n−l+1∑

i=0

riw
i
2 ⊗ yn−l+1−i

2 .

Note that if l > n+1, Der−2l+1 = 0 by degree reasons. It is easily seen that
all elements of Der−2l+1 are cycles. Moreover, we see that yn−l+1−i

2 = 0 if
and only if 0 ≤ i ≤ n−m− l. Therefore, we have

π2(map(CP∞ × CPn,CP∞
Q × CPm

Q ; f))

∼= H−2(Der∗)∼=

{
Q (k = 2 and q2 6= 0)

Q⊕Q (k = 2 and q2 = 0)

and

π2l−1(map(CP∞ × CPn,CP∞
Q × CPm

Q ; f))

∼= H−2l+1(Der∗) ∼=

n−l+1⊕

0≤i=n−m−l+1

Q (2 ≤ l ≤ n+ 1),

π2l−1(map(CP∞ × CPn,CP∞
Q × CPm

Q ; f)) ∼= H−2l+1(Der∗) = 0 (l > n+ 1).

�

Proposition 5.2. Let m < n. Then one has

WL(map(CP∞×CPn,CP∞
Q ×CPm

Q ; f)) =

{
2 (n−m = 1, q2 = 0, q3 6= 0)
1 (otherwise).
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Proof. By the definition of the bracket in H∗(Der∗), we see that if ϕ,ψ ∈
H≤−3(Der∗), then [ϕ,ψ] = 0 since ϕ(x2) = 0 and ψ(x2) = 0. That is
[ϕ′, ψ′] 6= 0 means |ϕ′| = |ψ′| = −2. It shows that

WL(map(CP∞ × CPn,CP∞
Q × CPm

Q ; f)) ≤ 2.

If q2 6= 0, by Proposition 5.1, H−2(Der∗) is generated by θ1,0. The equality
[θ1,0, θ1,0] = 0 shows that WL(map(CP∞ ×CPn,CP∞

Q ×CPm
Q ; f)) = 1. On

the other hand, if q2 = 0, θ0,1 is a generator of H−2(Der∗) and

[θ0,1, θ0,1](x
′
2n+1) = qn−1

3 yn−1
2 .

This completes the proof. �
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