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ON HYPERBOLIC AREA OF THE MODULI

OF θ-ACUTE TRIANGLES

Naomi Kanesaka and Hiroaki Nakamura

Abstract. A θ-acute triangle is a Euclidean triangle on the plane
whose three angles are less than a given constant θ. In this note, we
shall give an explicit formula computing the hyperbolic area A(θ) of
the moduli region of θ-acute triangles on the Poincaré disk. It turns
out that A(θ) is a period in the sense of Kontsevich-Zagier if cot θ is a
nonnegative algebraic number.

1. Introduction

In [4], to each similarity class ∆ of triangles on the complex plane C,
associated is an invariant φ(∆) valued in the unit disk D := {ζ ∈ C; |ζ| < 1}:
If ∆ is represented by a triangle {a, b, c} ⊂ C with z := a−b

c−b
(Im(z) > 0),

then φ(∆) is defined by

(1.1) φ(∆) :=

(

ρ2 − ρz

z + ρ2

)3

(ρ = e
2πi

6 ).

It turns out that the similarity classes of triangles are in one-to-one cor-
respondence with the set of points of D. (See [4] for details and some
applications to elementary geometry.)

The purpose of this note is to compute the area A(θ) of the moduli region
of θ-acute triangles

(1.2) M(θ) := {φ(∆) ∈ C | all three angles of ∆ < θ}

for π/3 < θ ≤ π measured with the standard hyperbolic (Poincaré) metric
of the unit disk D.

We prove the following

Theorem A. (i) For θ > π/2, we have A(θ) = ∞.
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(ii) For π/3 < θ ≤ π/2, we have

A(θ) =(6θ − 2π) +
k√
3
log

4k2

k2 + 3

+
p

2β
log

(

1 +
√
3pk + βk2

1−
√
3pk + βk2

· 1 + 3q + 3β

1− 3q + β
· 3− 3q + β

3 + 3q + β

)

+
q

β

(

arctan
( 3p

3β − 1

)

+ arctan
( 3p

3− β

)

− tan−1
(

√
3qk

k2β − 1

)

)

,

where we understand the parameters k, β, p, q depending only on θ by

(1.3)







k =
√
3

tan θ
,

β =
√

25+3k2

9+3k2
,







p =

√

(β+1)(5−3β)
3 ,

q =

√

(β−1)(5+3β)
3 ,

and arctan (resp. tan−1 ) to be the principal branch (resp. the branch valued
in (0, π] ) of the arctangent function.

In the extremal case of θ = π/2, the above formula implies

Corollary B (Kanesaka [2]).

A
(π

2

)

=

(

1− 2
√
5

5

)

π.

In the course of our proof of Theorem A, we first derive an explicit in-
tegral expression of A(θ) in §2. In §3, we perform the calculation of the
integral and conclude the proof of Theorem A. In §4, we examine behaviors
of some auxiliary quantities used in Theorem A and its proof, which help
understanding convergence of individual terms of A(θ) in total to the value
of A(π2 ) in Corollary B and to lim

θ→π

3

A(θ) = 0.

Before closing Introduction, we add one simple remark. In [3], M.Kontse-
vich and D.Zagier introduced the notion of periods as those complex numbers
whose real and imaginary parts are integrals of algebraic functions over
domains in Rn given by polynomial inequalities with algebraic coefficients,
and proposed to check any special quantities to be periods in their sense.
As for our A(θ), the following is a quick consequence of Theorem A.

Corollary C. If cot θ is a nonnegative algebraic number, then the real num-
ber A(θ) is a period in the sense of Kontsevich-Zagier [3].
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2. θ-acute region

In this section, we look into the boundary curve ∂M(θ) of the moduli
region M(θ) ⊂ D. The following proposition generalizes [4] Remark 4.

Proposition 2.1. Let k be the parameter as in (1.3). The points reit ∈
∂M(θ) are parametrized by the equation

r =







1
(1+k)3

(

2 cos
(

t−π
3

)

−
√

4 cos2
(

t−π
3

)

− (1− k2)
)3

, (θ 6= 2π
3 ),

(

2 cos
(

t−π
3

))−3
, (θ = 2π

3 )

for 0 ≤ t < 2π.

Proof. For any similarity class of triangles, we may choose a representative
{0, 1, z} with

(2.2) z ∈ F := {z ∈ C | Im(z) > 0, |z| ≤ 1, |z − 1| ≤ 1}.
Noting that the maximum of the three angles of {0, 1, z} is realized at the
vertex z ∈ F , we immediately see that the class of {0, 1, z} belongs to ∂M(θ)
if and only if |z − α| = |α| with

(2.3) α :=
1

2
+

i

2 tan θ
.

Rewrite the condition |z − α| = |α| in terms of w := ρ2−ρz
z+ρ2

by substituting

z = −ρ2w−1
w+ρ

. Then, using α+ ᾱ = 1, we find:

(1 + ᾱρ2 + αρ̄2)ww̄ + 2Re((ρ− 1)w) + (1 + αρ2 + αρ2) = 0.

Now, put w = 3
√
re

it

3 so that Re(ρ2w) = − 3
√
r cos( t−π

3 ). Then, since αρ2 +

αρ2 = −1
2 − k

2 , ᾱρ
2 + αρ̄2 = −1

2 +
k
2 , it yields a quadratic equation for 3

√
r:

(1 + k)r
2

3 − 4 cos

(

t− π

3

)

r
1

3 + (1− k) = 0.

Thus, we complete the proof of Proposition 2.1. �

Corollary 2.4. Let π
3 ≤ θ < π (θ 6= 2π

3 ) and let k be the parameter given
in Theorem A. Then, the hyperbolic area A(θ) of M(θ) is given by

A(θ) = 12

∫ π

3

0







(1 + k)6

(1 + k)6 −
(

2 cos x−
√

4 cos2 x− (1− k2)
)6 − 1






dx.

Proof. By the well known formula of hyperbolic geometry, we have

A(θ) =

∫

M(θ)

4

(1− |z|2)2 dxdy =

∫ 2π

0

∫ r

0

2

(1− r2)2
d(r2)dt =

∫ 2π

0

2r2

1− r2
dt.
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(Cf. e.g., [1] §5.3.) The corollary then immediately follows from Proposition
2.1 after substituting x = t−π

3 . �

The following picture illustrates the loci {√reit | reit ∈ ∂M(θ)} for θ =
2π
5 , π

2 ,
2π
3 and 5π

6 respectively. Here, the polar scale is deformed from r to√
r to obtain illegible illustration of loci for small θ. Note that when θ = π

3 ,
the locus ∂M(π3 ) degenerate to the point 0.

θ=2 π/5

θ=π/2

θ=2 π/3

θ=5 π/6

-1

-0.5

0.5

1

-1 -0.5 0.5 1

3. Proof of Theorem A

We shall evaluate the definite integral given in Corollary 2.4. As seen
quickly below in Proposition 3.4, we may assume θ 6= 2π

3 without loss of
generality. A brute force computation (by using Maple software) decomposes

the integrand into three terms so that A(θ) =
∫

π

3

0 (A+B + C)dx, where

A := −6, B := −6(k2 + 3)(3k2 + 1)k

S(cos x)
,

(3.1)

C :=
12 cos x(16 cos2 x+ k2 − 1)(16 cos2 x+ 3k2 − 3)

√
4 cos2 x− 1 + k2

S(cos x)

(3.2)

with

S(X) = (4X2 − 1)(16X2 + 8X + 1 + 3k2)(16X2 − 8X + 1 + 3k2).

We first check the convergence of the integral at x = π
3 . It is not difficult to

see that the Taylor expansion in u := π
3 − x reads:

(3.3) A+B + C =







−6− k√
3u

+ |k|√
3u

+O(1), (k 6= 0),

−6 + 2√
2
√
3

1√
u
+O(1), (k = 0).
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Noting that A(θ) increases monotonously with θ, we immediately get

Proposition 3.4. The area A(θ) = ∞ for θ > π
2 , while it is finite for

π
3 ≤ θ ≤ π

2 . �

In the following, we evaluate the case π
3 ≤ θ ≤ π

2 , i.e., 1 ≥ k ≥ 0. We need

to take care of annihilation of the divergence ± k√
3u

from the terms B and C

in (3.3). For the term B, let us look at the partial fraction decompositions
B = B1 +B2 +B3 with

B1 =
−2k

4 cos2 x− 1
,(3.5)

B2 :=
8k(1 + cos x)

(1 + 4 cos x)2 + 3k2
,(3.6)

B3 :=
8k(1− cos x)

(1− 4 cos x)2 + 3k2
.(3.7)

Divergence of
∫

Bdx comes from the term B1. In fact, using the formula
∫

1
2 cos x∓1dx = 1√

3
log(

1+
√
3
±1

tan x

2

1−
√
3
±1

tan x

2

), we see that

(3.8)

∫ π

3

0
B1dx = lim

x→π

3

k√
3

(

log(
4 · 3 · 1
3 · 2 · 2) + log

(

1−
√
3 tan

x

2

)

)

.

To evaluate the term C, let us substitute sinx =
√
3+k2

2
t2−1
t2+1

so that

(3.9) t =

√
3 + k2 + 2 sin x

√

3 + k2 − 4 sin2 x

and that 0 ≤ x ≤ π
3 corresponds to 1 ≤ t ≤

√
3+k2+

√
3

k
. Noting that√

4 cos2 x− 1 + k2 =
√
3 + k2 2t

t2+1
, cos xdx = 2t

√
3+k2

(t2+1)2
dt, we obtain the de-

composition Cdx = (C1 + C2 + C3)dt with

C1 = −8(t2 + 1)
3(t4 + 18t2 + 1) + (t4 − 14t2 + 1)k2

3(t4 + 18t2 + 1)2 + (t4 − 14t2 + 1)2k2
,(3.10)

C2 =
−4k2(t2 + 1)

k2t4 − 12t2 − 2k2t2 + k2
,(3.11)

C3 =
12

t2 + 1
.(3.12)
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Divergence from
∫

Cdx comes from the term

∫

√
3+k2+

√
3

k

1
C2 dt =

k√
3

[

log

∣

∣

∣

∣

∣

t2 + 2
√
3

k
t− 1

t2 − 2
√
3

k
t− 1

∣

∣

∣

∣

∣

]

√
3+k2+

√
3

k

1

(3.13)

=
k√
3

[

log
(
√
3 + k2 + k −

√
3) · 2

√
3 · 2(

√
3 +

√
3 + k2)

2
√
3 + k2 · (

√
3 + k −

√
3 + k2) · (

√
3 + k +

√
3 + k2)

]

+ lim
x→π

3

k√
3
log

( √
3 + k2 +

√
3− k√

3 + k2 +
√
3− kt

)

.

The sum of (3.8) and the last term of (3.13) can be computed by l’Hôpital’s
rule as

k√
3
log







√
3 + k2 +

√
3− k√

3 + k2 +
√
3

lim
x→π

3

1−
√
3 tan x

2

1− k√
3+k2+

√
3
·

√
3+k2+2 sinx√
3+k2−4 sin2 x







=
k√
3
log

(

2k2(
√
3 + k2 +

√
3− k)√

3
√
k2 + 3(

√
3 + k2 +

√
3)

)

.

Putting this together with the rest term of (3.13), we obtain

(3.14)

∫ π

3

0
B1 dx+

∫

√
3+k2+

√
3

k

1
C2 dt =

k√
3
log

(

4k2

k2 + 3

)

.

We shall next compute
∫

(B2 +B3)dx. The standard substitutions

(3.15)

{

t = tan x
2 for B2dx,

t = cot x
2 for B3dx

transform it as :
(3.16)
∫ π

3

0
(B2 +B3)dx =

(

∫

√
3

3

0
+

∫ ∞

√
3

)

32k dt

(9 + 3k2)t4 + (6k2 − 30)t2 + (25 + 3k2)
.

Now, we introduce the quantities

(3.17)

{

α := k2−5
k2+3

,

β :=
√

3k2+25
3k2+9 ,







p :=

√

(β+1)(5−3β)
3 ,

q :=

√

(β−1)(5+3β)
3 ,

which satisfy the following relations:

(3.18) β + α =
3

2
p2, β − α =

3

2
q2.
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Then we find an indefinite integral for (3.16) can be performed as
∫

32k dt

(3k2 + 9)(t2 +
√

2(β − α)t+ β)(t2 −
√

2(β − α)t+ β)

=
p

2β
log

t2 +
√
3qt+ β

t2 −
√
3qt+ β

+
q

β

{

arctan

(

2t√
3p

+
q

p

)

+ arctan

(

2t√
3p

− q

p

)}

.

From this it follows that
∫ π

3

0
(B2 +B3)dx =

p

2β
log

(

1 + 3q + 3β

1− 3q + β
· 3− 3q + β

3 + 3q + β

)

(3.19)

+
q

β

(

arctan
( 3p

3β − 1

)

+ arctan
( 3p

3− β

)

)

.

As for the integral
∫

C1dt, observe that the integrand can be transformed

in the simpler variable s = 1
2(t− 1

t
): thus we obtain

∫

√
3+k2+

√
3

k

1
C1 dt = −4

∫

√
3

k

0

3(s2 + 5) + (s2 − 3)k2

3(s2 + 5)2 + (s2 − 3)2k2
ds

(3.20)

= −4

∫

√
3

k

0

s2 − 3α

(s2 +
√

6(α + β)s+ 3β)(s2 −
√

6(α+ β)s+ 3β)
ds

= − p

2β
log

(

1−
√
3pk + βk2

1 +
√
3pk + βk2

)

− q

β

[

arctan

(

2s

3q
+

p

q

)

+ arctan

(

2s

3q
− p

q

)]

√
3

k

0

= − p

2β
log

(

1−
√
3pk + βk2

1 +
√
3pk + βk2

)

− q

β
tan−1

( √
3qk

k2β − 1

)

.

Finally, the remaining integral can be given by

∫ π

3

0
(−6)dx+

∫

√
3+k2+

√
3

k

1

12dt

t2 + 1
= −2π + 12arctan

(√
3 + k2 +

√
3

k

)

− 3π.

But since
√
3+k2+

√
3

k
= tan(π4 +

θ
2), it equals to 6θ− 2π. This, together with

(3.14), (3.19), (3.20), concludes the proof of Theorem A. �
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4. Behaviors of auxiliary quantities and Corollaries B and C

In this section, we shall closely examine respective terms of our explicit
formula of A(θ) in Theorem A:

A(θ) =(6θ − 2π) +
k√
3
log

4k2

k2 + 3

+
p

2β
log

(

1 +
√
3pk + βk2

1−
√
3pk + βk2

· 1 + 3q + 3β

1− 3q + β
· 3− 3q + β

3 + 3q + β

)

+
q

β

(

arctan
( 3p

3β − 1

)

+ arctan
( 3p

3− β

)

− tan−1
(

√
3qk

k2β − 1

)

)

.

First, we shall look at the quantities k, α, β, p, q introduced in (1.3) and
(3.17) with respect to the parameter θ ∈ [π3 ,

π
2 ]. In fact, by simple estimation,

the following table and graph can be derived, where approximately
√
21
3 ≈

1.5275,

√
2
√
21−6
3 ≈ 0.593,

√
2
√
21+6
3 ≈ 1.298.

θ π
3 . . . π

2

k 1 ց 0

α −1 ց −5
3

β
√
21
3 ր 5

3

p

√
2
√
21−6
3 ց 0

q

√
2
√
21+6
3 ր 2

3

√
5

k

p

q

β

α
-1.5

-1

-0.5

0

0.5

1

1.5

1.1 1.2 1.3 1.4 1.5

theta

These quantities are also related by (3.18) and

α = 1− 8

3
sin2 θ, β =

1

3

√

9 + 16 sin2 θ,(4.1)

pq =
8

9
sin 2θ.(4.2)

Let us now examine behaviors of the main logarithmic term and the arc-
tangent term of Theorem A. Set



















L12 := p
2β log

(

1+
√
3pk+βk2

1−
√
3pk+βk2

)

,

L34 := p
2β log

(

1+3q+3β
1−3q+β

)

,

L56 := p
2β log

(

3−3q+β
3+3q+β

)

,











T1 := q
β
arctan( 3p

3β−1),

T2 := q
β
arctan( 3p

3−β
),

T3 := − q
β
arctan(

√
3qk

k2β−1).

Illustration of these quantities together with ‘logterm’ = L12 + L34 + L56
and T1 + T2 + T3 are given as follows:
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L56

L34

L12

logterm

-0.4

-0.2

0

0.2

1.1 1.2 1.3 1.4 1.5

T1+T2+T3

T3

T2

T1

-1

-0.5

0

0.5

1

1.5

2

1.1 1.2 1.3 1.4 1.5

theta

The term T3 has a jump when k2β = 1, i.e., approximately at θ = 1.139.
In Theorem A, we request the branch tan−1 to correct T3 to T̃3 so that the
sum ‘Arctan’= T1 + T2 + T̃3 has values continuously ranging from 0 down

to −2
√
5

5 π. (N.B. The term T̃3 itself has values contained in [−2
√
5

5 π,−1).)
This latter value is nothing but − q

β
π at θ = π

2 . Besides the above ‘logterm’

and ‘Arctan’ the following picture collects the ‘linear’ term 6θ− 2π and the
‘div’ term (which cancels divergence from B1 (3.5) and that from C2 (3.11)

in their correct balance (3.14) as to be) k√
3
log 4k2

k2+3 :

linear

logterm

div

Arctan

-2

-1

0

1

2

3

1.1 1.2 1.3 1.4 1.5

We conclude that the behavior of the total of these four terms

A(θ) = ‘linear’ + ‘div’ + ‘logterm’ + ‘Arctan’

is illustrated as in the following graph, whose curve starts from 0 at θ = π
3

and terminates with the value (1− 2
√
5

5 )π at θ = π
2 .
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0

0.1

0.2

0.3

0.4

0.5

A

1.1 1.2 1.3 1.4 1.5

theta

Finally, let us mention a few words on Corollary C. According to the
definition of periods due to Kontsevich-Zagier [3], it is immediate to see
that

π =

∫

x2+y2≤1
dxdy, log(α) =

∫ α

1

1

x
dx, arctan(α) =

∫ α

0

1

x2 + 1
dx

are periods in their sense for any positive algebraic number α ∈ Q ∩ R>0.
Thus, Corollary C follows from Theorem A and the above estimation of
involved quantities.
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