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AN ALGEBRAIC APPROACH TO THE

CAMERON-MARTIN-MARUYAMA-GIRSANOV FORMULA

Jirô Akahori, Takafumi Amaba and Sachiyo Uraguchi

Abstract. In this paper, we will give a new perspective to the Cameron-
Martin-Maruyama-Girsanov formula by giving a totally algebraic proof
to it. It is based on the exponentiation of the Malliavin-type differenti-
ation and its adjointness.

1. Introduction.

Let (W ,B(W ), γ) be the Wiener space on the interval [0, 1], that is, W

is the set of all continuous paths in R defined on [0, 1] which starts from
zero, B(W ) is the σ-field generated by the topology of uniform convergence.
and γ is the Wiener measure on the measurable space (W ,B(W )). Then
the canonical Wiener process (W (t))t≥0 is defined by W (t, w) = w(t) for
0 ≤ t ≤ 1 and w ∈ W .

Let H denote the Cameron-Martin subspace of W , i.e., h(t) ∈ W belongs

to H if and only if h(t) is absolutely continuous in t and the derivative ḣ(t)
is square-integrable. Note that H is a Hilbert space under the inner product

〈h1, h2〉H =

∫ 1

0
ḣ1(t)ḣ2(t)dt, h1, h2 ∈ H .

It is a fundamental fact in stochastic calculus that the Cameron-Martin
(henceforth CM) formula (see, e.g. [5], pp 25) in the following form holds:

∫

W

F (w + θ)γ(dw)

=

∫

W

F (w) exp
{∫ 1

0
θ̇(t)dw(t) −

1

2

∫ 1

0
θ̇(t)2dt

}
γ(dw)

(1.1)

where F is a bounded measurable function on W and θ ∈ H .
The motivation of the present study comes from the following observa-

tion(s). In the above CM formula (1.1), the integrand of the left-hand-side
can be seen as an action of a translation operator, which is an exponentiation
of a differentiation Dθ:

(1.2)

∫

W

F (w + θ)γ(dw) “= ” E
[
eDθF

]
.

Mathematics Subject Classification. Primary 60H99; Secondary 60H07, 81T99.

167



168 J. AKAHORI, T. AMABA AND S. URAGUCHI

On the other hand, the right-hand-side can be seen as a “coupling” of the
exponential martingale and F :

∫

W

F (w) exp
{∫ 1

0
θ̇(t)dw(t) −

1

2

∫ 1

0
θ̇(t)2dt

}
γ(dw)

=

〈
F, exp

{∫ 1

0
θ̇(t)dW (t)−

1

2

∫ 1

0
θ̇(t)2dt

}〉
.

Since we can read the right-hand-side of (1.2) as

E
[
eDθF

]
“ = ”

〈
1, eDθF

〉
,

the Cameron Martin formula

〈
1, eDθF

〉
“ = ”

〈
F, exp

{∫ 1

0
θ̇(t)dW (t)−

1

2

∫ 1

0
θ̇(t)2dt

}〉

leads to the following interpretation:

exp
{∫ 1

0
θ̇(t)dW (t)−

1

2

∫ 1

0
θ̇(t)2dt

}
“ = ” eD

∗

θ (1),

where D∗
θ is an “adjoint operator” of Dθ.

The observation, conversely, suggests that the CM formula could be proved
directly by the duality relation between eDθ and eD

∗

θ , without resorting to
the stochastic calculus. The program is successfully carried out in section
2. We may say this program runs by the calculus of functionals of Wiener
integrals.

Along the line, we also give an algebraic proof of the Maruyama-Girsanov
(henceforth MG) formula (see e.g. [10, IV.38, Theorem (38.5)]), an extension
of the CM formula. Note that MG formula cannot be written in the quasi-
invariant form as (1.1), but in the following way:

∫

W

F (w)γ(dw)

=

∫

W

F (w − Z(w)) exp
{∫ 1

0
Ż(t, w)dw(t) −

1

2

∫ 1

0
Ż(t, w)2dt

}
γ(dw).

(1.3)

Here Z : W → H is a “predictable” map such that
∫

W

exp
{∫ 1

0
Ż(t, w)dw(t) −

1

2

∫ 1

0
Ż(t, w)2dt

}
γ(dw) = 1.

In this non-linear situation, infinite dimensional vector fields like XZ ≡
ZiDei

1, where {ei} is a basis of H and Zi = 〈Z, ei〉H , may play a role of Dθ

1Here we use Einstein’s convention.
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in the linear case, but its exponentiation eXZ does not make sense anymore.
Instead, we need to consider “tensor fields”

D⊗n
Z = Zi1 · · ·ZinDei1

· · ·Dein

and its formal series
∞∑

n=0

1

n!
D⊗n

Z =: ẽDZ .

We will show in Proposition 3.2 that the operator ẽDZ is the translation by
Z; ẽDZ (f(W )) = f(W + Z). To understand MG formula (1.3) in terms of
the translation operator ẽDZ , we additionally introduce another sequence
{Ln} of tensor fields (see subsection 3.2 for the definition), which has the
property (Lemma 3.4) of

∞∑

n=1

1

n!
Ln = exp

{∫ 1

0
Ż(t)dw(t) −

1

2

∫ 1

0
Ż2(t)dt

}
(ẽDZ − 1).

Then, as a corollary to the adjoint formula for Ln (Theorem 3.3), MG for-
mula can be obtained (Corollary 3.5).

The proof of key theorem (Theorem 3.3), however, is not “algebraic” since
it involves the use of Itô’s formula. This means, we feel, a considerable part
of the “algebraic structure” of MG formula is still unrevealed. We then try
to give a purely algebraic proof (=without resorting the results from the
stochastic calculus) to MG formula in section 4 at the cost that we only

consider the case where Ż is a simple predictable process such as

Ż =
N∑

i=1

zi1(ti,ti+1](t).

We will consider a family of vector fields like ziDi, where Di is the differen-
tiation in the direction of

∫
1(ti,ti+1](t) dt. A key ingredient in our (second)

algebraic proof of MG formula is the following semi-commutativity:

(1.4) ziDj = Djzi if j ≥ i,

which may be understood as “causality”.
Actually, the relation (1.4) implies that the Jacobian matrix DZ =

(DeiZj)ij , if it is defined, is upper triangular. In a coordinate-free language,
it is nilpotent. Equivalently, Tr(DZ)n = 0 for every n, or Tr ∧n DZ = 0
for every n. Since the statements are coordinate-free(=independent of the
choice of {ei}), they can be a characterization of the causality (=predictabil-
ity) in the infinite dimensional setting as well. This observation retrieves
the result in [12] that Ramer-Kusuoka formula ([9],[4]) is reduced to MG
formula when DZ is nilpotent in this sense. The observation also implies
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that Ramer-Kusuoka formula itself can be approached in our algebraic way.
This program has been successfully carried out in [1].

In the present paper, the domains of the operators are basically restricted
to “polynomials” (precise definition of which will be given soon) in order to
concentrate on algebraic structures. We leave in Appendix a lemma and its
proof to ensure the continuity of the operators and hence to have a standard
version of CM-MG formula.

To the best of our knowledge, an algebraic proof like ours for CMMG
formula have never been proposed. Though we only treat a simplest one-
dimensional Brownian case, our method can be applied to more general
cases if only they have a proper action of the infinite dimensional Heisenberg
algebra. The present study is largely motivated by P. Malliavin’s way to look
at stochastic calculus, which for example appears in [5] and [6], and also by
some operator calculus often found in the quantum fields theory (see e.g.
[7]).

2. An Algebraic Proof of the Cameron-Martin Formula.

2.1. Preliminaries. For any h ∈ H , we set

[h](w) :=

∫ 1

0
ḣ(t)dw(t), w ∈ W .

A function F : W → R is called a polynomial functional if there exist an
n ∈ N, h1, h2, · · · , hn ∈ H and a polynomial p(x1, x2, · · · , xn) of n-variables
such that

F (w) = p
(
[h1](w), [h2](w), · · · , [hn](w)

)
, w ∈ W .

The set of all polynomial functionals is denoted by P. This is an algebra
over R included densely in Lp(W ) for any 1 ≤ p < ∞ (see e.g. [3], pp 353,
Remark 8.2).

Let {ei}
∞
i=1 be an orthonormal basis of H . If we set

ξi(w) := [ei](w) =

∫ 1

0
ėi(t)dw(t), i = 1, 2, · · ·

then ξ1, ξ2, · · · are mutually independent standard Gaussian random vari-
ables. Let Hn[ξ], n = 1, 2, · · · be the n-th Hermite polynomial in ξ defined
by the generating function identity

exp
(
λξ −

λ2

2

)
=

∞∑

n=0

λn

n!
Hn[ξ], λ ∈ R,
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and put

Λ :=

{
a = (ai)

∞
i=1 :

ai ∈ Z
+,

ai = 0 except for a finite number of i’s

}
.

We write a! :=
∏∞

i=1 ai! for a = (ai)
∞
i=1 ∈ Λ. We define Ha(w) ∈ P, a ∈ Λ

by

Ha(w) :=

∞∏

i=1

Hai [ξi(w)], w ∈ W

and then { 1√
a!
Ha : a ∈ Λ} forms an orthonormal basis of L2(W ) (see e.g.

[3]).

For a differentiable function f on R measured by N1(dξ) =
1√
2π
e−ξ2/2dξ,

if we define ∂ and ∂∗ as

∂f(ξ) = f ′(ξ) and ∂∗f(ξ) = −∂f(ξ) + ξf(ξ), ξ ∈ R

then ∂∗ is adjoint to ∂ on the differentiable class in L2(R, N1). We note that
the n-th Hermite polynomial Hn can be given by Hn[ξ] = (∂∗n1)(ξ).

2.2. Directional differentiations and its exponentials. For a function
F on W and θ ∈ H , the differentiation of F in the direction θ DθF is
defined by

DθF (w) := lim
ε→0

1

ε

{
F (w + εθ)− F (w)

}
, w ∈ W

if it exists(see e.g. [3]). Note that DθF (w) is linear in θ and F and satis-
fies the Leibniz’ formula Dθ(FG)(w) = DθF (w) · G(w) + F (w)DθG(w) for
functions F and G on W such that DθF (w) and DθG(w) exist. If F (w) is
of the form F (w) = f([h](w)) where f is a differentiable function on R and
h ∈ H , then we have

DθF (w) = 〈θ, h〉H f ′([h](w)).(2.1)

For θ ∈ H , we define the exponential of Dθ by

eDθF (w) :=

∞∑

n=0

1

n!
Dn

θF (w), F ∈ P and w ∈ W

which is actually a finite sum by (2.1).

Lemma 2.1. For F,G ∈ P, we have

eDθ(FG) = eDθ(F ) · eDθ(G).(2.2)
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Proof. is a straightforward computation:

eDθ(F ) · eDθ(G) =
( ∞∑

n=0

1

n!
Dn

θF
)
·
( ∞∑

n=0

1

n!
Dn

θG
)

=
(
F +DθF +

1

2!
D2

θF +
1

3!
D3

θF + · · ·
)

·
(
G+DθG+

1

2!
D2

θG+
1

3!
D3

θG+ · · ·
)

= FG+
{
DθF ·G+ FDθG

}

+
{ 1

2!
D2

θF ·G+DθF ·DθG+ F ·
1

2!
D2

θG
}

+
{ 1

3!
D3

θF ·G+
1

2!
D2

θF ·DθG+DθF ·
1

2!
D2

θG+ F ·
1

3!
D3

θG
}

+ · · ·

= FG+Dθ(FG) +
1

2!
D2

θ(FG) +
1

3!
D3

θ(FG) + · · · = eDθ (FG).

�

Proposition 2.2. For every F ∈ P, we have

eDθF (w) = F (w + θ), w ∈ W .(2.3)

Proof. By Lemma 2.1, it suffices to show (2.3) for the functional F ∈ P of
the form F (w) = f([h](w)) where f(x) is a polynomial in one-variable and
h ∈ H . Then using (2.1), we obtain

eDθF (w) =

∞∑

n=0

1

n!
Dn

θ f([h](w)) =

∞∑

n=0

1

n!
〈θ, h〉nH f (n)([h](w))

=
∞∑

n=0

1

n!
f (n)([h](w))

{(
[h](w) + 〈θ, h〉H

)
− [h](w)

}n

= f
(
[h](w) + 〈θ, h〉H

)
= F (w + θ),

where f (n)(x) denotes the n-th derivative of f(x). �

2.3. Formal adjoint operator and its exponential. In the analogy of
∂ and ∂∗ in the previous section, we define D∗

θ , θ ∈ H by

D∗
θF (w) := −DθF (w) +

∫ 1

0
θ̇(t)dw(t) · F (w), F ∈ P, w ∈ W .

Let {ei}
∞
i=1 be an orthonormal basis of H and put ξi(w) := [ei](w) for

i = 1, 2, · · · . Then we have
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Lemma 2.3. It holds that

E
[
DθHn[ξk] ·Hm[ξl]

]
= E

[
Hn[ξk]D

∗
θHm[ξl]

]

for any k, l,m, n = 1, 2, · · · .

Proof. Since t 7→ Hn[
∫ t
0 ek(s)dw(s)] (n ≥ 1) is a martingale with initial value

zero, if k 6= l the independence of ξk and ξl and the formula (2.1) imply that
both sides become zero when n,m ≥ 1. If n = m = 0, it is clear that the
left-hand side is zero. Then the right-hand side equals to

E[D∗
θ1] = E[−Dθ1 +

∫ 1

0
θ̇(t)dw(t)] = E[

∫ 1

0
θ̇(t)dw(t)] = 0.

Hence the case k = l suffices. Noting that ξk is a normal Gaussian random
variable, we have

E
[
DθHn[ξk] ·Hm[ξk]

]
= 〈θ, ek〉H E

[
H ′

n[ξk]Hm[ξk]
]

= 〈θ, ek〉H

∫ ∞

−∞
∂Hn[ξ] ·Hm[ξ]γ1(dξ)

= 〈θ, ek〉H

∫ ∞

−∞
Hn[ξ]∂

∗Hm[ξ]γ1(dξ)

= 〈θ, ek〉H

∫ ∞

−∞
Hn[ξ]

{
−H ′

m[ξ] + ξHm[ξ]
}
γ1(dξ)

= 〈θ, ek〉H E
[
Hn[ξk]

{
−H ′

m[ξk] + ξkHm[ξk]
}]

= E
[
Hn[ξk]

{
−DθHm[ξk] + 〈θ, ek〉H ξkHm[ξk]

}]
.

Since θ can be written as θ =
∑∞

k=1〈θ, ek〉H ek,
∫ 1
0 θ̇(t)dw(t) admits the

L2-expansion
∫ 1

0
θ̇(t)dw(t) =

∞∑

k=1

〈θ, ek〉H ξk.

Now the independence of {ξi}
∞
i=1 shows that

E
[
Hn[ξk]

∫ 1

0
θ̇(t)dw(t)Hm[ξk]

]
= E

[
Hn[ξk]〈θ, ek〉H ξkHm[ξk]

]
.

�

Proposition 2.4. For every F,G ∈ P, it holds that

E[DθF ·G] = E[FD∗
θG].(2.4)
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Proof. For fixed F,G ∈ P, there exist a positive integer n ∈ N and an
orthonormal system {e1, e2, · · · , en} in H and polynomials f(x1, x2, · · · , xn)
and g(x1, x2, · · · , xn) of n-variables such that

F (w) = f
(
[e1](w), [e2](w), · · · , [en](w)

)
and

G(w) = g
(
[e1](w), [e2](w), · · · , [en](w)

)
.

Extend {e1, e2, · · · , en} to an orthonormal basis {ek}
∞
k=1 of H . Since the

degree of the n-th Hermite polynomial is exactly n, f and g can be written
as linear combinations of finite products of Hermite polynomials. From this
fact and by the linearity of Dθ and D∗

θ and the independence, F and G may
be assumed without loss of generality to be of the form

F (w) =

p∏

i=0

Hni
[ξki(w)] and G(w) =

p∏

i=0

Hmi
[ξki(w)].

where ξk(w) = [ek](w) and k1, k2, · · · , kp are mutually distinct. Then, using
the Leibniz’ rule, Lemma 2.3 and the independence of ξ1, ξ2, · · · , we have

E[DθF ·G] = E
[
Dθ

p∏

i=1

Hni
[ξki ] ·

p∏

i=1

Hmi
[ξki ]

]

=

p∑

i=1

E
[
DθHni

[ξki ] ·
∏

j 6=i

Hnj
[ξkj ] ·

p∏

i=1

Hmi
[ξki ]

]

=

p∑

i=1

E
[
DθHni

[ξki ] ·Hmi
[ξki ]

]
E
[∏

j 6=i

Hnj
[ξkj ]Hmj

[ξkj ]
]

=

p∑

i=1

E
[
Hni

[ξki ]
{
−DθHmi

[ξki ] + 〈eki , θ〉H ξkiHmi
[ξki ]

}]

× E
[∏

j 6=i

Hnj
[ξkj ]Hmj

[ξkj ]
]

=

p∑

i=1

E
[ p∏

j=1

Hnj
[ξkj ]

{
−DθHmi

[ξki ] + 〈eki , θ〉H ξkiHmi
[ξki ]

}∏

j 6=i

Hmj
[ξkj ]

]

=

p∑

i=1

E
[ p∏

j=1

Hnj
[ξkj ]

(
−DθHmi

[ξki ]
)]

+ E
[ p∏

j=1

Hnj
[ξkj ]

{ p∑

i=1

〈eki , θ〉H ξki

} p∏

j=1

Hmj
[ξkj ]

]
.
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By the orthogonality of ξ1, ξ2, · · · , the last term is equal to

E
[ p∏

j=1

Hnj
[ξkj ] ·

∫ 1

0
θ̇(t)dw(t)

p∏

j=1

Hmj
[ξkj ]

]
,

which completes the proof. �

Remark 2.5. Note that {Dθ : θ ∈ H } determines a linear operator D :
P → P⊗ H such that 〈DF, θ〉H = DθF for each F ∈ P and θ ∈ H . The
operator can be extended to an operator D : P ⊗ H → P ⊗ H ⊗ H by
D(F ⊗ θ) = DF ⊗ θ. This operator is commonly used in Malliavin calculus
(see e.g. [3]). Its “adjoint” D∗ : P ⊗ H → P is defined by D∗F (w) =
−tr DF (w)+[F ](w), F ∈ P⊗H . Then the “integration by parts formula”;

∫

W

〈DF (w), G(w)〉H γ(dw) =

∫

W

F (w)D∗G(w)γ(dw)

holds for all F ∈ P and G ∈ P ⊗ H (see e.g. [3], pp 361). Under these
notations, D∗

θF = D∗(F⊗θ) for each F ∈ P and hence the above adjointness
follows immediately from our result and vice versa.

Next we define the exponential eD
∗

θ of D∗
θ by the formal series

eD
∗

θ :=

∞∑

n=0

1

n!
D∗n

θ .

Let {ek}
∞
k=1 be an orthonormal basis of H as above.

Theorem 2.6. For every θ ∈ H such that |θ|H = 1, it holds that

D∗n
θ 1 = Hn[

∫ 1

0
θ̇(t)dw(t)] ∈ P, n = 0, 1, 2, · · ·(2.5)

and hence eD
∗

θ1 can be defined. In fact, it is the exponential martingale

eD
∗

θ1(w) = exp
{∫ 1

0
θ̇dw(t)−

1

2

}
, w ∈ W .(2.6)

Furthermore, it holds that

E
[
eDθF

]
= E

[
F · eD

∗

θ1
]
, F ∈ P.(2.7)

Proof. We use the induction on n to prove (2.5). It is clear that

D∗
θ1(w) =

∫ 1

0
θ̇(t)dw(t) = H1[

∫ 1

0
θ̇(t)dw(t)].

Suppose that (2.5) holds for n. We recall that the Hermite polynomials
satisfy the identity

Hn+1[x] = xHn[x]− nHn−1[x].(2.8)
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Put Θ(w) :=
∫ 1
0 θ̇(t)dw(t). Then, noting that 〈θ, θ〉H = 1 and using (2.1),

D
∗(n+1)
θ 1 = D∗

θHn[Θ] = −DθHn[Θ] + ΘHn[Θ]

= ΘHn[Θ]− nHn−1[Θ] = Hn+1[Θ].

Hence (2.5) holds for every n = 0, 1, 2, · · · . Then (2.6) follows immediately
from (2.5).

Finally we shall prove (2.7). By using Proposition 2.4, for F ∈ P we have

E
[
eDθF

]
=

∞∑

n=0

1

n!
E
[
Dn

θF
]
=

∞∑

n=0

1

n!
E
[
F ·D∗n

θ 1
]
= E

[
F · eD

∗

θ1
]
.

�

Corollary 2.7. For every θ ∈ H , it holds that

(2.9) eD
∗

θ1(w) = exp
{∫ 1

0
θ̇(t)dw(t) −

1

2

∫ 1

0
θ̇(t)2dt

}
, w ∈ W .

Furthermore, it holds that

E
[
eDθF

]
= E

[
F · eD

∗

θ1
]
, F ∈ P.(2.10)

Proof. Let η = θ/|θ|H and then it follows that

D∗n
θ 1(w) = |θ|nH D∗n

η 1(w) = |θ|nH Hn[

∫ 1

0
η̇(t)dw(t)]

for n = 0, 1, 2, · · · and w ∈ W by Theorem 2.6. Hence we have

eD
∗

θ1(w) =

∞∑

n=0

|θ|n
H

n!
Hn[

∫ 1

0
η̇(t)dw(t)] = exp

{
|θ|H

∫ 1

0
η̇(t)dw(t) −

|θ|2
H

2

}
.

The identity (2.10) can be shown by the same argument as Theorem 2.6. �

Now, we have the Cameron-Martin formula in this polynomial framework.

Corollary 2.8. For every θ ∈ H and F ∈ P, it holds that
∫

W

F (w + θ)γ(dw) = E
[
eDθF

]
= E

[
F · eD

∗

θ1
]

=

∫

W

F (w) exp
{∫ 1

0
θ̇dw(t) −

1

2

∫ 1

0
θ̇(t)2dt

}
γ(dw).

(2.11)
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3. An Algebraic Proof of MG Formula.

In this section, we will give an algebraic proof of the MG formula using an
adjoint relation similar to (2.7). As we have announced in the introduction,
for the proof of the adjoint relation we will rely on the standard stochastic
calculus.

Let Z : W → H be a predictable map; i.e. Ż(t), 0 ≤ t ≤ 1 is a predictable
process such that

‖Z‖2H =

∫ 1

0
Ż(s)2ds < ∞ a.s.

Suppose E(
∫
ŻdW ) is a true martingale where for a martingale M =

(M(t))0≤t≤1 the process E(M) is defined by

E(M)t = exp
{
M(t)−

1

2
〈M〉(t)

}
.

3.1. Infinite dimensional tensor fields. We fix a c.o.n.s. {ei : i ∈ N} of
H and will write simply Di for Dei for each i ∈ N. We define a differenti-
ation along Z. For φ ∈ P, we define DZ in the following way:

DZφ(W ) :=
∞∑

i=1

〈Z, ei〉(W )Diφ(W ),

where 〈·, ·〉 is the inner product of H . Moreover, we define the n-th DZ ,
which we write as D⊗n

Z by the following:

D⊗n
Z := DZ ⊗DZ ⊗ · · · ⊗DZ︸ ︷︷ ︸

n

:=
∑

i,j,k,···
〈Z, ei〉〈Z, ej〉〈Z, ek〉 · · ·︸ ︷︷ ︸

n

DiDjDk · · ·︸ ︷︷ ︸
n

.

Next we define the exponential of DZ by the formal series of

ẽDZ := 1 +DZ +
1

2!
D⊗2

Z +
1

3!
D⊗3

Z + · · ·

= 1 +
∑

i

〈Z, ei〉Di +
1

2!

∑

i,j

〈Z, ei〉〈Z, ej〉DiDj

+
1

3!

∑

i,j,k

〈Z, ei〉〈Z, ej〉〈Z, ek〉DiDjDk + · · · .

We denote 〈Z, ei〉 by Zi, so we may write 〈Z, ei〉〈Z, ej〉DiDj as ZiZjDiDj

and furthermore D⊗2
Z =

∑
i,j ZiZjDiDj as 〈Z ⊗ Z,∇ ⊗ ∇〉, · · · ,D⊗n

Z =

〈Z⊗n,∇⊗n〉, and so on.
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Lemma 3.1. For any k ∈ N, we have

ẽDZ

(
Hn1

(

∫ 1

0
ėm1

dW ) · · ·Hnk
(

∫ 1

0
ėmk

dW )
)

= ẽDZ

(
Hn1

(

∫ 1

0
ėm1

dW )
)
· · · ẽDZ

(
Hnk

(

∫ 1

0
ėmk

dW )
)
.

(3.1)

Proof. First note that the equation (3.1) is equivalent to

n1+···+nk∑

l=0

1

l!
〈Z⊗l,∇⊗l〉

(
Hn1

(

∫ 1

0

ėm1
dW ) · · ·Hnk

(

∫ 1

0

ėmk
dW )

)

=

n1∑

l1=0

1

l1!
〈Z⊗l1 ,∇⊗l1〉Hn1

(

∫ 1

0

ėm1
dW ) · · ·

nk∑

lk=0

1

lk!
〈Z⊗lk ,∇⊗lk〉Hnk

(

∫ 1

0

ėmk
dW ).

(3.2)

Fixing l1, · · · lk such that l1 ≤ n1, · · · , lk ≤ nk, it suffices to prove that the
coefficients of

∇⊗l1Hn1
∇⊗l2Hn2

· · · ∇⊗lkHnk

of the left-hand after applying Leibniz rule correspond to those of right-hand.
The coefficients of the left-hand are the following.

1

(l1 + l2 + · · · + lk)!

(
l1 + l2 + · · · + lk

l1

)(
l2 + · · ·+ lk

l2

)
· · ·

(
lk
lk

)
.

This is equal to 1
l1!l2!···lk ! , so we get (3.2). �

Proposition 3.2. For f ∈ P, we have

(3.3) ẽDZ (f(W )) = f (W + Z) .

Proof. Since ẽDZ is linear and by Lemma 3.1, we only prove in the case of

f(W ) = Hn(
∫ 1
0 ėi(s)dWs), that is, it suffices to show

ẽDZ

(
Hn(

∫ 1

0
ėi(s)dWs)

)
= Hn

(∫ 1

0
ėi(s)dWs + 〈Z, ei〉

)
.

By the definition, we have

ẽDZ

(
Hn(

∫ 1

0
ėi(s)dWs)

)
=

n∑

k=0

(
n

k

)
〈Z, ei〉

kHn−k(

∫ 1

0
ėi(s)dWs).

For this, apply Hn(x+ y) =
∑n

k=0

(n
k

)
Hn−k(x)y

k, then we get (3.3). �
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3.2. The operator LZ
n . To prove Maruyama-Girsanov formula, we addi-

tionally introduce a sequence {LZ
n } of new operators associated with Z as

follows. For any n ∈ N, LZ
n is defined by LZ

0 = id and

LZ
n = −

n∑

k=1

(
n

k

)
Ĥn−k

(∫ 1

0
Ż(s)dW (s), ‖Z‖2H

)
D⊗k

−Z , n ∈ N(3.4)

where the polynomials Ĥn(x, y), n = 1, 2, · · · , are defined by means of the
formula

eλx−
λ2

2
y2 =

∞∑

n=0

λn

n!
Ĥn(x, y).

With this notation, the Hermite polynomials we have used so far are can be
written as

Hn[x] = Ĥn(x, 1).

Theorem 3.3. For any F ∈ P, we have

E
[ ∞∑

n=0

1

n!
LZ
nF

]
= E

[
E(

∫ ·

0
Ż(s)dW (s))1 · F

]
.(3.5)

Proof. It suffices to show

E
[
LZ
nF

]
= E

[
Ĥn

(∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
· F

]
(3.6)

for each n ∈ N and F ∈ P. If we can prove that

E
[
LZ
n

(
E(

∫
ḟ dW )1

)]
= E

[
Ĥn

( ∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
· E(

∫
ḟ dW )1

]
(3.7)

for arbitrary f ∈ H , then (3.6) is deduced. In fact, for a finite orthonormal
system {e1, · · · , em}, take f := λ1e1 + · · ·λmem for λ1, · · · , λm ∈ R. Then,

E(

∫
ḟdW )1 =

m∏

i=1

E(λi

∫
ėidW )1

=
∞∑

N=0

1

N !

∑

n1+···+nm=N

N !

n1! · · · nm!

m∏

i=1

λni

i Hni
(

∫ 1

0
ėi(s)dW (s)),

and we notice that
∑∞

N=0 aN where

aN = E

[
∑

n1+···+nm=N

N !

n1! · · ·nm!

m∏

i=1

λni

i
Hni

(

∫ 1

0

ėi(s)dW (s))

]
=

{
1 if N = 0
0 otherwise

is absolutely convergent. This means that (3.6) is valid for arbitrary mono-
mials and hence for all polynomials.
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So, let us prove (3.7). First we note that

E
[
LZ
n

(
E(

∫
ḟ dW )1

)]

= E
[ n∑

k=1

(−1)k+1

(
n

k

)
Ĥn−k

(∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
D⊗k

Z E(

∫
ḟ dW )1

]
,

where Ĥn(s) denotes Ĥn(
∫ s
0 Ż(u)dWu,

∫ s
0 Ż(u)2du) and Ĥn := Ĥn(1). Since

DiE(
∫
ḟdW )1 = 〈f, ei〉E(

∫
ḟdW )1, we have

E
[
LZ
n

(
E(

∫
ḟ dW )1

)]

= E
[
E(

∫
ḟdW )1

{ n∑

k=1

(−1)k+1

(
n

k

)
Ĥn−k

∑

i1,··· ,ik

Zi1 · · ·Zik〈f, ei1〉 · · · 〈f, eik〉
}]

= E
[
E(

∫
ḟdW )1

{ n∑

k=1

(−1)k+1

(
n

k

)
Ĥn−k〈Z, f〉

k
}]

.

We will use the following formulas to obtain (3.7) which will complete the
proof;

Ĥn(t) = n

∫ t

0
Ĥn−1(s)Ż(s)dW (s),

E
(∫

ḟdW
)
t
= 1 +

∫ t

0
E(

∫
ḟ dW )sḟ(s)dW (s),

and

d〈Ĥn, E(

∫
ḟ dW )〉s = nĤn−1(s)E(

∫
ḟdW )sḟ(s)Ż(s)ds.(3.8)

As a first step we have

E
[
Ĥn(

∫ 1

0
Ż(s)dWs,

∫ 1

0
Ż(s)2ds) · E(

∫
ḟdW )1

]

= E
[
n

∫ 1

0
Ĥn−1(s)Ż(s)dW (s)

]

+ E
[
n

∫ 1

0
Ĥn−1(s)Ż(s)dW (s)

∫ 1

0
E(

∫
ḟdW )sḟ(s)dW (s)

]

= E
[
n

∫ 1

0
Ĥn−1(s)E(

∫
ḟ dW )sḟ(s)Ż(s)ds

]
=: I.
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By Ito’s formula, we have

Ĥn−1(1)E(

∫
ḟdW )1

∫ 1

0

ḟ(s)Ż(s)ds

=

∫ 1

0

Ĥn−1(s)E
( ∫

ḟdW
)

s

ḟ(s)Ż(s)ds+

∫ 1

0

∫ s

0

ḟ(u)Ż(u)du d〈Ĥn−1, E(

∫
ḟdW )〉s

+ a martingale.

Then by using (3.8), we have

I = E
[
nĤn−1E(

∫
ḟdW )1

∫ 1

0
ḟ(s)Ż(s)ds

]

− E
[
n(n− 1)

∫ 1

0
ḟ(s)Ż(s)

∫ s

0
ḟ(u)Ż(u)du Ĥn−2(s) E(

∫
ḟdW )sds

]

=: E
[
nĤn−1E(

∫
ḟdW )1〈f, Z〉

]
− II.

Again we apply Ito’s formula to get

Ĥn−2(1)E(

∫
ḟ dW )1〈f, Z〉2

= 2

∫ 1

0
Ĥn−2(s)E(

∫
ḟdW )s

∫ s

0
ḟ(u)Ż(u)du f(s)Z(s)ds

+

∫ 1

0

{∫ s

0
ḟ(u)Ż(u)du

}2
d〈Ĥn−2, E(

∫
ḟdW )〉s + a martingale

and by using (3.8) again, we obtain

II = E
[n(n− 1)

2
Ĥn−2E(

∫
ḟdW )1〈f, Z〉2

]

− E
[n(n− 1)(n− 2)

2

∫ 1

0

Ĥn−3(s)E(

∫
ḟdW )sḟ(s)Ż(s)

{∫ s

0

ḟ(u)Ż(u)du
}2

ds.
]

Hence we have

E
[
Ĥn(

∫ 1

0

Ż(s)dWs,

∫ 1

0

Ż(s)2ds) · E(

∫
ḟdW )1

]
= I

= E
[
nĤn−1E(

∫
ḟdW )1〈f, Z〉

]

− E
[n(n− 1)

2
Ĥn−2E(

∫
ḟdW )1〈f, Z〉2

]

+ E
[n(n− 1)(n− 2)

2

∫ 1

0

ḟ(s)Ż(s)
{∫

s

0

ḟ(u)Ż(u)du
}2

Ĥn−3(s)E(

∫
ḟdW )sds

]
.



182 J. AKAHORI, T. AMABA AND S. URAGUCHI

By repeating this procedure until Ĥ∗(s) in the integrand vanishes, we obtain

E
[
Ĥn

(∫ 1

0
Z(s)dWs,

∫ 1

0
Z(s)2ds

)
· E(

∫
ḟ dW )1

]

= E
[
E(

∫
fdW )1

{ n∑

k=1

(−1)k+1

(
n

k

)
Ĥn−k〈Z, f〉

k
}]

.

�

3.3. Passage to the Cameron-Martin-Maruyama-Girsanov formula.

From Proposition 3.2 and Theorem 3.3, we will give a new proof of Maruyama-
Girsanov formula in the case of f ∈ P.

Lemma 3.4. As an operator acting on P,

∞∑

n=1

1

n!
LZ
n = exp

{∫ 1

0
Ż(t)dW (t)−

1

2

∫ 1

0
Ż(t)2dt

}
(1− ẽDZ ).

Proof.

∞∑

n=0

1

n!
LZ
n = 1−

∞∑

n=1

1

n!

n∑

k=1

(
n

k

)
Ĥn−k(

∫ 1

0
Ż(s)dW (s),

∫ 1

0
Ż(s)2ds)D⊗k

−Z

= 1−

∞∑

k=1

( ∞∑

n=k

1

k!(n − k)!
Ĥn−k(

∫ 1

0
Ż(s)dW (s),

∫ 1

0
Ż(s)2ds)

)
D⊗k

−Z

= 1−

∞∑

k=1

1

k!

( ∞∑

m=0

1

m!
Ĥm(

∫ 1

0
Ż(s)dW (s),

∫ 1

0
Ż(s)2ds)

)
D⊗k

−Z

= 1− E(

∫
ŻdW )1

∞∑

k=1

1

k!
D⊗k

−Z

= 1− E(

∫
ŻdW )1

∞∑

k=0

1

k!
D⊗k

−Z + E(

∫
ŻdW )1.

�

Corollary 3.5 (Cameron-Martin-Maruyama-Girsanov formula). For f ∈
P, the following formula holds

(3.9) E
[
E(

∫
ŻdW )1f

(
W −

∫ ·

0
Ż(s)ds

)]
= E

[
f(W )

]
.
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Proof. By Lemma 3.4, we have

E
[ ∞∑

n=0

1

n!
Ln

(
f(W )

)]
(3.10)

= E
[
f(W )− E(

∫
ŻdW )1

∞∑

k=0

1

k!
D⊗k

−Zf(W ) + E(

∫
ŻdW )1f(W )

]

= E
[
f(W )− E(

∫
ŻdW )1ẽ

D−Zf(W ) + E(

∫
ŻdW )1f(W )

]

= E
[
f(W )− E(

∫
ŻdW )1f

(
W −

∫ ·

0
Ż(s)ds

)
+ E(

∫
ŻdW )1f(W )

]
.

Then by Theorem 3.3, we obtain (3.9). �

4. Another Algebraic Proof for CMMG Formula.

As we have mentioned in the introduction, we give an alternative proof
which is “purely” algebraic in the sense that we do not use stochastic calculus
essentially, though we restrict ourselves in the case of piecewise constant
(=finite-dimensional) case.

Let F ≡ {Ft}0≤t≤1 be the natural filtration of W . Let us consider a
simple F-predictable process

(4.1) z(w, t) =
2s∑

k=1

2s/2zk(w) 1(k−1

2s
, k
2s

](t)

where zk, k = 1, · · · , 2s are Fk−1

2s
- measurable random variables. Define

σs
k ∈ H , k = 1, · · · , 2s by

σs
k(t) := 2s/2

∫ t

0
1(k−1

2s
, k
2s

](u) du.

We will suppress the superscript s whenever it is clear from the context.
Clearly,

(4.2) Dσk
F = 0

for any Fk−1

2s
-measurable random variable F . Put

Dzk := zkDσk
and D∗

zk
:= zkD

∗
σk
,

for k = 1, · · · , 2s.

Lemma 4.1. For any n ∈ N and f ∈ P, we have

(4.3) Dn
zk
f = zkDσk

· · · zkDσk︸ ︷︷ ︸
n times

f = znkD
n
σk
f
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and

(4.4) (D∗
zk
)nf = zkD

∗
σk

· · · zkD
∗
σk︸ ︷︷ ︸

n times

f = znk (D
∗
σk
)nf

Proof. These are direct from the following “commutativity”:

Dσj
(zif) = ziDσj

f, and D∗
σj
(zif) = ziD

∗
σj
f, if i ≤ j

for differentiable f . These follows since Dσj
(zi) = 0. �

Define the exponentials as

eDzk :=

∞∑

n=0

1

n!
Dn

zk
, k = 1, 2, · · · , N

and

eD
∗

zk :=

∞∑

n=0

1

n!
(D∗

zk
)n, k = 1, 2, · · ·N

formally. By Lemma 4.1 we have

eDzk =
∞∑

n=0

znk
n!

Dn
σk

and thus we can include P in the domain of eDzk .
Let us introduce a subspace PH of P, which consists of polynomials

with respect to {[ei](w)}, where {ei} is the Haar system. Note that PH

is also characterized as all the polynomials with respect to {[σ̇s
k](w) : k =

1, · · · , 2s, s ∈ N}.
The following is a main result in our program.

Theorem 4.2. (i) For any F ∈ PH , we have

(4.5) eDz2s · · · eDz1F (w) = F (w +

∫ ·

0
z(w, u) du).

(ii) For any F(k−1)/2s -measurable random variable F ,

(4.6) eD
∗

zkF = FeD
∗

zk (1).

In particular, the function F is in the domain of eD
∗

zk . Furthermore, we
have

(4.7) eD
∗

z2s · · · eD
∗

z1 (1) = exp
{∫ 1

0
z(w, s)dw(s) −

1

2

∫ 1

0
z(w, s)2ds

}
,

(iii) Fix k ∈ N. Let F ∈ P and let G be an arbitrary F(k−1)/2s -measurable
integrable function. Then

(4.8) E[eDzk (F )G] = E[FeD
∗

zk (G)].
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Proof. (i) First, notice that F ∈ PH is always expressed as a linear combi-

nation of
∏2s

k=1 Fk, where each Fk is a polynomial in
{
[σt

l ](w) :
( l − 1

2t
,
l

2t

]
⊂

(k − 1

2s
,
k

2s

]}
,(4.9)

so that we can assume that F is of the form

F =

N∑

i=1

2s∏

k=1

Fk,i,

where each Fk,i is a polynomial in (4.9). By Proposition 2.2 and the defini-
tion of Dσk

, we have

eDzkFl,i(w) =

{
Fk,i(w + zkσk) (l = k)

Fl,i(w) (l 6= k).

Then by Lemma 2.1,

eDzk

2s∏

l=1

Fl,i(w) = Fk,i(w + zkσk)
∏

l 6=k

Fl,i(w).

Since zk is Ftk -measurable, we also have, if j > k,

eDzj eDzk

2s∏

l=1

Fl,i(w)

= eDzjFk,i(w + zkσk)e
Dzj

∏

l 6=k

Fl,i(w)

= Fk,i(w + zkσk)Fj,i(w + zjσj)
∏

l 6=j,k

Fl,i(w).

Then, inductively we have

eDz2s · · · eDz1

2s∏

l=1

Fl,i(w) =

2s∏

l=1

Fl,i(w + zlσl),

and by linearity we obtain (4.5) since

2s∑

l=1

zl(w)σl(t) =

∫ t

0
z(w, u) du.

(ii) Noting that Dσk
F = 0 for F(k−1)/2s - measurable random variable F ,

we have

D∗
zk
F = zk{−Dσk

+ 2s/2(wk/2s − w(k−1)/2s)}F

= Fzk2
s/2(wk/2s − w(k−1)/2s) = FD∗

zk
(1)
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since zk is also F(k−1)/2s -measurable. Inductively, we then have

(D∗
zk
)nF = F (D∗

zk
)n(1),

and hence we have (4.6), which in turn implies (4.7). In fact, we have by
induction

eD
∗

z2s · · · eD
∗

z1 (1) =

2s∏

k=1

{eD
∗

zk (1)}

since e
D∗

zk−1 · · · eD
∗

z1 (1) is F(k−1)/2s -measurable for any k, and for each i =
1, 2, · · · , 2s, we have

eD
∗

zi (1) =

∞∑

n=0

zni
n!

(D∗
σi
)n(1) =

∞∑

n=0

zni
n!

Hn[

∫ 1

0
σk(t) dwt]

= exp
{
zi(w)2

s/2(wk/2s −w(k−1)/2s)−
1

2
zi(w)

2
}
.

(iii) Since F is a polynomial,

eDzkF =

M∑

n=0

znk
n!

Dn
σk
F

for some M ∈ N ∪ {0}. Therefore, the left-hand-side of (4.8) is rewritten as

M∑

n=0

1

n!
E[znkD

n
σk
F ·G].

Since zk and G are F(k−1)/2s -measurable, we have, for n ≤ M

E[znkD
n
σk
F ·G] = E[F · (D∗

σk
)nznkG]

= E[F · znk (D
∗
σk
)nG] = E[F · (D∗

zk
)nG].

The relation is valid for n > M since

(D∗
σk
)nG = G(D∗

σk
)n(1) = GHn(

∫ 1

0
σk(t) dwt),

and the degree of F as a polynomial of
∫ 1
0 σk(t) dwt is less than M , we have

E[znkD
n
σk
F ·G] = E[F ·D∗n

zk
G] = 0.

Thus we have

E[

∞∑

n=0

1

n!
Dn

zk
F ·G] = E[

∞∑

n=0

1

n!
F ·D∗n

zk
G],

which is the desired relation. �
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Remark 4.3. (i) We do not assume smoothness for F in (4.6). (ii) In (4.5)
and (4.7), the order of application of the operators is important. If it is
changed anywhere, neither holds anymore.

By using the above algebraic results, we can prove the following

Corollary 4.4 (Cameron-Martin-Maruyama-Girsanov formula). For a sim-
ple predictable z in (4.1) and F ∈ PH , it holds

E[F (w −

∫ ·

0
z(w, u) du) exp

{∫ 1

0
z(w, t) dwt −

1

2

∫ 1

0
|z(w, t)|2 dt

}

= E[F ].

(4.10)

Proof. As a formal series, we have

eDzk e−Dzk = 1,

for k = 1, · · · 2s. Then, for F ∈ PH , we have

F = eDz1e−Dz1F

and since e−Dz1F is a polynomial, by Theorem 4.2 (iii), we have

E[F ] = E[eDz1 e−Dz1F ]

= E[e−Dz1F · eD
∗

z1 (1)].
(4.11)

Inductively, since

e−∂zk · · · e−∂z1f(ξ)

still is a polynomial in
{
[σt

l ](w) :
( l − 1

2t
,
l

2t

]
⊂

(k − 1

2s
,
k

2s

]}
,

and

e
D∗

zk−1 · · · eD
∗

z1 (1)

is F(k−1)/2s -measurable, we have

E[F ]

= E[eDzk e−Dzk e−Dzk−1 · · · e−Dz1F · e
D∗

zk−1 · · · eD
∗

z1 (1)]

= E[e−Dzk · · · e−Dz1F · eD
∗

zk · · · eD
∗

z1 (1)].

(4.12)

Combining this with (4.5) and (4.7) in Theorem 4.6, we have the formula
(4.10). �
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Appendix A. Continuity of the translation

The following lemma extends the translation on the dense subset of poly-
nomials to an operator on Lq to Lp, and hence ensure the MG formula (4.10)
for any bounded measurable F .

Lemma A.1. Let z be a predictable process as (4.1). Suppose that

(A.1) E

[
exp

{
c

∫ 1

0
z(t)2 dt

}]
< ∞

for some c > 0. Then, for p ∈ [1,∞), there exists q ∈ (p,∞) and a positive
constant Cp such that

‖e−Dz2s · · · e−Dz1F‖p ≤ Cp‖F‖q

for any F ∈ PH .

Proof. We will denote Z :=
∫ ·
0 z(t) dt and

E(z) := exp

{∫ 1

0
z(t) dw(t) −

1

2

∫ 1

0
z(t)2 dt

}
.

Let n ≥ 1 be an integer and p < 2n. By Hölder’s inequality,

E [|F (w − Z(w))|p] = E
[
|F (w − Z(w))|p {E(z)}

p
2n {E(z)}−

p
2n

]

≤ E
[
|F (w − Z(w))|

p· 2n
p {E(z)}

p

2n
· 2n
p

] p

2n
·E

[
{E(z)}

− p

2n
· 2n
2n−p

]2n−p

2n

= E
[
|F (w − Z(w))|2nE(z)

] p

2n ·E
[
{E(z)}−

p

2n−p

] 2n−p

2n
.

Since F is a polynomial, so is |F |2n. Therefore, we can apply the MG formula
for polynomials (4.10) in Corollary 4.4, to obtain

E
[
|F (w − Z(w))|2nE(z)

] p

2n = E
[
|F |2n

] p

2n = ‖F‖p2n.

Now it suffices to show that

(A.2) E
[
{E(z)}

− p

2n−p

]
< ∞.

Let us denote Lt :=
∫ t
0 z(u) dw(u). Then 〈L〉t =

∫ t
0 z(u)

2 du. Now, since we
have

{E(z)}−
p

2n−p = exp

{
−

p

2n− p
L−

p2

(2n − p)2
〈L〉

}

· exp

{(
p

2(2n − p)
+

p2

(2n − p)2

)
〈L〉

}
,
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by Schwartz inequality we have

E
[
{E(z)}−

p

2n−p

]

≤ E

[
exp

{
−

2p

2n− p
L−

2p2

(2n − p)2
〈L〉

}]1/2

· E

[
exp

{(
p

(2n − p)
+

2p2

(2n − p)2

)
〈L〉

}]1/2
.

Clearly, p
(2n−p)+

2p2

(2n−p)2
→ 0 as n → ∞, and hence we can take large enough

n to have the estimate (A.2) by using the assumption (A.1). �

Remark A.2. By a similar but easier procedure we can also prove a continuity
lemma for eDθ with θ ∈ H , to extend (2.9) in Corollary 2.7 to obtain a full
version of CM formula.
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