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MULTIPLICITY-FREE PERMUTATION CHARACTERS OF

COVERING GROUPS OF SPORADIC SIMPLE GROUPS

S. A. LINTON and Z. E. MPONO

Abstract. In this paper we classify all multiplicity-free faithful per-
mutation representations of the covering groups of the sporadic simple
groups. These results were obtained computationally, making extensive
use of the GAP library of character tables.

1. Introduction

Any permutation representation of a group G can be extended to a linear
representation (on a space with basis in bijection with the set permuted)
over any field, in particular over the complex numbers |C. One can then
consider the decomposition of this linear representation into its irreducible
constituents. The structure of this decomposition is linked to the structure
of the permutation representation. For instance the multiplicity of the trivial
character gives the number of orbits, and, for transitive representations, the
sum of the squares of the multiplicities of the constituents gives the rank
(the number of orbits of the point stabilizer).

Of particular interest are those cases where the multiplicities of all the
constituents are one, called multiplicity-free representations. This condition
is related to two natural permutation-theoretic conditions as follows:

generously transitive =⇒ multiplicity-free =⇒ transitive

(cf. [2] p63). Multiplicity-free permutation representations can also be char-
acterized as those whose centralizer algebra is abelian [5]. Also, the action
of the automorphism group on the vertices of any distance transitive graph
is always multiplicity-free, so that a classification of multiplicity-free per-
mutation representations serves as an initial step towards a classification of
distance-transitive graphs with a given automorphism group. General re-
sults on the classification of distance-transitive graphs [6] enable many cases
to be reduced to graphs whose automorphism groups are simple or almost
simple (simple modulo a cyclic central subgroup and/or some extending
automorphisms).
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The classification of Finite Simple Groups arranges all simple groups into
four families: cyclic groups of prime order; alternating groups; finite groups
of Lie type and the 26 sporadic groups, and it is this last family which
is our focus here. The multiplicity-free permutation representations of the
sporadic groups and their automorphism groups are completely known [5, 1]
and tabulated in [1].

This paper is intended as a sequel to [1]. We give the multiplicity-free,
faithful permutation characters of the covering groups m·G of the sporadic
simple groups, where G is a sporadic simple group and m divides the order
of its Schur multiplier (given, for instance, in the Atlas of Finite Groups [3]).
The following sporadic groups have trivial Schur multipliers and so do not
possess nontrivial covering groups: M11, J1,M23,M24,He,Co3, Co2,HN ,
Ly, Th, F i23, J4 and M .

In Section 2, we give some background and prove some results which
have been used to obtain the desired permutation characters. We also deal
with the computational techniques that have been used in determining the
multiplicity-free and faithful representations. In Section 3, we present the
results in tables. In Section 4, we give a more detailed explanation of certain
complex cases and prove the one result for which our general methods were
inadequate.

2. Preliminaries

Proposition 2.1. Let G be a group of shape m·G and φ : G −→ G the
natural homomorphism from G to G ∼= G/Z, where Z is the centre of G.
If G has a multiplicity-free faithful permutation representation with point
stabilizer H, where H = Hφ then the permutation action of G on the cosets
of H is also multiplicity-free and faithful.

Proof. The action of G on the cosets of H is equivalent to that of G on
the cosets of HZ (on which Z will act trivially). The bijection is provided
by ψ : HZx −→ Hxφ, which is easily checked to be well-defined, surjective
and injective. This, with φ is an equivalence of permutation representations,
since

HZxyψ = H(xy)φ = Hxφyφ = HZxψyφ.

Now in the space V with basis defined on the cosets of H in G, consider the
subspace W spanned by the vectors

wx =
∑

z∈Z

Hxz

where x ∈ G. Two such vectors wx and wy are equal if and only if x and y

lie in the same coset of HZ, and since Z is central in G it is easy to check
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that W is invariant under G, furthermore, the action of G on W is just that
on the space spanned by the cosets of HZ.

Thus the permutation representation of G on H appears as a submodule
of that of G on H and so, if the latter is multiplicity-free and faithful, then
the former certainly must be.

Proposition 2.1 above allows us to take as the starting point for our
classification, the classification in [1] of multiplicity-free permutation rep-
resentations for the sporadic groups, and consider in each case its possible
extensions.

We now consider a candidate permutation representation of a simple
group G with point stabilizer H and consider how it might extend to a
faithful representation of G. This is determined by the subgroup K = Hφ−1

of G. If the permutation representation extends, then the point stabilizer
H ≤ G will certainly be a subgroup of K. Furthermore, we must have
Hφ = H and H ∩ Z = {1}. In fact there will be one equivalence class of
extension for each G−conjugacy class of such subgroup in K. Note that, in
this situation φ actually provides an isomorphism between H and H.

Remark 2.2. If Z has a proper subgroup Y , then G/Y will also be a cover-
ing group of G and it is easy to check that a (multiplicity-free) permutation
representation of G can only extend to a faithful (multiplicity-free) permu-
tation representation of G if it also extends to a faithful (multiplicity-free)
permutation representation of G/Y .

In all the cases we will consider, the central subgroup Z of G is cyclic
of order m, say. Let z be a generator of Z. We can obtain useful further
information about the decomposition of a permutation representation by
considering the action of z. Let V be the complex vector space on which
G acts by permuting the basis. Then V must decompose into eigenspaces:
E0, E1, . . . , Em−1 where z acts as ηi on Ei (η a primitive mth root of unity).

We can make various observations about this decomposition.

• In a transitive faithful permutation action, no nonidentity element
of Z can fix any points since

αz = α =⇒ αgz = αzg = αg

which, with transitivity, would imply that z fixes every point, con-
tradicting faithfulness. Thus z acts as a product of m-cycles.

• Let (α0, α1, . . . , αm−1) be a cycle of z. Then it is easy to see that

m−1∑

i=0

αiη
ij ∈ Ej .
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From this, we can see that dimEi = dimV/m.

• Since Z is central, each Ei is invariant under G.

• The action of G on Ei has kernel generated by z(i,m) and can contain
no irreducible constituent which is not faithful modulo this kernel.

• Finally, complex conjugation obviously exchanges Ei and E−i (in-
dices taken modulo m). Since the action of G on V is given by
real (permutation) matrices, however, complex conjugation must
preserve the G-module structure of the Ei, so whatever irreducible
constituents make up Ei, their complex conjugates must make up
E−i.

• The subspace W considered above is simply E0.

In the particular cases we are considering, these observations have the
following consequences:

• when m = 2, V is the direct sum of two components of equal dimen-
sion, one composed entirely of characters of G, the other of faithful
characters of 2·G

• when m = 3, V is the direct sum of three components of equal di-
mension, one composed entirely of characters of G, the other two
complex conjugates of one another and composed entirely of faithful
characters of 3·G

• when m = 4, V is the direct sum of four components of equal di-
mension, one composed entirely of characters of G, one composed of
faithful characters of 2·G and the other two complex conjugates of
one another and composed entirely of faithful characters of 4·G

• when m = 6, V is the direct sum of six components of equal di-
mension, one composed entirely of characters of G, one composed
of faithful characters of 2·G and the others making up two pairs of
complex conjugates, one composed of faithful characters of 3·G and
the other of 6·G

• when m = 12, V is the direct sum of twelve components of equal
dimension, one composed entirely of characters of G, one composed
of faithful characters of 2·G and the others making up five pairs of
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complex conjugates, one composed of faithful characters of 3·G, one
of 4·G, one of 6·G and the other two of 12·G

Remark 2.2 above implies that when m is composite, we need only con-
sider extensions of representations that have already extended to k·G when
k divides m.

Our main techniques for obtaining these results are character-theoretic,
and make extensive use of the character table library of theGAP [4] system,
which in particular includes the character tables of all the sporadic simple
groups, their covering groups and many of their maximal subgroups.

In the smaller cases, we make use of the PermChars function of GAP

to list all combinations of irreducible characters which have the correct de-
gree, and pass a number of tests for being permutation characters. In [1],
all characters satisfying the properties of [1, Lemma 4.3] are called possible
permutation characters. We have to be aware of two pitfalls here: firstly, the
tests are not complete and some characters pass them all, but are not charac-
ters of any permutation representations; secondly, inequivalent permutation
representations may give rise to the same character. Nevertheless, if there
are no multiplicity-free candidate permutation characters, then we know
that there is no multiplicity-free permutation representation and if there is
just one candidate permutation character, and we can exhibit a subgroup
of that index, then we know that the corresponding action must afford that
character. Furthermore faithfulness of a representation of a covering group
can be checked both in the character (which must vanish on nonidentity
elements of the centre) and from the subgroup, which must meet the centre
only trivially. Thus, if we exhibit a faithful representation, and have just
one faithful character, we again know that they must correspond.

Multiplicity-free permutation characters can be determined using the ta-
bles of marks. [1, Appendix 1] gives a GAP procedure for computing
multiplicity-free permutation characters using the tables of marks.

In the larger cases, we use character induction, since in all but one case,
the character table of the appropriate subgroups are available (see Section
4 for the details of this one case). Here we use the PossibleClassFusions

function of GAP to find all possible embeddings of H into G and then

compute, for each one, the character 1H ↑G. One of these would have to be
the character of any permutation representation with point stabilizer iso-
morphic to H. In practice, sufficiently few possible class fusions were found
in each case, that there was no problem identifying the correct permutation
character(s).

[1, Lemma 4.4] describes a technique for determining all multiplicity-
free characters χ ↑G for χ a possible permutation character of a maximal
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subgroup H of a group G. The corresponding GAP procedure for this
technique is given in [1, Appendix 2].

3. Results

We present the results in tables with various columns. The first column
describes the isomorphism type of the point stabilizer subgroup, which, as
noted above, must be the isomorphism type of the corresponding point sta-
bilizer in the simple group.

The second column refers to the index in m·G of the group in column
1. In tables for 2·G and 3·G, the third column refers to the line number
in the relevant table in [1] which describes the corresponding permutation
representation of the simple group G. In tables for 6·G, the third and fourth
columns give the row numbers of the corresponding representations in the
tables for 2·G and 3·G respectively. The next column gives the decomposi-
tion of the faithful part of the permutation module. The decompositions of
the non-faithful parts are found in the indicated rows of the tables for G (in
[1]), 2·G and 3·G. In giving these decompositions, we denote by e.g 123a
the first faithful representation of degree 123 in the Atlas [3]. In the case of
3·G or 6·G where each row of the Atlas table corresponds to two complex
conjugate characters (indicated there by ◦2), we call the first e.g 123b and
the other 123b′. The last column gives the rank of the permutation action.
Other notations follow the same format and style as used in [1].

All computations were performed using GAP 4 running on a Pentium
III computer at the Centre for Interdisciplinary Research in Computational
Algebra at the University of St Andrews.

The following covers of sporadic simple groups have no multiplicity-free
permutation representations and therefore no corresponding tables below:
3·J3, 4·M22, 12·M22

2·M12

M11 24 1 +12a 3
M11 24 2 +12a 3
A6·21 264 5 +12a+ 120a 7
A6·21 264 8 +12a+ 120a 7
32·2·S4 440 11 +110ab 7
32·2·S4 440 13 +110ab 7
32·2·S4 440 11 +12a+ 44ab + 120a 9
32·2·S4 440 13 +12a+ 44ab + 120a 9
32·2·A4 880 12 +12a+ 44ab + 110ab + 120a 14
32·2·A4 880 14 +12a+ 44ab + 110ab + 120a 14
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2·M22

24:A5 924 3 +126ab+ 210a 8
A7 352 4 +56a+ 120a 5
A7 352 5 +56a+ 120a 5

23:L3(2) 660 7 +120a+ 210a 7

3·M22

24:A5 1386 3 +21aa′ + 105aa′bb′ + 231aa′ 13
24:S5 693 6 +21aa′ + 105aa′bb′ 10

23:L3(2) 990 7 +21aa′ + 99aa′ + 105aa′bb′ 13
L2(11) 2016 9 +21aa′ + 105aa′bb′ + 210aa′ + 231aa′ 16

6·M22

24:A5 2772 1 1 +126aa′bb′ + 210aa′ 22
23:L3(2) 1980 4 3 +330aa′ 17

2·J2

U3(3) 200 1 +50ab 5

2·HS

U3(5) 704 3 +176ab 6
U3(5) 704 5 +176ab 6
A8 4400 8 +176ab+ 924ab 13
M11 11200 10 +56a+ 176ab+ 616ab + 1980ab 16
M11 11200 11 +56a+ 176ab+ 616ab + 1980ab 16

3·McL

2·A8 66825 6 +2772aa′ + 5103aa′ + 6336aa′ + 8064aa′ 14

2·Ru

2F4(2)
′ 16240 2 +28ab+ 4032ab 9

2·Suz

U5(2) 65520 4 +364ab+ 16016ab 10
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3·Suz

G2(4) 5346 1 +66aa′ + 1716aa′ 7
U5(2) 98280 4 +78aa′ + 1365aa′ + 4290aa′ + 27027aa′ 14

21+6
− ·U4(2) 405405 5 +66aa′ + 429aa′ + 1716aa′ + 6720aa′ 23

+18954aa′ + 42900aa′ + 64350aa′

24+6:3A6 1216215 6 +1365aa′ + 4290aa′ + 27027aa′ + 42900aa′ 27
+85800aa′ + 104247aa′ + 139776aa′

6·Suz

U5(2) 196560 1 2 +12aa′ + 924aa′ + 4368aa′ + 27456aa′ 26

3·O′N

L3(7):2 368280 1 +495aa′ + 58653aa′ + 63612aa′ 11
L3(7):2 368280 3 +495bb′ + 58653aa′ + 63612aa′ 11
L3(7) 736560 2 +495aa′ + 58653aa′ + 63612aa′ + 122760aa′ 15
L3(7) 736560 4 +495bb′ + 58653aa′ + 63612aa′ + 122760aa′ 15

2·Fi22

O7(3) 28160 2 +352a+ 13728a 5
O7(3) 28160 3 +352a+ 13728b 5

O+
8 (2):S3 123552 4 +13728a + 48048a 6

O+
8 (2):S3 123552 4 +13728b + 48048b 6
O+

8 (2)·3 247104 5 +13728ab + 48048ab 11
O+

8 (2)·2 370656 6 +352a+ 13728a + 48048a + 123200a 11
O+

8 (2)·2 370656 6 +352a+ 13728b + 48048b + 123200a 11

3·Fi22

O+
8 (2):S3 185328 4 +351aa′ + 19305aa′ + 42120aa′ 10
O+

8 (2)·3 370656 5 +27027aa′ + 96525aa′ 11
O+

8 (2)·3 370656 5 +351aa′ + 7722aa′ + 19305aa′ 17
+42120aa′ + 54054aa′

O+
8 (2)·2 555984 6 +351aa′ + 19305aa′ + 27027aa′ 17

+42120aa′ + 96525aa′

26:S6(2) 2084940 8 +351aa′ + 19305aa′ + 27027aa′ + 42120aa′ 24
+96525aa′ + 123552aa′ + 386100aa′

2F4(2)
′ 10777536 9 +19305aa′ + 27027aa′ + 51975aa′ 25

+386100aa′ + 405405aa′ + 1351350cc′dd′
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6·Fi22

O+
8 (2):S3 370656 3 1 +61776aa′ 14

O+
8 (2):S3 370656 4 1 +61776bb′ 14
O+

8 (2)·3 741312 5 3 +61776aa′bb′ 25
O+

8 (2)·2 1111968 6 4 +61776aa′ + 123552aa′ 25
O+

8 (2)·2 1111968 7 4 +61776bb′ + 123552aa′ 25

2·Co1
Co2 196560 1 +24a+ 2576a + 95680a 7
Co3 16773120 5 +24a+ 2576a + 95680a + 1841840a 12

+6446440a

3·Fi′24
Fi23 920808 1 +783aa′ + 306153aa′ 7
O−

10
(2) 150532080426 2 +783aa′ + 64584aa′ + 306153aa′ 43

+6724809aa′ + 19034730aa′ + 43779879aa′

+195019461aa′ + 203843871aa′

+1050717096aa′+ 1818548820aa′

+10726070355aa′+ 15016498497aa′

+21096751104aa′

2·B
Fi23 2031941058560000 4 +96256a+ 10506240a+ 410132480a 34

+8844386304a+ 36657653760a
+864538761216a+ 4322693806080a
+10177847623680a+ 60780833777664a
+110949141022720a+ 828829551513600a

Except for the two largest ones (3·Fi′24 on O−
10(2) and 2·B on Fi23),

explicit permutations have been constructed for all of these representations
(some were already known) and are available from the first author.

4. Remarks on specific cases

There are two cases in the above tables where the results reflect especially
complex situations in the groups concerned, and one where a special proof
technique was needed.

According to [1],M12 has two classes of maximal subgroups isomorphic to
A6·2

2, two classes of non-maximal subgroups isomorphic to A6·21 ∼= S6 and
two classes isomorphic to A6·22 ∼= PGU2(9). In each case, the two classes
are exchanged by the outer automorphism of M12 and each class affords
a multiplicity-free permutation character. It is easy to see that M12 must
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also have two classes of subgroups isomorphic to A6·23 ∼=M10, but these do
not afford a multiplicity-free permutation character. Again examining [1]
we see that the two conjugacy classes of subgroups isomorphic to A6·21 ∼=
S6 actually afford the same permutation character (although inequivalent
permutation representations).

TheGAP functionPermChars actually reveals five distinct multiplicity-
free possible permutation characters of degree 132 for M12, and we conclude
that two of them cannot actually be given by any permutation representa-
tions.

In 2·M12, we find that the preimage of A6·2
2 is a group H which can be

described as (2 × A6)·2
2. The largest solvable quotient of this: H/H(∞),

is isomorphic to D8. Within this, we find that the preimage of a subgroup
A6·21 is a subgroup H1 of shape 2 × A6·21 while that of a subgroup of
shape A6·22 is H2 of shape (2 × A6)·2 with the outer part affording the 22
automorphism and squaring to the centre.

Now H has no subgroup of index 2 not containing the centre (as may
be seen in D8) and so there are no faithful extensions of the permutation
action of M12 on 66 points. H1 has two conjugacy classes of subgroups of
index 2, but they are conjugate in H, so we see just one equivalence class of
permutation representations (and its image under the outer automorphism),
which turn out to be multiplicity-free. H2 again has no subgroup of index
2 not containing the centre.

Thus we see in our table just two equivalence classes of faithful multiplicity-
free permutation representations of 2·M12 with point stabilizers isomorphic
to A6·21, exchanged by the outer automorphism of 2·M12 and affording the
same character.

In Fi22, there is a conjugacy class of subgroups isomorphic to O+
8 (2):S3

which extends to 2 × O+
8 (2):S3 in Fi22·2. The permutation representation

of Fi22 on the cosets of O+
8 (2):S3 is multiplicity-free.

In 2·Fi22, the preimage of a subgroup in this class is isomorphic to
2 ×O+

8 (2):S3, and so has two non-conjugate subgroups of index 2 not con-
taining the central element, leading to two multiplicity-free faithful permu-
tation representations of 2·Fi22. However, it can be seen from the character
decompositions that these are exchanged by the outer automorphism.

Thus, the preimage of 2 × O+
8 (2):S3 in (either isomorphism type of)

2·Fi22·2 must be a group (2 × O+
8 (2):S3)·2 in which the outer involution

acting by conjugation ”shifts” elements in the outer half of 2×O+
8 (2):S3 by

the central element of that group.
Exactly the same phenomenon occurs for the non-maximal subgroup

O+
8 (2)·2.
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The non-maximal subgroup O+
8 (2)·3 has preimage isomorphic to 3 ×

O+
8 (2)·3 in 3·Fi22. This group has two conjugacy classes of subgroups of

index 3 not containing the centre, which give rise to inequivalent faithful
multiplicity-free permutation representations of 3·Fi22, one of rank 11 and
the other rank 17.

Finally, the character table of the maximal subgroup 21+22
+ ·Co2 of B is

not known, so we could not use our normal character induction methods.
Instead, we look at the degrees of the faithful characters of 2·B and can
easily check that no combination of these (without repetition) can sum to
11707448673375. Thus there can be no faithful multiplicity-free permutation
representation of 2·B with this stabilizer.
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