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NOTE ON THE COHOMOLOGICAL INVARIANT

OF PFISTER FORMS

M. Tezuka and N. Yagita

Abstract. The cohomological invariant ring of the n-Pfister forms is
isomorphic to the invariant ring under a GLn(Z/2)-action in that of an
elementary abelian 2-group of rank n.

1. Introduction

Let G be an algebraic group over k with ch(k) 6= 2. The cohomological
invariant ring Inv∗(G;Z/2) = ⊕iInv

i(G;Z/2) of G is the ring generated by
natural functors H1(K;G) → H i(K;Z/2) for the category of finitely gener-
ated fields K over k. (For details, see the excellent book [Ga-Me-Se]). More-
over, we can define the cohomological invariant ring Inv∗(Pfistern;Z/2)
of n-Pfister forms, although the corresponding group G does not exist for
n ≥ 4. This ring has been computed by Serre using elementary but very
elegant arguments in Theorem 18.1 in [Ga-Me-Se].

In this note, we show that this ring for n-Pfister forms can be identified
with the invariant ring under a GLn(Z/2)-action in that of an elementary
abelian 2-group of rank n, namely,

Inv∗(Pfistern;Z/2) ∼= Inv∗((Z/2)n;Z/2)GLn(Z/2).

To show this, we use some machinery from motivic cohomology and Dickson
algebras, which can be applied for other groups G.

The authors would like to thank the referee for the valuable comments
and suggestions to improve the quality of the paper.

2. Motivic cohomology and cohomological invariant

We recall the motivic cohomology H∗,∗′(X;Z/2) = ⊕p,qH
p,q(X;Z/2) for

a smooth scheme X over k with ch(k) 6= 2. By the Milnor conjecture (which
has been solved by Voevodsky), we know Hp,q(X;Z/2) ∼= Hp

et(X;Z/2) for
p ≤ q. Consider τ ∈ H0,1(Spec(k);Z/2) ∼= Z/2 as a nonzero element. It is
known that Hp,q(X;Z/2) = 0 for (p − q) > dim(X). Hence we obtain

H∗,∗′(Spec(k);Z/2) ∼= H∗
et(Spec(k);Z/2)[τ ].

Let us write H∗,∗′ = H∗,∗′(Spec(k);Z/2) and H∗ = H∗
et(Spec(k);Z/2) so

that H∗,∗′ ∼= H∗[τ ].
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Let BG be the classifying space of G ([To], [Vo2]). Let Hp(X;Hq
Z/2)

be the sheaf cohomology where Hq
Z/2 is the Zariski sheaf induced from the

presheaf Hq
et(V ;Z/2) for each open subset V of X. Then Totaro proved

that

Inv∗(BG;Z/2) ∼= H0(BG;H∗
Z/2)

in a letter to Serre [Ga-Me-Se]. The Milnor conjecture implies the Beilinson-
Lichtenbaum conjecture (see [Vo2,3]). This fact implies the following long
exact sequence of motivic and sheaf cohomology theories (Lemma 3.1 in
[Or-Vi-Vo], [Vo3])

→ Hp,q−1(X;Z/2)
×τ
→ Hp,q(X;Z/2)

→ Hp−q(X;Hq
Z/2) → Hp+1,q−1(X;Z/2)

×τ
→ ...

Thus we have

Theorem 2.1. There is an additive isomorphism

Invp(G;Z/2) ∼= Hp,p(BG;Z/2)/(τ) ⊕Ker(τ)|Hp+1,p−1(BG;Z/2).

As an application, we first consider the case where G = Z/2. The mod(2)
motivic cohomology is computed in [Vo1,2].

H∗,∗′(BZ/2;Z/2) ∼= H∗,∗′ [y]⊗∆(x) = H∗,∗′ [y]{1, x}

with β(x) = y, hence deg(y) = (2, 1) and deg(x) = (1, 1). Here Voevodsky
shows ([Vo1,2]) as follows:

x2 = τy + ρx with ρ = (−1) ∈ H1 = k∗/(k∗)2.

Next, we consider their product G = (Z/2)n. The cohomology

H∗,∗′(BZ/2;Z/2) has the Kunneth formula (by Voevodsky [Vo2]). Hence
the motivic cohomology is given by

H∗,∗′(BG;Z/2) ∼= H∗,∗′ [y1, ..., yn]⊗∆(x1, .., xn)

where β(xi) = yi and x2i = τyi + ρxi. Hence from Theorem 2.1, we obtain
(as stated 16.4 in [Ga-Me-Se])

Lemma 2.2. Let G be an elementary abelian 2-group of rank n. Then

Inv∗(G;Z/2) ∼= H∗ ⊗∆(x1, ..., xn) with x2i = ρxi.
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3. Dickson invariants

Recall that the mod 2 (topological) cohomology

H∗(B(Z/2)n;Z/2) ∼= Z/2[x1, ..., xn] |xi| = 1.

It is well known that the invariant ring under the GLn(Z/2)-action is the
Dickson algebra

H∗(B(Z/2)n;Z/2)GLn(Z/2) ∼= Z/2[dn,0, ..., dn,n−1]

where each generator (Dickson element) dn,i is given by

wt(x) = Πǫi=0 or 1(t+ ǫ1x1 + ...+ ǫnxn)

= t2
n

+ dn,n−1t
2n−1

+ dn,n−2t
2n−2

+ ...+ dn,0t.

Examples. Let wi be the i-th elementary symmetric function for xj in
H∗(B(Z/2)n;Z/2). Then,

{

d2,1 = x21 + x1x2 + x22 = w2
1 + w2

d2,0 = x21x2 + x1x
2
2 = w1w2.

To recognize the Dickson elements in the cohomological invariant ring,
let us consider it in the following ring

U = Z/2[ρ]⊗∆(x1, ..., xn), x2i = ρxi.

For example, in U , we see d2,0 = ρx1x2 + x1ρx2 = 0, and

d2,1 = ρx1 + x1x2 + ρx2 = ρw1 + w2.

Lemma 3.1. In U , we have dn,i = 0 for i < n− 1 and

dn,n−1 =

n
∑

i≥1

wiρ
2n−1−i = (ρ+ x1)...(ρ+ xn)ρ

2n−1−n + ρ2
n−1

.

Proof. Decompose that

wt(x) = Π(t+ ǫ1x1 + ...ǫn−1xn−1)×Π(t+ xn + ǫ1x1 + ...ǫn−1xn−1).

By induction on n, we assume that this element is

(t2
n−1

+ dn−1,n−2t
2n−2

)((t+ xn)
2n−1

+ dn−1,n−2(t+ xn)
2n−2

).

By setting dn−1,n−2 = d, t2
n−2

= T and x2
n−2

n = X, the above formula is
written as

(T 2 + dT )(T 2 +X2 + dT + dX)

= T 4 + (d2 + dX +X2)T 2 + (d2X + dX2)T.

Here note X2 = ρmX = ρℓxn, d
2 = ρmd (since (ρ+ x)2 = ρ(ρ+ x)). So we

obtain (d2X + dX2) = 0.
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Let ai = (ρ+ x1)...(ρ + xi) so that an−1 = d+ ρk. Then we have

dn,n−1 = d2 + dX +X2 = ρmd+ ρm−1dxn + ρℓxn

= ρs(an−1 + ρk) + ρs−1(an−1 + ρk)xn + ρℓxn

= ρs−1an−1(ρ+ xn) + ρr = ρs−1an + ρr

for some m, ℓ, k, s, r ≥ 1, as desired. �

Corollary 3.2. Let us write

en = ρ−2n−1+ndn,n−1 =

n
∑

i≥1

wiρ
n−i = (ρ+ x1)...(ρ + xn) + ρn.

Then we have the ring isomorphism

Inv∗((Z/2)n;Z/2)GLn(Z/2) ∼= H∗{1, en}, e2n = ρnen.

Proof. By Ideal(ρ), we consider the associated graded algebra

gr(H∗ ⊗∆(x1, ..., xn)) ∼= gr(H∗)⊗ Λ(x1, ..., xn), (x2i = 0).

Note en = wn in the above graded algebra. We can see

Λ(x1, ..., xn)
GLn(Z/2) ∼= Z/2{1, wn}

from the following arguments.
The invariant ring of Z/2[x1, ..., xn] under the n-th Symmetric group is

multiplicatively genarated by ws for s ≤ n. Here x2i = 0 in gr(U), and
hence its invariant ring is additively generated by ws for s ≤ n.

Suppose s < n and write

ws = x1(
∑

16=ik

xi1 ...xis−1
) + (

∑

16=ik

xi1 ...xis).

Consider the action x12 : x1 7→ x1 + x2 but x12 : xi 7→ xi for i > 1. Then

(x12 − 1)ws = x2(
∑

16=ik

xi1 ...xis−1
) = x2x3...xs+1 + ... 6= 0 in Λ(x1, ..., xn).

All elements inH∗ and en are invariants inH∗⊗∆(x1, ..., xn) = H∗⊗Z/2[ρ]

U . Thus we have the corollary. �

Let n = 2 and G = SO3, or n = 3 and G = G2 the exceptional group.
Then G has only one conjugacy class An of maximal elementary abelian
2-groups of rank n. The Weyl group WG(An) is isomorphic to GLn(Z/2).
Hence we have the restriction map

Inv∗(G;Z/2) → Inv∗(An;Z/2)
WG(An) ∼= H∗{1, en}.

The result in [Ga-Me-Se] shows that this map is an isomorphism. This fact
holds true for n ≥ 4 as stated in the next section, although the corresponding
group G does not exist.
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4. Pfister forms

The most important quadratic forms are Pfister forms. Given a = (a1, ...,
an) ∈ (k∗/(k∗)2)×n, the n-th Pfister form Pa is defined as

Pa = 〈〈a1, ..., an〉〉 = 〈1,−a1〉 ⊗ ...⊗ 〈1,−an〉

= ⊕1≤i1<...<is≤n〈(−ai1)...(−ais)〉.

Given a quadratic form qa = 〈a1, ..., an〉, the total Stiefel-Whitney class
is given by

wt(qa) = Π(t+ xi) ∈ H∗[t] with xi = (ai) ∈ H1.

Hence we obtain

wt(Pa) = Πǫi=0 or 1(t+ ǫ1(ρ+ x1) + ...+ ǫn(ρ+ xn))

identifying xi = (ai). Thus the following proposition follows the preceding
lemma. (Substitute xi + ρ for xi on the right-hand side of the equation in
Lemma 3.1.)

Proposition 4.1. Let xi = (ai) ∈ k∗/(k∗)2 and wn = x1...xn. Then

wt(Pa) = t2
n

+ (wn + ρn)ρ2
n−1−nt2

n−1

.

Next, we consider the map from (k∗/(k∗)2)×n to the set Pfistn of n-th
Pfister forms defined by

p : a = (a1, ..., an) 7→ P−a = 〈〈 − a1, ...,−an〉〉 = 〈1, a1〉 ⊗ ...⊗ 〈1, an〉.

This map induces the map of cohomological invariant rings

p∗ : Inv∗(Pfistern;Z/2) → Inv∗((k∗/(k∗)2)×n;Z/2).

Here the last invariant ring is isomorphic to

Inv∗((Z/2)n;Z/2) ∼= H∗ ⊗∆(x1, ..., xn).

On H∗ ⊗ ∆(x1, ..., xn), we can define the usual GLn(Z/2)-action. This
action is also written as follows. Consider the Bruhat decomposition

GLn(Z/2) =
∐

w∈Sn

BwB

where B is the Borel group generated by upper triangular matrices, and Sn

is the n-th symmetric group generated by transition matrices. The group
B is generated by xij = 1+ eij ; the elementary matrix with (i, j) entries 1
with the following relations

x2ij = 1, [xij , xkl] =

{

xil if j = k ;

0 otherwise.
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Define w(xi) = xw(i) for w ∈ Sn and

xij(xi) = xi + xj , xij(xk) = xk for i 6= k.

Then the GLn(Z/2)-action is decided on Inv∗((Z/2)n;Z/2).

Theorem 4.2. The above map p∗ induces the isomorphism of rings

Inv∗(Pfistern;Z/2) ∼= H∗ ⊗∆(x1, ..., xn)
GLn(Z/2) ∼= H∗{1, en}.

Proof. On (k∗/(k∗)2)×n, we can define the GLn(Z/2)-action by

xij(a1, ...an) = (a1, ..., ai−1, aiaj , ai+1, ..., an),

w(a1, ..., an) = (aw(1), ..., aw(n)).

This induces the action on Inv∗((Z/2)n;Z/2) by w(xi) = xw(i) and

xij(xi) = xi + xj , xij(xk) = xk for i 6= k.

Define a GLn(Z/2) action on Pfistern by setting xijp(a) = p(xij(a)).
Then this action is invariant, indeed,

x12〈〈a1, a2〉〉 = px12(−a1,−a2) = p(a1a2,−a2)

= 〈〈 − a1a2, a2〉〉 = 〈1, a1a2,−a2,−a1a
2
2〉

= 〈1, a1a2,−a2,−a1〉 = 〈〈a1, a2〉〉.

Hence we have the map

q∗ : Inv∗(Pfistern;Z/2) → H∗ ⊗∆(x1, ..., xn)
GLn(Z/2).

The following map

P−a 7→ x′1...x
′
n + ρn ∈ H∗ with x′i = xi + ρ = (−ai)

represents a cohomological invariant for Pfistern, which restricts to e on
that for (Z/2)n. (In fact, the Pfister form Pa is defined from each symbol
x1...xn ∈ H∗ which is also reconstructed from the Pfister form uniquely.)
Hence the above map q∗ is an epimorphism.

For each finitely generated field K over k, the map p : (K∗/(K∗)2)n →
Pfistern|K is obviously an epimorphism. Hence the induced map p∗ :
Inv∗(Pfistern;Z/2) → Inv∗((k∗/(k∗)2)×n;Z/2) is defined by

p∗(x) : (K∗/(K∗)2)n → Pfistern
x
→ Hn(K;Z/2),

which is always a monomorphism. �

If we consider the map

q : a = (a1, ..., an) 7→ Pa = 〈〈a1, ..., an〉〉,

then the map q∗ also induces the isomorphism

Inv∗(Pfistern;Z/2) ∼= H∗ ⊗∆(x1, ..., xn)
GLn(Z/2)II ∼= H∗{1, wn}

where GL(Z/2)II is the unusual action defined by xij(xi) = ρ+ xi + xj .
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