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EXPLICIT ASSOCIATOR RELATIONS

FOR MULTIPLE ZETA VALUES

Ismaël Soudères

Abstract. Associators were introduced by Drinfel’d in [Dri91] as a
monodromy representation of a Knizhnik-Zamolodchikov equation. As-
sociators can be briefly described as formal series in two non-commuta-
tive variables satisfying three equations. These three equations yield a
large number of algebraic relations between the coefficients of the series,
a situation which is particularly interesting in the case of the original
Drinfel’d associator, whose coefficients are multiple zetas values. In
the first part of this paper, we work out these algebraic relations among
multiple zeta values by direct use of the defining relations of associators.
While well-known for the first two relations, the algebraic relations we
obtain for the third (pentagonal) relation, which are algorithmically ex-
plicit although we do not have a closed formula, do not seem to have
been previously written down. The second part of the paper shows
that if one has an explicit basis for the bar-construction of the mod-
uli space M0,5 of genus zero Riemann surfaces with 5 marked points
at one’s disposal, then the task of writing down the algebraic relations
corresponding to the pentagon relation becomes significantly easier and
more economical compared to the direct calculation above. We discuss
the explicit basis described by Brown and Gangl, which is dual to the
basis of the enveloping algebra of the braids Lie algebra UB5.

In order to write down the relation between multiple zeta values, we
then remark that it is enough to write down the relations associated
to elements that generate the bar construction as an algebra. This
corresponds to looking at the bar construction modulo shuffle, which
is dual to the Lie algebra of 5-strand braids. We write down, in the
appendix, the associated algebraic relations between multiple zeta values
in weights 2 and 3.
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1. Introduction

In the first part of this introduction we recall the necessary definitions
concerning associators, and in the second part, we recall the definitions and
main results concerning multiple zeta values. In the third part, we give the
outline of the paper and state the main results.

1.1. Associators. Let k be a field of characteristic 0. Let UF2 =
k〈〈X0,X1〉〉 be the ring of formal power series over k in two non-commutative
variables. The coproduct ∆ on UF2 is defined by

∆(X0) = X0 ⊗ 1 + 1⊗X0 ∆(X1) = X1 ⊗ 1 + 1⊗X1.

An element Φ = Φ(X0,X1) ∈ UF2 is group-like if it satisfies ∆(Φ) = Φ⊗̂Φ
where ⊗̂ denotes the complete tensor product.

Remark 1.1. We remark that the constant term of a group-like element is
1.

Definition 1.2. If S is a finite set, let S∗ denote the set of words with
letters in S, that is the dictionary over S. If S = {s1, . . . , sn} we may write
{s1, . . . , sn}

∗.
Let W0,1 be the dictionary over {X0,X1}.



EXPLICIT ASSOCIATOR RELATIONS FOR MULTIPLE ZETA VALUES 3

We remark that the monomials in UF2 are words in W0,1; the empty word
∅ in W0,1 will be 1 by convention when considered in UF2. The following
definition allows us to define a filtration on UF2.

Definition 1.3. The depth dp(W ) of a monomial W ∈ UF2, that is an
element of W0,1, is the number of X1’s, and its weight (or length) wt(W ) =
|W | is the number of letters.

The algebra UF2 is filtered by the weight, and its graded pieces of weight
d are the subspaces generated by the monomials of length d; UF2 is thus a
graded algebra.

Let UB5 be the enveloping algebra of B5, the completion (with respect
to the natural grading) of the pure sphere braid Lie algebra [Iha90]; that
is, UB5 is the quotient of k〈〈Xij〉〉 with 1 6 i 6 5 and 1 6 j 6 5 by the
relations

• Xii = 0 for 1 6 i 6 5,
• Xij = Xji for 1 6 i, j 6 5,

•
5∑

j=1
Xij = 0 for 1 6 i 6 5,

• [Xij ,Xkl] = 0 if {i, j} ∩ {k, l} = ∅.

Definition 1.4 (Drinfel’d [Dri91]). A group-like element Φ in UF2 having
coefficients equal to zero in degree 1, together with an element µ ∈ k∗, is an
associator if it satisfies the following equations

Φ(X0,X1)Φ(X1,X0) = 1,(I)

e
µ
2
X0Φ(X∞,X0)e

µ
2
X∞Φ(X1,X∞)e

µ
2
X1Φ(X0,X1) = 1,(II)

with X0 +X1 +X∞ = 0, and

Φ(X12,X23)Φ(X34,X45)Φ(X51,X12)Φ(X23,X34)Φ(X45,X51) = 1,(III)

where (III) takes place in UB5.
We will write an associator as

Φ(X0,X1) =
∑

W∈W0,1

ZWW = 1 +
∑

W∈W0,1

W 6=∅

ZWW.

We have Z∅ = 1 because Φ is group-like.

In [Dri91], Drinfel’d gives an explicit associator ΦKZ over C, known as the
Drinfel’d associator and associated to a Knizhnik-Zamolodchikov equation
(KZ equation). More precisely, consider the KZ equation (one can also see
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[Fur03][§3]).

∂g

∂u
=

(
X0

u
+

X1

u− 1

)

· g(u)(KZ)

where g is an analytic function in one complex variable u with values in
C〈〈X0,X1〉〉 (analytic means that each coefficient is an analytic function).
This equation has singularities only at 0, 1 and ∞. The equation (KZ) has
a unique solution on C = C \ (]−∞, 0] ∪ [1,∞[) having a specified value at
a given point in C, because C is simply connected. Moreover, at 0 (resp.
1), there exists a unique solution g0(u) (resp. g1(u)) such that

g0(u) ∼ uX0 (u → 0)
(
resp. g1(u) ∼ (1− u)X1 (u → 1)

)
.

As g0 and g1 are invertible with specified asymptotic behavior, they must co-
incide up to multiplication on the right by an invertible element in
C〈〈X0,X1〉〉.

Definition 1.5. TheDrinfel’d associator 1 ΦKZ is the element in C〈〈X0,X1〉〉
defined by

g0(u) = g1(u)ΦKZ(X0,X1).

In [Dri91], Drinfel’d proved the following result.

Proposition 1.6. The element ΦKZ is a group-like element and it satisfies
(I), (II) with µ = 2iπ, and (III) of definition 1.4. That is,

ΦKZ(X0,X1)ΦKZ(X1,X0) = 1(IKZ)

(IIKZ) eiπX0ΦKZ(X∞,X0)e
iπX∞ΦKZ(X1,X∞)eiπX1ΦKZ(X0,X1) = 1

with X0 +X1 +X∞ = 0

(IIIKZ) ΦKZ(X12,X23)ΦKZ(X34,X45)ΦKZ(X51,X12)ΦKZ(X23,X34)

ΦKZ(X45,X51) = 1 in UB5.

1.2. Multiple zeta values. For a p-tuple k = (k1, . . . , kp) of strictly posi-
tive integers with k1 > 2, the multiple zeta value ζ(k) is defined as

ζ(k) =
∑

n1>...>np>0

1

nk1
1 · · ·n

kp
p

.

Definition 1.7. The depth of a p-tuple of integers k = (k1, . . . , kp) is
dp(k) = p, and its weight wt(k) is wt(k) = k1 + · · · + kp.

1In [Dri91], Drinfel’d actually defined φKZ rather than ΦKZ , where φKZ(X0, X1) =

ΦKZ (
1

2iπ
X0,

1
2iπ

X1) and is defined via the KZ equation ∂g

∂u
= 1

2iπ

“

X0

u
+ X1

u−1

”

· g(u).
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To the tuple of integers k, with n = wt(k), we associate the n-tuple k of
0 and 1 by:

k = ( 0, . . . , 0
︸ ︷︷ ︸

k1−1 times

, 1, . . . , 0, . . . , 0
︸ ︷︷ ︸

kp−1 times

, 1) = (εn, . . . , ε1)

and the word in {X0,X1}
∗

Xεn · · ·Xε1 .

This makes it possible to associate a multiple zeta value ζ(W ) to each word
W in X0{X0,X1}

∗X1 (where W begins with X0 and ends with X1).
Following Kontsevich and Drinfel’d, one can write the multiple zeta values

as a Chen iterated integral [Che73]

ζ(k) =

∫ 1

0
(−1)p

du

u− εn
◦ · · · ◦

du

u− ε1
.

Note that, as k1 > 2, we have εn = 0. This expression as an iterated integral
leads directly to an expression of the multiple zeta values as an integral over
a simplex

ζ(k) =

∫

∆n

(−1)p
dt1

t1 − ε1
∧ · · · ∧

dtn
tn − εn

where ∆n = {0 < t1 < . . . < tn < 1}.
Thanks to the work of Boutet-de-Monvelle, Ecalle, Gonzales-Lorca and

Zagier, with the further developments by Ihara, Kaneko or Furusho, we can
extend the definition of multiple zeta values to tuples without the condition
k1 > 2 (see [GL98], [Rac02], [IKZ06] or [Fur03]). These extended multiple
zeta values are called regularized multiple zeta values, and we speak of
regularizations. We will be interested in a specific regularization, the shuffle
regularization.

Definition 1.8 (Shuffle product). A shuffle of {1, 2, . . . , n} and {1, . . . ,m}
is a permutation σ of {1, 2, . . . , n+m} such that:

σ(1) < σ(2) < · · · < σ(n) and σ(n+1) < σ(n+2) < · · · < σ(n+m).

The set of all the shuffles of {1, 2, . . . , n} and {1, . . . ,m} is denoted by
sh(n,m)

Let V = Xi1 · · ·Xin and W = Xin+1 · · ·Xin+m be two words in W0,1. The
shuffle of V and W is the collection of words

sh(V,W ) = (Xi
σ−1(1)

Xi
σ−1(2)

· · ·Xi
σ−1(n+m)

)σ∈sh(n,m).

Working in C〈〈X0,X1〉〉, we will also consider the sum

V xW =
∑

U∈sh(V,W )

U =
∑

σ∈sh(n,m)

Xiσ−1(1)
Xiσ−1(2)

· · ·Xiσ−1(n+m)
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and extend the shuffle product x by linearity.

Definition 1.9. The shuffle regularization of the multiple zeta values is the
collection of real numbers

(
ζx(W )

)

W∈W0,1
such that:

(1) ζx(X0) = ζx(X1) = 0,
(2) ζx(W ) = ζ(W ) for all W ∈ X0W0,1X1,

(3) ζx(V )ζx(W ) =
∑

U∈sh(V,W )

ζx(U) for all V,W ∈ W0,1

These regularized multiple zeta values ζx(W ), for W not in X0W0,1X1,
are in fact linear combinations of the usual multiple zeta values, which were
given explicitly by Furusho in [Fur03]. Seeing ζx as a linear map from
C〈〈X0,X1〉〉 to R, one can then rewrite the third condition as

ζx(V xW ) = ζx(V )ζx(W ).

The coefficients of the Drinfel’d associator can be written in an explicit
way using convergent multiple zeta values [Fur03].

Proposition 1.10. Using the shuffle regularization we can write ([LM96],
[GL98], [Fur03])

ΦKZ(X0,X1) =
∑

W∈W0,1

(−1)dp(W )ζx(W )W.

1.3. Main results. In Theorem 2.4 and Theorem 2.11 we will give explicit
relations between the coefficients of the series defining an associator Φ equiv-
alent to the relation (I) and (II) satisfied by Φ. Both were well-known, as
it is easy to expand the product of the associators in UF2, even if the au-
thor does not know whether the relations of Theorem 2.11 have actually
appeared explicitly in the literature. In the case of the pentagon relation
(III), writing down relations between the coefficients implies fixing a basis
B of UB5. Even if fixing such a basis breaks the natural symmetry of the
pentagon relation (III), it makes it possible to give an explicit family of re-
lations between the coefficients of Φ equivalent to (IIIKZ). More precisely,
decomposing a word W in the subset of letters X34,X45,X24,X12,X23 in
the basis B we have

W =
∑

b∈B

lb,W b,

and we obtain the following theorem.

Theorem (Theorem 2.15). The relation (III) is equivalent to the family of
relations

∀b ∈ B (b 6= 1)
∑

W∈{X34,X45,X24,X12,X23}∗

lb,WC5,W = 0,
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where C5,W are explicitly given by:

C5,W =
∑

U1,...,U5∈W
U1···U5=W

Zρ1(U1)Zρ2(U2)Zρ3(U3)Zρ4(U4)Zρ5(U5).

In the above formula, W denotes {X34,X45,X24,X12,X23}
∗ and the ρi are

maps from UB5 to UF2 defined on the letters X12, X23, X34, X45, X24 in
Definition 2.13 (as example: ρ1(X12) = X0, ρ1(X23) = X1 and ρ1(X34) =
ρ1(X45) = ρ1(X24) = 0) with the convention that Z0 = 0.

Applying this theorem to the particular basis B4 coming from the identi-
fication

UB5 ≃ k〈〈X34,X45,X24〉〉⋊ k〈〈X12,X23〉〉,

one can compute the coefficients lb,W using the equation defining UB5 (here
⋊ denotes the complete semi-direct product). In particular it is easy to see
that lb,W is in Z in that case. As shown by Ihara in the Lie algebra setting
([Iha90]), the above identification is induced by the morphism f4 : UB5 −→
UF2 that sends Xi4 to 0, X12 to X0 and X23 to X1 and by a particular
choice of generators of the kernel (that is X24, X34 and X45).

After explaining each family of relations between the coefficients, we apply
our results to the particular case of the Drinfel’d associator and give the
corresponding family between multiple zeta values in equations (3), (9) and
(14).

In Section 3 of the article, we explain how these families of relations
between multiple zeta values are induced by iterated integrals on M0,4 and
M0,5 using the bar construction studied by Brown in [Bro09]. The geometry
of M0,5 allows us in Proposition 3.18 to interpret the coefficients C5,W using
iterated integrals.

Proposition (Proposition 3.18). For any bar symbol ωW dual to a word W
in the letters X34, X45, X24, X12, X23, we have

C5,W =

∫

γ

Reg(ωW , γ)

where Reg(ω,D) is the regularization of a bar symbol in ⊕H1(M0,5)
⊗n along

boundary components D ⊂ ∂M0,5 and where γ is a path around the standard
cell of M0,5(R).

This is a consequence of Theorem 3.16 which links the family of relations
(14) to the bar construction.

Theorem (Theorem 3.16). The relation (IIIKZ) is equivalent to the family
of relations

∀b4 ∈ B4

∫

γ

Reg(b∗4, γ) = 0
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which is exactly the family of relations (14). Here (b∗4)b4∈B4 denotes the
basis in V (M0,5), the bar construction on M0,5, dual to the basis B4 of
UB5 described earlier.

More generally, we then have that for any basis F = (f)f∈F on V (M0,5),
the pentagon relation (IIIKZ) is equivalent to

∀f ∈ F

∫

γ

Reg(f, γ) = 0.

Using different methods, and for another purpose, Brown, Gangl and
Levin in [BGL10] obtain the same basis B∗4 of V (M0,5). In their work, the
basis B∗4 is described using combinatorial objects. More precisely, they use
maximal triangulations of rooted decorated polygons.

Instead of looking at all the elements of a basis F of V (M0,5), it is enough
to consider only a subset of F that generates V (M0,5) as a shuffle algebra.
Indeed, if ω in V (M0,5) is equal to f1 x f2, the iterated integral

∫

γ
ω is

equal to
∫

γ
f1
∫

γ
f2. Thus it does not give a new relation between multiple

zeta values. Considering a set of generators of the shuffle algebra leads to
computing many less relations. In degrees 2 and 3 we have respectively 4
and 10 generators instead of 19 and 65 elements in the vector space basis.
In the appendix, we will give these relations in degrees 2 and 3 using the
basis B4.

The multiplicative generators that we have found do not have a partic-
ularly simple expression in terms of symbols ωW dual to words W in the
letters X34, X45, X24, X12, X23. But it seems to be linked with our partic-
ular choice of identification. Indeed, using X14, X24 and X34 as generators
of the kernel of f4 : UB5 −→ UF2 leads to an other identification:

UB5 ≃ k〈〈X34,X14,X24〉〉⋊ k〈〈X12,X23〉〉

and to another basis B̃4 of UB5. Then, multiplicative generators can be
found with a particularly simple expression in terms of symbols ωW dual to
words W in the letters X34, X14, X24, X12, X23. More precisely, writing
such a word W as

W =
∑

b̃4∈B̃4

lb̃4,W b̃4,

we can write b̃∗4 =
∑

W l
b̃4,W

ωW . The multiplicative generators in low degree

are elements b̃∗4 such that the number of l
b̃4,W

is as minimal as possible. This

seems to be a general fact.
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2. Combinatorial description of associator relations

The goal of this section is, for any associator and for the particular case of
ΦKZ , to give an explicit expression for the relations between the coefficients
derived from the associator relations (I), (II) and (III). For each of these
relations, we will first study the case of a general associator and then deduce,
for the Drinfel’d associator, relations between the regularized multiple zeta
values. Let

Φ =
∑

W∈W0,1

ZWW

be an associator. The idea will be to expand the product in the right hand
side of the equations (I), (II) and (III) in a suitable basis of the space UF2

or UB5. Both UF2 and UB5 can be seen as a completion of polynomial
algebras. Precisely, UF2 is the completion of k〈X0,X1〉, the polynomial
algebra over k in two non-commutative variables, with respect to the ideal
generated by X0 and X1. The algebra UB5 is the completion with respect
to the ideal generated by the Xij of the polynomial algebra k〈Xij〉/R with
1 6 i, j 6 5 and where R denotes the following relations:

• Xii = 0 for 1 6 i 6 5,
• Xij = Xji for 1 6 i, j 6 5,

•
5∑

j=1
Xij = 0 for 1 6 i 6 5,

• [Xij ,Xkl] = 0 if {i, j} ∩ {k, l} = ∅.

Definition 2.1. A basis B = (b)b∈B of UF2 (resp. UB5) will denote a basis
of the underlying vector space of the polynomial algebra k〈X0,X1〉 (resp.
k〈Xij〉/R) such that

• Any element Ψ in UF2 (resp. UB5) can be uniquely written as a
series

Ψ =
∑

b∈B

abb.

• The elements b in B are homogeneous.

Speaking of a basis of UF2 or UB5, we will always mean a basis as in the
above definition.

Remark 2.2. Let B be a basis (as above) of UF2 (resp. UB5). Assumptions
in Definition 2.1 ensure that 1 is in B and

• Any W in W0,1 (resp. a word in the letters Xij) can be uniquely
written as

W =
∑

b∈B

lb,W b in UF2 (resp. in UB5).
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• Given such a decomposition for W , only finitely many lb,W are non
zero when b runs through B.

• Fixing b, only finitely many lb,W are non zero when W runs through
W0,1 (resp. runs through the words in the letters Xij).

2.1. The symmetry, (I) and (IKZ). Let P2 be the product

P2 = Φ(X0,X1)Φ(X1,X0).

As the monomials in UF2, i.e. the words in W0,1, form a basis of UF2, we
can write P2 as

P2 =
∑

W∈W0,1

C2,WW = 1 +
∑

W∈W0,1,W 6=∅

C2,WW.

The relation (I) tells us that for each W ∈ W0,1, W being nonempty, we
have

(1) C2,W = 0.

Example 2.3. In low degree we have the following relations:

• In degree one, there are just 2 words: X0 and X1 and (1) gives:

C2,X0 = ZX0 + ZX1 = 0

C2,X1 = ZX1 + ZX0 = 0

• In degree two there are 4 words X0X0, X0X1, X1X0 and X1X1 and
(1) gives:

C2,X0X0 = ZX0X0 + ZX0ZX1 + ZX1X1 = 0

C2,X0X1 = ZX0X1 + ZX0ZX0 + ZX1X0 = 0

C2,X1X0 = ZX1X0 + ZX1ZX1 + ZX0X1 = 0

C2,X0X0 = ZX1X1 + ZX1ZX0 + ZX0X0 = 0

• In degree three there are 8 words. Looking at the coefficients of the
words X0X0X1 in P2, equation (1) gives:

ZX0X0X1 + ZX0X0ZX0 + ZX0ZX1X0 + ZX1X1X0 = 0

Let θ be the automorphism of UF2 that sends X0 to X1 and X1 to X0.
Then we have:

Theorem 2.4. The relation (I) is equivalent to the family of relations

(2) ∀W ∈ W0,1 \ {∅},
∑

U1,U2∈W0,1

U1U2=W

ZU1Zθ(U2) = 0.
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Proof. As Φ(X1,X0) = θ(Φ(X0,X1)), we have

Φ(X1,X0) = θ






1 +

∑

W∈W0,1

W 6=∅

ZWW







= 1 +
∑

W∈W0,1

W 6=∅

ZW θ(W )

= 1 +
∑

W∈W0,1

W 6=∅

Zθ(W )W.

Then, expanding the product P2 and reorganizing, we have

Φ(X0,X1)Φ(X1,X0) =






1 +

∑

U1∈W0,1

U1 6=∅

ZU1U1












1 +

∑

U2∈W0,1

U2 6=∅

Zθ(U2)U2







= 1 +
∑

W∈W0,1

W 6=∅







∑

U1,U2∈W0,1

U1U2=W

ZU1Zθ(U2)







W.

�

Corollary 2.5. The relation (IKZ) is equivalent to the family of relations

(3) ∀W ∈ W0,1, W 6= ∅,
∑

U1,U2∈W0,1

U1U2=W

(−1)dp(U1)ζx(U1)(−1)dp(θ(U2))ζx(θ(U2)) = 0,

that family being equivalent to the following

(4) ∀W ∈ W0,1, W 6= ∅,
∑

U1,U2∈W0,1

U1U2=W

(−1)|U2|ζx(U1)ζ
x(θ(U2)) = 0.

Remark 2.6. If W = Xε1 · · ·Xεn is a word in W0,1, we define
←
W to be the

word W = Xεn · · ·Xε1 . One can then check that the family of relations (3)
(and thus (IKZ)) is implied by the following:

(1) Shuffle relations:

for all V and W in W0,1, ζx(V xW ) = ζx(V )ζx (W ).

(2) Duality relations [Ohn99, Zag94]:

for all W in W0,1, ζx(W ) = ζx(
←

θ(W )).
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The author does not know whether one can deduce the duality relations
from the double shuffle relations.

The duality relations may be derived from (IKZ), that is

ΦKZ(X0,X1)ΦKZ(X1,X0) = 1,

and correspond geometrically to a change of variables ti = 1 − ui in the
iterated integral representation of the multiple zeta values. In order to
recover duality relations directly from (I) and the group-like property, the
argument goes as follows. We want to show that a non-commutative power
series in UF2

Φ(X0,X1) = 1 +
∑

W∈W0,1\{∅}

CWW

which is a group-like element and satisfies the 2-cycle equation

Φ(X0,X1)Φ(X1,X0) = 1

has coefficients that satisfy the duality relations

(5) ∀W ∈ W0,1, W 6= ∅, C ←

θ(W )
= (−1)wt(W )CW .

Applying this result to the Drinfel’d associator, that is for

CW = (−1)dp(W )ζx(W ),

one derives from (IKZ) the duality relations for the multiple zeta values, that
is

∀W ∈ W0,1 \ {∅}, ζx(W ) = ζx(
←

θ(W )).

To obtain the set of relations (5), one should first remark that

Φ(X0,X1)
−1 = 1 +

∑

W∈W0,1\{∅}

(−1)wt(W )CW

←
W

= 1 +
∑

W∈W0,1\{∅}

(−1)wt(
←
W )C←

W
W.

As the group elements are Zariski dense in the group-like elements, one has
the above equality because the inverse of a group element g =
eε1Xi1 · · · eεnXin , with Xik in {X0,X1} and εi in {±1}, is given by g−1 =

e−εnXin · · · e−ε1Xi1 . Then, as

Φ(X1,X0) = 1 +
∑

W∈W0,1\{∅}

CW θ(W ) = 1 +
∑

W∈W0,1\{∅}

Cθ(W )W,

using the 2-cycle equation (I) written as Φ(X1,X0) = Φ(X0,X1)
−1, one

obtains

∀W ∈ W0,1, W 6= ∅, Cθ(W ) = (−1)wt(
←
W )C←

W
.



EXPLICIT ASSOCIATOR RELATIONS FOR MULTIPLE ZETA VALUES 13

The above set of relations is equivalent to the duality relations (5).

2.2. The 3-cycle or the hexagon relation, (II) and (IIKZ). For any
element P =

∑

W∈W0,1
aWW in UF2, let C0,1(P |W ) be the coefficient aW

of the monomial W .
Let P3 be the product

P3 = e
µ
2
X0Φ(X∞,X0)e

µ
2
X∞Φ(X1,X∞)e

µ
2
X1Φ(X0,X1).

We can write P3 as

P3 =
∑

W∈W0,1

C0,1(P3|W )W =
∑

W∈W0,1

C3,WW.

The relation (II) tells us that for each W ∈ W0,1, W 6= ∅, we have

(6) C3,W = 0.

In order to make these coefficients explicit, we will need some definitions.

Definition 2.7. Let α0 (resp. α1 and α∞) be the endomorphism of UF2

defined on X0 and X1 by:

α0(X0) = X0 and α0(X1) = 0,

respectively

α1(X0) = 0 and α1(X1) = X1

and

α∞ = −(α0 + α1).

Let α̃i be the composition of αi with X0,X1 7→ 1.

The following proposition is a consequence of the expression of the expo-
nential

∀P ∈ UF2 exp(P ) =
∑

n>0

Pn

n!

and of the equality

(7) (−X0 −X1)
n =

∑

W∈W0,1

|W |=n

(−1)|W |W.
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Proposition 2.8. Let W be a word in W0,1. Then

C0,1(e
µ
2
X0 |W ) =

µ|W |

2|W ||W |!
α̃0(W ),

C0,1(e
µ
2
X1 |W ) =

µ|W |

2|W ||W |!
α̃1(W ) and

C0,1(e
µ
2
X∞ |W ) = (−1)|W |

µ|W |

2|W ||W |!
.

In order to describe the coefficient of Φ(Xi,Xj) with either one of the
variables being X∞, we introduce a set of different decompositions of W
into sub-words.

Definition 2.9. Let W be a word in W0,1. For i ∈ {0, 1}, let dec0,1(W,Xi)

be the set of tuples (V1,X
k1
i , V2,X

k2
i , . . . , Vp,X

kp
i ) with

(1) 1 6 p < ∞,
(2) Vj ∈ W0,1 and V2, . . . , Vp 6= ∅,
(3) k1, . . . , kp−1 > 0 and kp > 0

such that

W = V1X
k1
i V2X

k2
i · · ·VpX

kp
i .

We will write (V,k) ∈ dec0,1(W,Xi) instead of

(V1,X
k1
i , V2,X

k2
i , . . . , Vp,X

kp
i ) ∈ dec0,1(W,Xi)

and |V| (resp. |k|) will denote |V1|+ · · ·+ |Vp| (resp. k1 + · · ·+ kp).

The following proposition describes the coefficient of W in the series
Φ(X0,X1), Φ(X∞,X0) and Φ(X1,X∞).

Proposition 2.10. Let W be a word in W0,1. We have

C0,1(Φ(X0,X1)|W ) = ZW .

The coefficients C0,1(Φ(X∞,X0)|W ) and C0,1(Φ(X1,X∞)|W ) can be written
as

C0,1(Φ(X∞,X0)|W ) =
∑

(V,k)∈dec0,1(W,X0)

(−1)|V|Z
X
|V1|
0 X

k1
1 X

|V2|
0 X

k2
1 ···X

|Vp|
0 X

kp
1

and

C0,1(Φ(X1,X∞)|W ) =
∑

(V,k)∈dec0,1(W,X1)

(−1)|V|Z
X
|V1|
1 X

k1
0 X

|V2|
1 X

k2
0 ···X

|Vp|
1 X

kp
0

.
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Proof. The first statement is immediate. Let L2,c(N) denote the set of double
p-tuples ( 0 6 p < ∞) of integers ((l1, . . . , lp), (k1, . . . kp)) with ki, li ∈ N,
such that, when p > 2 one has ki > 0 for i = 1, . . . , p− 1, and lj > 0
for j = 2, . . . , p. Let (l,k) denote an element of L2,c(N). We can write
Φ(X∞,X0) as

Φ(X∞,X0) =
∑

(l,k)∈L2,c(N)

Z
X

l1
0 X

k1
1 ···X

lp
0 X

kp
1

X l1
∞Xk1

0 · · ·X
lp
∞X

kp
0

which equals

∑

(l,k)∈L2,c(N)

Z
X

l1
0 X

k1
1 ···X

lp
0 X

kp
1

(−1)|l|(X0 +X1)
l1Xk1

0 · · · (X0 +X1)
lpX

kp
0 .

Reorganizing, we see that the expression of C0,1(Φ(X∞,X0)|W ) follows from
(7); the case of C0,1(Φ(X1,X∞)|W ) is identical. �

Theorem 2.11. The relation (II) is equivalent to the family of relations

(8) ∀W ∈ W0,1 \ {∅},

∑

W1,...,W6∈W0,1

W1···W6=W

µ|W1|

2|W1||W1|!
α̃0(W1)×








∑

(U,k)∈
dec0,1(W2,X0)

(−1)|U|Z
X
|U1|
0 X

k1
1 ···X

|Up|
0 X

kp
1








(−1)|W3| µ|W3|

2|W3||W3|!
×








∑

(V,l)∈
dec0,1(W4,X1)

(−1)|V|Z
X
|V1|
1 X

l1
0 ···X

|Vp|
1 X

lp
0








µ|W5|

2|W5||W5|!
α̃1(W5)ZW6 = 0.

Proof. The relation (II) is equivalent to the family of relations

∀W ∈ W0,1 \ {∅} C0,1(P3,W ) = 0.
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As P3 is a product of six factors, this is equivalent to

∀W ∈ W0,1 \ {∅}
∑

W1,...,W6∈W0,1

W1···W6=W

C0,1(e
µ
2
X0 ,W1)C0,1(Φ(X∞,X0),W2)·

C0,1(e
µ
2
X∞ ,W3)C0,1(Φ(X1,X∞),W4)·

C0,1(e
µ
2
X1 ,W5)C0,1(Φ(X0,X1),W6) = 0.

The proposition then follows from Proposition 2.8 and 2.10. �

Corollary 2.12. The relation (IIKZ) is equivalent to the family of relations

(9) ∀W ∈ W0,1 \ {∅},

∑

W1,...,W6∈W0,1

W1···W6=W

(iπ)|W1|

|W1|!
α̃0(W1)×








∑

(U,k)
∈dec0,1(W2,X0)

(−1)|W2|ζx(X
|U1|
0 Xk1

1 · · ·X
|Up|
0 X

kp
1 )








(−1)|W3| (iπ)
|W3|

|W3|!
×








∑

(V,l)
∈dec0,1(W4,X1)

ζx(X
|V1|
1 X l1

0 · · ·X
|Vp|
1 X

lp
0 )








(iπ)|W5|

|W5|!
α̃1(W5)×

(−1)dp(W6)ζx(W6) = 0.

2.3. The 5-cycle or the pentagon relation, (III) and (IIIKZ). In order
to find families of relations between the coefficients equivalent to (I) and
(II), we decomposed the product P2 and P3 in the basis of UF2 given by
the words in X0 and X1. We will do the same thing here; however, the
monomials in the variables Xij do not form a basis of UB5, because there
are relations between the Xij . Using the defining relations of UB5, we see
that X51 = −X12 −X13 −X14, and that

X51 = −X54 −X53 −X52

= 2X23 + 2X24 + 2X34 +X12 +X13 +X14.

Then, as the characteristic of k is zero, we have X51 = X23 + X24 + X34.
In this section, we will expand the product in the R.H.S of III using this
relation and then decompose this product in a basis of UB5. Let B denote
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a basis of UB5 (in the sense of Definition 2.1), and let B4 denote the basis
of UB5 coming from the identification

UB5 ≃ k〈〈X24,X34,X45〉〉⋊ k〈〈X12,X23〉〉.

This identification is induced by the morphism f4 : UB5 −→ UF2 that
maps Xi4 to 0 (1 6 i 6 5), X12 to X0, X23 to X1; the images of the other
generators are easily deduced from these, by the choice of X24, X34 and X45

as generators of the kernel of f4 (see [Iha90]). Using the relation defining
UB5, one sees that

[Xij ,Xjk] = −[Xik,Xjk] i 6= j, k and j 6= k

which gives for example

[X12,X24] = −[X14,X24] = [X34,X24] + [X45,X24].

The basis B4 is formed by 1 and the monomials, that is words of the form
U245V123 where U245 is a word in 24W34,45 = {X24,X34,X45}

∗ and V123 is in
W12,23 = {X12,X23}

∗. Speaking of the empty word ∅ in B4, we will mean 1
when seen in UB5 and ∅ when seen as the word.

Let W be the dictionary {X24,X34,X45,X12,X23}
∗, and let 24W

23
34 and

24W
12,23
34 be respectively the sub-dictionary

24W
23
34 = {X23,X24,X34}

∗ and 24W
12,23
34 = {X12,X23,X24,X34}

∗.

Let P5 be the product in UB5.

Φ(X12,X23)Φ(X34,X45)Φ(X51,X12)Φ(X23,X34)Φ(X45,X51).

As X51 = X23 +X24 +X34, we can write P5 without using X51

P5 = Φ(X12,X23)Φ(X34,X45)Φ(X23 +X24 +X34,X12)Φ(X23,X34)

Φ(X45,X23 +X24 +X34).

Expanding the terms (X23 +X24 +X34)
n as

∑

W∈24W23
34

|W |=n

W,

we have

(10) P5 =
∑

W∈W

C5,WW.

Despite the fact that this expression is not unique as a decomposition of P5

in W, these C5,W are the coefficients of a word W just after expanding the
product P5 without X51 (that is replacing X51 by X23 +X24 +X34), and as
such, they are unique and well defined.
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Definition 2.13. Let ρ1, ρ2, ρ3, ρ4, ρ5 be the morphisms from UB5 to UF2

defined respectively on the monomial X12, X23, X34, X45, X24 by:

ρ1(X12) = X0, ρ1(X23) = X1, ρ1(X34) = 0, ρ1(X45) = 0, ρ1(X24) = 0,
ρ2(X12) = 0, ρ2(X23) = 0, ρ2(X34) = X0, ρ2(X45) = X1, ρ2(X24) = 0,
ρ3(X12) = X1, ρ3(X23) = X0, ρ3(X34) = X0, ρ3(X45) = 0, ρ3(X24) = X0,
ρ4(X12) = 0, ρ4(X23) = X0, ρ4(X34) = X1, ρ4(X45) = 0, ρ4(X24) = 0,
ρ5(X12) = 0, ρ5(X23) = X1, ρ5(X34) = X1, ρ5(X45) = X0, ρ5(X24) = X1.

By convention, we will have ρi(1) = ρi(∅) = 1.

Proposition 2.14. For all words W ∈ W (W 6= ∅), the coefficient C5,W is
given by

(11) C5,W =
∑

U1,...,U5∈W
U1···U5=W

Zρ1(U1)Zρ2(U2)Zρ3(U3)Zρ4(U4)Zρ5(U5),

where by convention Z0 = 0 and Z1 = Z∅ = 1.

Proof. It is enough to show that the i-th factor of P5 without using X51 can
be written as ∑

Ui∈W

Zρi(Ui)Ui.

As the first, second and fourth factors are similar, we will discuss only the
first one. It is clear in the case of Φ(X12,X23) that either U1 is in W12,23

and its coefficient is then Zρ1(U1), or U1 is not in W12,23 and it does not
appear in Φ(X12,X23) which means that its coefficient is 0.

The third and fifth factors are similar and thus we will treat only the
former. We can write Φ(X23 +X24 +X34,X12) as

∑

(l,k)∈L2,c(N)

Z
X

l1
0

X
k1
1

···X
lp
0

X
kp
1

(X23 +X24 +X34)
l1Xk1

12 · · · (X23 +X24 +X34)
lpX

kp

12 .

We can rewrite the previous sum as running over all the words in the letters
X12, X23, X24 and X34 because (X23 +X24 +X34)

l is equal to
∑

W∈24W23
34

|W |=l

W.

Using the unique decomposition (as word) of U3 ∈ 24W
12,23
34 as

U3 = V1X
k1
12 · · · VpX

kp
12 with Vi ∈ 24W

23
34 ,

we see that each word U3 in 24W
12,23
34 appears one and only one time in

Φ(X23 +X24 +X34,X12) with the coefficient Z
X
|V1|
0 X

k1
1 ···X

|Vp|
0 X1

. We finally

have
Φ(X23 +X24 +X34,X12) =

∑

U3∈W

Zρ3(U3)U3. �
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We fix a basis B of UB5 (in the sense of Definition 2.1). Remark 2.2
ensures that for every W in W, there exists a unique decomposition of W
(in UB5) in terms of linear combinations of elements of B

W =
∑

b∈B

lb,W b lb,W ∈ k.

Then, using the basis B, we can find a family of relations equivalent to (III).

Theorem 2.15. The relation (III) is equivalent to the family of relations

∀b ∈ B (b 6= 1)
∑

W∈W

lb,WC5,W = 0(12)

where C5,W are given by Proposition 2.14.

Proof. As observed in Remark 2.2, for a given W in W there are only finitely
many lb,W that are non zero. Moreover, for any b in B there are only finitely
many lb,W that are non zero.

The product P5 is then equal to

P5 =
∑

W∈W

C5,WW

=
∑

W∈W

C5,W

(
∑

b∈B

lb,W b

)

=
∑

b∈B

(
∑

W∈W

lb,WC5,W

)

b.

The relation (III) tells us that

P5 = 1

which, because 1 is in B, means that C5,∅ = 1 and

∀b ∈ B (b 6= 1)
∑

W∈W

lb,WC5,W = 0.

�

Using the more common basis B4 we have:

Corollary 2.16. The relation (III) is equivalent to the family of relations

∀b4 ∈ B4 (b4 6= 1)
∑

W∈W

lb4,WC5,W = 0(13)

where the C5,W are given by Proposition 2.14.

Remark 2.17. In the case of the basis B4 one can check that the coefficients
lb4,W are in Z.
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The previous corollary, applied to the particular case of the Drinfel’d
associator and making explicit the C5,W in terms of multiple zeta values,
gives:

Theorem 2.18. With the convention that ζx(0) = 0, the relation (IIIKZ)
is equivalent to the family of relations

(14) ∀b4 ∈ B4 (b4 6= 1)

∑

W

lb4,W




∑

U1···U5=W

(−1)dp1(U1)+dp2(U2)+dp3(U3)+dp4(U4)+dp5(U5)

ζx(ρ1(U1))ζ
x (ρ2(U2))ζ

x (ρ3(U3)ζ
x(ρ4(U4))ζ

x(ρ5(U5))



 = 0

where dpi(U) is the depth of ρi(U) and the words W , Ui are in W.

3. Bar Construction and associator relations

In this section, we suppose that k is C. We review the notion of bar
construction and its links with multiple zeta values. Those results have been
shown in greater generality in [Che73] and [Bro09]. We will recall Brown’s
variant of Chen’s reduced bar construction in the case of the moduli spaces
of curves of genus 0 with 4 and 5 marked points, M0,4 and M0,5.

3.1. Bar Construction. The moduli space of curves of genus 0 with 4
marked points, M0,4, is

M0,4 = {(z1, . . . , z4) ∈ (P1)4 | zi 6= zj if i 6= j}/PGL2(k)

and is identified as

M0,4 ≃ {t ∈ (P1) | t 6= 0, 1,∞}

by sending the point [(0, t, 1,∞)] ∈ M0,4 to t.
The moduli space of curves of genus 0 with 5 marked points, M0,5, is

M0,5 = {(z1, . . . , z5) ∈ (P1)5 | zi 6= zj if i 6= j}/PGL2(k)

and is identified as

M0,5 ≃ {(x, y) ∈ (P1)2 |x, y 6= 0, 1,∞ and x 6= y}

by sending the point [(0, xy, y, 1,∞)] ∈ M0,5 to (x, y). This identification
can be interpreted as the composition of

M0,5 // M0,4 ×M0,4

[(z1, . . . , z5)]
�

// [(z1, z2, z3, z5)]× [(z1, z3, z4, z5)]
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with the previous identification of M0,4 using the fact that

[(0, xy, y,∞)] = [(0, x, 1,∞)].

For M = M0,4 or M = M0,5, Brown has defined in [Bro09] a graded
Hopf k-algebra

(15) V (M) = ⊕∞m=0Vm(M) ⊂ ⊕∞m=0 H
1
DR(M)⊗m.

Here V0(M) = k, V1(M) = H1
DR(M) and Vm(M) is the intersection of the

kernel ∧i for 1 6 i 6 m− 1:

∧i : H
1
DR(M)⊗m // H1

DR(M)⊗m−i−1 ⊗H2
DR(M)⊗H1

DR(M)⊗i−1

νm ⊗ · · · ⊗ ν1
�

// νm ⊗ · · · ⊗ (νi+1 ∧ νi)⊗ · · · ⊗ ν1.

Suppose that ω1, . . . , ωk form a basis of H1
DR(M); then the elements of

Vm(M) can be written as linear combinations of symbols
∑

I=(i1,...,im)

cI [ωim| . . . |ωi1 ],

with cI ∈ k, which satisfy the integrability condition

(16)
∑

I=(i1,...,im)

cIωim ⊗ · · · ⊗ ωij+2 ⊗ (ωij+1 ∧ ωij)⊗ ωij−1 ⊗ · · · ⊗ ωi1 = 0

for all 1 6 j 6 m− 1.

Definition 3.1. Brown’s bar construction over M is the tensor product

B(M) = OM ⊗ V (M).

Theorem 3.2 ([Bro09]). The bar construction B(M) is a commutative
graded Hopf algebra isomorphic to the 0Th cohomology group of Chen’s re-
duced bar complex on OM:

B(M) ≃ H0(B(Ω•OM)).

Let νm, . . . , ν1 bem holomorphic 1-forms in Ω1(M). The iterated integral
of the word νm · · · ν1, denoted by

∫

νm ◦ · · · ◦ ν1,

is the application that sends any path γ : [0, 1] → M to
∫

γ

νm ◦ · · · ◦ ν1 =

∫

0<t1<...<tm

γ∗ν1(t1) ∧ · · · ∧ γ∗νm(tm).

This value is called the iterated integral of νm · · · ν1 along γ. We extend these
definitions by linearity to linear combinations of forms

∑

I cIνim . . . νi1 .
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When, for any γ, the iterated integral
∫

γ

∑

I

cIνm ◦ · · · ◦ ν1

depends only on the homotopy class of γ, we say it is an homotopy invariant
iterated integral and denote it by

∫ ∑
cIνm ◦ · · · ◦ ν1. Let L(M) denote the

set of all homotopy invariant iterated integrals.

Proposition 3.3 ([Bro09]). The morphism ρ defined by

ρ : B(M) // L(M)

∑

I

cI [ωim | · · · |ωi1 ] �
//

∫
∑

I

cIωim ◦ · · · ◦ ωi1

is an isomorphism.

Remark 3.4. In particular for any such γ homotopically equivalent to zero,
we have for all

∑

I cI [ωim | · · · |ωi1 ] in V (M):

∑

I

cI

∫

γ

ωim ◦ · · · ◦ ωi1 = 0

3.2. Bar Construction on M0,4, symmetry and hexagon relations.

Here, we will show how the symmetry relations (IKZ) and the hexagon (IIKZ)
relations are related to the bar construction on M0,4.

First of all we should remark that B(M0,4) is extremely simple.

Proposition 3.5. Let ω0 and ω1 denote respectively the differential 1-form,
in Ω1(M0,4),

dt
t
and dt

t−1 .

Then, any element [ωεn | · · · |ωε1 ] with εi in {0, 1} is an element of
V (M0,4). Moreover, the family of these elements is a basis of V (M0,4).

Proof. As ω0 ∧ ω1 = 0, the integrability condition (16) is automatically
satisfied, so any element [ωεn | · · · |ωε1 ] (εi = 0, 1) is an element of V (M0,4).
Moreover, as (ω0, ω1) is a basis of H1

DR(M0,4), the elements [ωεn | · · · |ωε1 ]
form a basis of V (M0,4). �

SendingX0 to ω0 and X1 to ω1 gives a one to one correspondence between
words W = Xεn · · ·Xε1 in W0,1 and the elements [ωεn | · · · |ωε1 ] of the pre-
vious basis of V (M0,4). This correspondence allows us to identify V (M0,4)
with the graded dual of UF2,

V (M0,4) ≃ (UF2)
∗.

The word W = Xεn · · ·Xε1 is sent to its dual W ∗ = ωW = [ωεn | · · · |ωε1 ].
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Remark 3.6. Let α and β be two paths in a variety with α(1) = β(0). We
will denote by β ◦ α the composed path beginning with α and ending with
β.

The iterated integral of ω = ωn · · ·ω1 along β ◦ α is then equal to

(17)

n∑

k=0

(∫

β

ωn ◦ · · · ◦ ωn−k+1

)(∫

α

ωn−k ◦ · · · ◦ ω1

)

.

Following [Bro09] and considering the three dihedral structures on M0,4,

one can define 6 tangential base points: ~01, ~10, ~1∞, ~∞1, ~∞0 and ~0∞. Let p
denote the path beginning at the tangential base point ~01 and ending at ~10
defined by t 7→ t and let p−1 denote its inverse t 7→ 1− t.

If γ is a path, starting at a tangential base point ~P (and/or ending at a

tangential base point ~P ′) an iterated integral
∫
ω may be divergent. How-

ever, one can give (as in [Bro09]) a value to that divergent integral; we speak
of the regularized iterated integral.

If W is a word in X0W0,1X1, the iterated integral
∫

p
ωW is convergent and

is equal to (−1)dp(W )ζ(W ). If W is a word beginning by X1 and/or ending
by X0 (that is in W0,1 \X0W0,1X1), then the regularized iterated integral
∫

p
ωW is equal to (−1)dp(W )ζx(W ).

We may, thereafter, omit the term regularized in the expressions “regular-
ized iterated integral” or “regularized homotopy invariant iterated integral”.

Theorem 3.7. The relation (IKZ) is equivalent to the family of relations

∀W ∈ W0,1

∫

p◦p−1

ωW = 0,

which is exactly the family (3).

Proof. Considering the KZ equation (KZ)

∂g

∂u
=

(
X0

u
+

X1

u− 1

)

· g(u)

and the two normalized solutions at 0 and 1, g0 and g1, ΦKZ(X0,X1) is the
unique element in UF2 such that

g0(u) = g1(u)ΦKZ(X0,X1).

Using the symmetry of the situation we also have

g1(u) = g0(u)ΦKZ(X1,X0).

The equation (IKZ) comes from the uniqueness of such a solution normalized
at 1:

(18) g1(u) = g1(u)ΦKZ(X0,X1)ΦKZ(X1,X0).
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The elements ΦKZ(X0,X1) and ΦKZ(X1,X0) can be expressed using regu-
larized iterated integrals as

ΦKZ(X0,X1) =
∑

W∈W0,1

(∫

p

ωW

)

W

and

ΦKZ(X1,X0) =
∑

W∈W0,1

(∫

p−1

ωW

)

W.

Equation (18) corresponds to the comparison of the normalized solution g1
with the solution given by analytic continuation of g1 along p ◦ p−1. The
product

ΦKZ(X0,X1)ΦKZ(X1,X0)

is then the series
∑

W∈W0,1

(∫

p◦p−1

ωW

)

W.

As the path p◦p−1 is homotopically equivalent to 0, all the previous iterated
integrals (for W 6= ∅) are 0. We deduce that (IKZ) is equivalent to

∀W ∈ W0,1

∫

p◦p−1

ωW = 0.

Now, fix any W = Xεn · · ·Xε1 in W0,1 and compute the regularized iter-
ated integral

∫

p◦p−1 ωW . Using (17), we have

∫

p◦p−1

ωW =

n∑

k=0

(∫

p

ωεn ◦ · · · ◦ ωεn−k+1

)(∫

p−1

ωεn−k
◦ · · · ◦ ωε1

)

.

Setting U1 = Xεn · · ·Xεn−k+1
and U2 = Xεn−k

· · ·Xε1 , we have
∫

p

ωεn ◦ · · · ◦ ωεn−k+1
= (−1)dp(U1)ζx(U1).

As p−1 is given by t 7→ 1− t, we have for ε in {0, 1}

(p−1)∗(ωε) = ω1−ε.

Moreover, as p∗(ωε) = ωε, one computes
∫

p−1

ωεn−k
◦ · · · ◦ ωε1 =

∫

0<t1<...<tn−k

(p−1)∗(ωε1(t1)) ∧ · · · ∧ (p−1)∗(ωεn−k
(tn−k))

=

∫

0<t1<...<tn−k

ω1−ε1(t1) ∧ · · · ∧ ω1−εn−k
(tn−k)

=

∫

p

ω1−εn−k
◦ · · · ◦ ω1−ε1 =

∫

p

ωθ(U2),
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where θ exchanges X0 and X1. Finally, we obtain
∫

p−1

ωU2 =

∫

p

ωθ(U2) = (−1)dp(θ(U2))ζx(θ(U2))

and

0 =

∫

p◦p−1

ωW =
∑

U1U2=W

(−1)dp(U1)ζx(U1)(−1)dp(θ(U2))ζx(θ(U2))

which is exactly the relation (3) for the word W . �

Now, let c be the infinitesimal half circle around 0 in the lower half plane,
connecting the tangential base point ~0∞ and ~01. The path c can be seen as
the limit when ε tends to 0 of cε : t 7→ εei(π+tπ).

We have a natural 3-cycle on M0,4 given by τ : t 7→ 1
1−t . Let γ be the

path c ◦ τ2(p) ◦ τ2(c) ◦ τ(p) ◦ τ(c) ◦ p.

Theorem 3.8. The relation (IIKZ) is equivalent to the family of relations

∀W ∈ W0,1

∫

γ

ωW = 0

which is exactly the family (9).

Proof. Comparing the six different normalized solutions of (KZ) at the six
different base points leads to six equations. Combining these equations, one
obtains (IIKZ) via the relation
(19)

g0(u) = g0(u)e
iπX0ΦKZ(X∞,X0)e

iπX∞ΦKZ(X1,X∞)eiπX1ΦKZ(X0,X1)

where exponentials are coming from the relation between the solutions at
the based points ~0∞ and ~01 (resp. ~10 and ~1∞, ~∞1 and ~∞0), that is, from
the monodromy around 0, 1 and ∞.

Putting the six different relations together in order to get the previous
equation is the same as comparing the solution g0 with the analytic contin-
uation of g0 along any path starting at ~01, joining the other tangential base
points ~10, ~1∞, ~∞1, ~∞0, ~0∞ in that order and ending at ~01 ; staying all the
time in the lower half plan. Such a path is homotopically equivalent to γ.

Thus, equation (19) gives a relation between g0 and the solution obtained
from g0 by analytic continuation along γ. Then, the product in UF2 in the
R.H.S of (19) can be expressed using homotopy invariant iterated integrals
as

eiπX0ΦKZ(X∞,X0)e
iπX∞ΦKZ(X1,X∞)

eiπX1ΦKZ(X0,X1) =
∑

W∈W0,1

(∫

γ

ωW

)

W.
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As γ is homotopically equivalent to 0, for any word W in W0,1, one has
∫

γ

ωW = 0.

This proves the first part of the theorem.
Using the decomposition of iterated integrals on a composed path (Equa-

tion (17)), we have

∀W ∈ W0,1

∫

γ

ωW =
∑

U1,...,U6
U1···U6=W

∫

c

ωU1

∫

τ2(p)
ωU2

∫

τ2(c)
ωU3

∫

τ(p)
ωU4

∫

τ(c)
ωU5

∫

p

ωU6 .

Thus, in order to show that the family of relations

∀W ∈ W0,1

∫

γ

ωW = 0

gives exactly the family of relations (9), it is enough to show that for any U
in W0,1,

∫

c

ωU = C0,1(e
iπX0 |U),

∫

τ2(p)
ωU = C0,1(ΦKZ(X∞,X0)|U),

∫

τ2(c)
ωU = C0,1(e

iπX∞ |U),

∫

τ(p)
ωU = C0,1(ΦKZ(X1,X∞)|U),

∫

τ(c)
ωU = C0,1(e

iπX1 |U),

∫

p

ωU = C0,1(ΦKZ(X0,X1)|U).

In order to compute the iterated integral along c, τ(c) and τ2(c), it is enough
to compute the limit when ε tends to 0 of the iterated integral along cε, τ(cε)
and τ2(cε). As

c∗ε(ω0) = iπdt and c∗ε(ω1) = ε
−iπei(π+πt)dt

1− εei(π+πt)
,

the iterated integral
∫

cε
ωU tends to 0 except if U = Xn

0 and then
∫

cε
ωXn

0
=

(iπ)n

n! for all ε. Thus, we have
∫

c

ωU = C0,1(e
iπX0 |U).

Similarly we have

τ(cε)
∗(ω1) = iπ

dt

1− εei(π+πt)
and τ(cε)

∗(ω0) =
εiπei(π+πt)dt

1− εei(π+πt)
.
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The iterated integral
∫

τ(cε)
ωU tends to 0 unless U = Xn

1 , and then
∫

cε
ωXn

0

tends to (iπ)n

n! when ε tends to 0. Thus, we have
∫

τ(c)
ωU = C0,1(e

iπX1 |U).

Computing τ2(cε)
∗, we have

τ2(cε)
∗(ω0) = −iπ

dt

1− εei(π+πt)
and τ2(cε)

∗(ω1) = −iπdt.

Then, we find that the limit when ε tends to 0 of
∫

τ2(cε)
ωU is (−iπ)|U|

|U |! , which

gives
∫

τ2(c)
ωU = C0,1(e

iπX∞ |U).

The equality
∫

p

ωU = C0,1(ΦKZ(X0,X1)|U)

is obvious.
Cases of ∫

τ(p)
ωU and

∫

τ2(p)
ωU

are extremely similar and we will discuss only the last one. First, we should
remark that

(τ2)∗(ω0) = −ω0 + ω1 and (τ2)∗(ω1) = −ω0.

For U = Xεn · · ·Xε1 (εi = 0, 1) we can rewrite the iterated integral
∫

τ2(p) ωU as
∫

p

(τ2)∗(ωεn) ◦ · · · ◦ (τ
2)∗(ωε1).

We will now prove by induction on n = |U | that in V (M0,4)

(20) [(τ2)∗(ωεn)| · · · |(τ
2)∗(ωε1)] =

∑

(V,k)∈dec0,1(U,X0)

(−1)|V|ω
X
|V1|
0 X

k1
1 X

|V2|
0 X

k2
1 ···X

|Vp|
0 X

kp
1

which will give using Proposition 2.10 the equality
∫

τ2(p)
ωU = C0,1(ΦKZ(X0,X1)|U).

If U = X0, the set dec0,1(U,X0) has 2 elements ((X0), (0)) and ((∅), (1)).
Similarly, if U = X1 then dec0,1(U,X0) has only one element which is
((X1), (0)). In both cases (20) is satisfied.
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Let U = Xεn · · ·Xε1 be a word in W0,1, and let ε be in {0, 1}. For the
simplicity of notation, we shall write [ωεn | · · · |ωε1 |ωε] as

[ωU |ωε] := [ωεn | · · · |ωε1 |ωε].

We suppose now that

U = U1X0 with |U1| > 1.

We have a map from dec0,1(U,X0) to dec0,1(U1,X0) that sends a decom-
position

(V,k) = ((V1, . . . , Vp), (k1, . . . , kp))

to {
(V, (k1, . . . , kp − 1)) if kp 6= 0
((V1, . . . , V

′
p),k) if kp = 0 and Vp = V ′pX0.

Any decomposition (V′,k′) in dec0,1(U1,X0) has exactly two preimages by
this map. If one writes

U1 = V ′1X
k′1
0 · · ·V ′1X

k′p
0

then it leads to two decompositions of U

((V ′1 , . . . , V
′
p), (k

′
1, . . . , k

′
p + 1)) and ((V ′1 , . . . , V

′
p ,X0), (k

′
1, . . . , k

′
p, 0)).

By induction we have in Vn−1(M0,4)

[(τ2)∗(ωεn)| · · · |(τ
2)∗(ωε2)] =

∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′p|

0 X
k′p
1

.

We deduce from the previous equality and using the linearity of the tensor
product that [(τ2)∗(ωεn)| · · · |(τ

2)∗(ωε1)] is equal to
∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|[ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′p|

0 X
k′p
1

| − ω0 + ω1].

This sum can be decomposed as
∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|+1[ω

X
|V ′1|

0 X
k′1
1 ···X

|V ′p|

0 X
k′p
1

|ω0]+

∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|[ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′p|

0 X
k′p
1

|ω1].

The first term of the sum is equal to
∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|+1ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′p|

0 X
k′p
1 X0
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and the second term is equal to
∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|ω

X
|V ′1|

0 X
k′1
1 ···X

|V ′p|

0 X
k′p+1

1

.

The previous discussion on dec0,1(U,X0) tells us that adding the two sums
above gives

∑

(V,k)∈dec0,1(U,X0)

(−1)|V|ω
X
|V1|
0 X

k1
1 X

|V2|
0 X

k2
1 ···X

|Vp|

0 X
kp
1

.

This gives (20) when U = U1X0.
If U = U1X1 with |U1| > 1, we have a one to one correspondence between

dec0,1(U1,X0) and dec0,1(U,X0) defined by

((V ′
1 , . . . , V

′
p), (k

′
1, . . . , k

′
p)) 7→

{
((V ′

1 , . . . , V
′
p , X1), (k

′
1, . . . , k

′
p, 0)) if k′p > 0

((V ′
1 , . . . , V

′
pX1), (k

′
1, . . . , k

′
p)) otherwise.

Then (20) follows by induction using the linearity of the tensor product. �

3.3. Bar Construction on M0,5 and the pentagon relations. Here,
we will show how the pentagon relations (IIIKZ) are related to the bar con-
struction on M0,5.

The shuffle algebra B(M0,5) being much more complicated than B(M0,4)
we will first review some facts explained in [Bro09]. We now fix a dihedral
structure δ, as described in [Bro09], on M0,5. We will used the “standard”
dihedral structure given by “cyclic” order on the marked points

z1 < z2 < z3 < z4 < z5(< z1)

or with our normalization

0 < xy < y < 1 < ∞.

This corresponds to a good choice of coordinates to study the connected
components of M0,5(R) such that the marked points are in the order given
by δ. We will refer to that component as the standard cell.

More precisely, let i, j, k, l denote distinct elements of {1, 2, 3, 4, 5}. The
cross-ratio [i j|k l] is defined by the formula:

[i j|k l] =
zi − zk
zi − zl

zj − zl
zj − zk

.

Brown, in [Bro09, Sections 2.1 and 2.2], has defined coordinates on M0,n,

and more generally on an open Mδ
0,n of the Deligne-Mumford compactifica-

tion of the moduli space of curves M0,n, such that

M0,n ⊂ Mδ
0,n ⊂ M0,n.
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These coordinates respect the natural dihedral symmetry of the moduli
spaces of curves. Applying his work to the case n = 5, let i and j be
in {1, 2, 3, 4, 5} such that i, i+ 1, j and j + 1 are distinct. We set

uij = [i i + 1|j + 1 j].

In particular, the codimension 1 components of ∂M0,n contained in Mδ
0,n

are given by uij = 0 and the standard cell is contained in Mδ
0,n.

The coordinates uij satisfy the relations

(21) uijuim + ukl = 1,

for k ≡ i− 1 mod 5, l ≡ i+1 mod 5 and m ≡ j+1 mod 5, all the indices
being in {1, 2, 3, 4, 5} and such that uij , uim and ukl are defined.

In [Bro09][Corollary 2.3], these relations are given in terms of two sets of
chords of a polygon (a pentagon for M0,5) and the picture corresponding to
the above relation is given below.

•
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Let ω12, ω23, ω34, ω45, ω24 be the differential forms

ω12 = d log(u25) =
dx

x
, ω23 = d log(u31u41) =

dx

x− 1
,

ω34 = d log(u24u41) =
dy

y − 1
, ω45 = d log(u35) =

dy

y

and ω24 = d log(u41) =
d(xy)

xy − 1
.

If W is a word in W = {X34,X45,X24,X12,X23}
∗ with |W | = n, we will

write ωW ∈ H1
DR(M0,5)

⊗n for the bar symbol [ωinjn | · · · |ωi1j1 ]. Note that
the elements ωW for W in W are not all in V (M0,5); in general, only linear
combinations of such symbols are in V (M0,5).

Example 3.9. The elements [ω12], [ω23] and [ω12|ω23] are in V (M0,5) even
if [ω12|ω45] is not. However [ω12|ω45] + [ω45|ω12] is in V (M0,5).

Example 3.43 in [Bro09] (using [Bro09, Thm. 3.38 and Coro. 3.41]) tells
us that the exact sequence

0 −→ C〈〈X24,X34,X45〉〉 −→ UB5 −→ C〈〈X12,X23〉〉 −→ 0
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is dual to the exact sequence

0 −→ V (M0,4) −→ V (M0,5) −→ C〈
dy

y
,

dy

y − 1
,

xdy

xy − 1
〉 −→ 0

which comes from the expression, in cubical coordinates, of the mapM0,5 →
M0,4 which forgets the 4Th point. Thus, the identification

UB5 ≃ C〈〈X24,X34,X45〉〉⋊C〈〈X12,X23〉〉

is dual (as graded algebra) to

V (M0,5) ≃ V (M0,4)⊗ C〈
dy

y
,

dy

y − 1
,

xdy

xy − 1
〉

and V (M0,5) is the graded dual UB∗5 of UB5.
The graded dual of the free non-commutative algebra of formal series

R = C〈〈X34,X45,X24,X12,X23〉〉

is the shuffle algebra

T :=
⊕

n

(Cω34 ⊕ Cω45 ⊕ Cω24 ⊕Cω12 ⊕ Cω23)
⊗n .

Let Ω be the element in R⊗H1
DR(M0,5) defined by

Ω = X12 ⊗ ω12 +X23 ⊗ ω23 +X34 ⊗ ω34 +X45 ⊗ ω45 +X24 ⊗ ω24.

and

Exp(Ω) :=
∑

W∈W

W ⊗ ωW ∈ R⊗ T.

The element Exp(Ω) corresponds to the identity of R and encodes the fact
that the dual of a word W is ωW . A word W (seen in UB5) is written in
the basis B4 as

W =
∑

b4∈B4

lb4,W b4.

Duality between R and T and between UB5 and V (M0,5) tells us that, the
basis B∗4 = (b∗4)b4∈B4 of V (M0,5) dual to B4 is given by

∀b4 ∈ B4 b∗4 =
∑

W∈W

lb4,WωW .

Using the projection R → UB5 one can see Exp(Ω) in UB5⊗T . Actually,
by duality, Exp(Ω) lies in UB5 ⊗ V (M0,5). So, writing each W in the basis
B4 leads to the following expression of Exp(Ω) in UB5 ⊗ V (M0,5)

Exp(Ω) =
∑

b4∈B4

b4 ⊗ b∗4 ∈ UB5 ⊗ V (M0,5).
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Thus, Exp(Ω) realized the identification between the graded dual of UB5

and V (M0,5) as was observed by Furusho in [Fur08]. This discussion can
be summarized by the following proposition.

Proposition 3.10. We have a natural identification

UB∗5 ≃ V (M0,5),

UB∗5 being the graded dual of UB5.
This identification gives a basis B∗4 of V (M0,5) dual to B4 the basis of

UB5 which comes from the identification

UB5 ≃ C〈〈X24,X34,X45〉〉⋊C〈〈X12,X23〉〉.

The basis B∗4 = (b∗4)b4∈B4 is explicitly given for all b4 in the basis B4 by

(22) b∗4 =
∑

W∈W

lb4,W ωW .

Let M̂0,5 be the universal covering of M0,5. A multi-valued function

on M0,5 is an analytic function on M̂0,5. Consider the formal differential

equation on M̂0;5

dL = ΩL

where L takes values in UB5, whose coefficients are multi-valued functions
on M0,5. As in the case of the equation (KZ), if we fix either the value of L
at some point of M0,5 or its asymptotic behavior at a tangential base point,
then the solution is unique.

The irreducible components of codimension 1 of ∂M0,5 in M0,5 are in
one to one correspondence with the 2-partitions of {z1, z2, z3, z4, z5} and
will be denoted as zi1zi2 |zi3zi4zi5 . These boundary components are all iso-
morphic to M0,4. Here, we will only consider the following components
D̄52 = z1z2|z3z4z5, D̄13 = z2z3|z4z5z1, D̄24 = z3z4|z5z1z2, D̄35 = z4z5|z1z2z3,
D̄41 = z5z1|z2z3z4 (we may use the convention D̄ij = D̄ji). One remarks
that those components are given by a partition that respect the dihedral
structure δ and the numbering D̄ij is coherent with the notation of [Bro09].

We will write Dij ≃ Mδ
0,4 for the intersection of D̄ij with Mδ

0,5 . The
divisors Dij are given in the dihedral coordinates by uij = 0. Following
Brown, we have 5 tangential base points (corresponding to the intersection
of 2 irreducible components) given by the triangulation of the polygon cor-
responding to δ; as we are working in M0,5, the polygon is a pentagon, and
a triangulation is given by two chords going out from a single vertex, so one
can number the triangulation by the number of its vertex: precisely, one has

P3 = D35 ∩D13, P1 = D13 ∩D41, P4 = D41 ∩D24,

P2 = D24 ∩D52, and P5 = D52 ∩D35.
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Let Li be the normalized solution at Pi (see [Bro09] Theorem 6.12).
Now, we fix a basis B = (b)b∈B of UB5 and its dual basis B∗ = (b∗)b∈B

in V (M0,5). The description of the situation in dimension 1 and section
5.2 in [Bro09] shows that Theorem 6.27 of Brown’s article in [Bro09] can be
rewritten as follows.

Proposition 3.11. For any tangential base point Pi, one can write Li(z)
as

∀z ∈ M̂0,5 Li(z) =
∑

b∈B

(

∫

γ

b∗)b

where γ is a path from Pi to z and where iterated integrals are regularized
iterated integrals.

The comparison of two different normalized solutions at two different base
points Pi and Pj is then given by

∀z ∈ M̂0,5 Li(z) = Lj(z)

(
∑

b∈B

(∫

γ

b∗
)

b

)

where γ is any path going from Pi to Pj homotopically equivalent to a path
γ′ going from Pi to Pj in the standard cell of M0,5(R).

Brown shows how to restrict any element ω in B(M0,5) to any boundary
components D introducing a regularization map Reg(ω,D). This map sends

each
duij

uij
to 0 if the restriction of uij to D equals 0 or 1. More precisely,

Definition 3.12. Let Dij be a boundary component of M0,n given by uij =

0. We define Reg(dukl

ukl
,Dij) as follows:

• Reg(
duij

uij
,Dij) = 0,

• Reg(dukl

ukl
,Dij) = 0 if uijuim + ukl = 1 as in (21),

• Reg(dukl

ukl
,Dij) =

dũkl

ũkl
where ũkl is the restriction of ukl to Dij using

the natural inclusion

Dij →֒ Mδ
0,5.

Now, using the inclusion M0,4 →֒ Mδ
0,4 ≃ Dij, one can define the map

Reg(−,Dij) : V (M0,5) −→ V (M0,4).

It sends an element

ω =
∑

ci1,j1,...,ik,jk [ωi1j1 | . . . |ωikjk ] ∈ V (M0,5)

to

Reg(ω,Dij) =
∑

ci1,j1,...,ik,jk [Reg(ωi1j1 , Dij)| . . . |Reg(ωikjk , Dij)] ∈ V (M0,4).
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Example 3.13. As explained in Brown [Bro09, Lemma 2.6], the restriction
of the coordinate u25 on D35 can be computed in terms of the dihedral
coordinates on D35 ≃ Mδ

0,4 as follows. The chord (3, 5) splits the pentagon
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,

where we have written i instead of i to keep track of the difference between
the labeling on the pentagon (corresponding to Mδ

0,5) and the square (cor-

responding to Mδ
0,4 ≃ D35).

This decomposition corresponds to the isomorphism

D35
∼

−→ Mδ
0,4 ×Mδ

0,3
∼

−→ Mδ
0,4

where, in M0,4 ⊂ Mδ
0,4, the four marked points are labeled z1, z2, z3 and

z5.
The coordinate u25 is given by the cross-ratio

u25 = [23|15].

Its restriction to D35 is the coordinate given by the chord (2, 5) and thus by
the cross-ratio

ũ25 = [23|15].

Following this description, there are two dihedral coordinates on D35 ≃
Mδ

0,4 given by

t1 = [23|15] and t2 = [12|35].

Similarly, u13, corresponding to the chords (1, 3) in the pentagon descrip-
tion, restricts on D35 to t2 which corresponds to the chord (1, 3) on the
square description of D35. As P5 is defined by u25 = u35 = 0, one sees that
t1 = ũ25 is 0 at P5 and similarly that t2 = ũ13 is 0 at P3. Moreover, on
D35 one has t2 = 1 − t1, which agrees with the fact that on M0,5 one has
u25 + u13u14 = 1 and u14 + u25u35 = 1. Thus, the coordinate t1 is equal to
1 at P3 and t2 is equal to 1 at P5.
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Proposition 3.14. For any two consecutive tangential base points Pi and
Pj with j ≡ i− 2 mod 5, one has

∀z ∈ M̂0,5 Li(z) = Lj(z)

(
∑

b∈B

(
∫

pji

Reg(b∗,Dji)

)

b

)

where pji is the real segment going in Dji from Pi to Pj .

Proof. The symmetry of the situation allows us to prove it only in the case
where i = 5, j = 3 and B is the basis B4.

Let p35 be the path in D35 going from P5 to P3; we need to show that

(23) L3(z)
−1L5(z) =

∑

b4∈B4

(∫

p35

Reg(b∗4,D35)

)

b4.

Brown, in [Bro09, Definition 6.18], defined Z35 to be the quotient
L3(z)

−1L5(z). Using the proof of Theorem 6.20 in [Bro09], we have

Z35 = L3(z)
−1L5(z) =

∑

W=Xinjn ···Xi1j1
∈{X12,X23}∗

(∫

p

dt

t− εn
∧ · · · ∧

dt

t− ε1

)

W

with εk = 0 if ik = 1 (and jk = 2)) and εk = 1 otherwise (that is, ik = 2 and
jk = 3). Using the morphism p4 : UB5 −→ UF2 that send Xi4 to 0, X12 to
X0 and X23 to X1, we have:

Z35 = L3(z)
−1L5(z) =

∑

W=Xinjn ···Xi1j1
∈{X12,X23}∗

(∫

p

ωp4(W )

)

W.

We recall that an element b4 of the basis B4 is either 1 or a monomial of
the form

(24) b4 = U245V123 U245 ∈ {X24,X34,X45}
∗, V123 ∈ {X12,X23}

∗.

So, in order to prove (23), it is enough to prove that:

• All the iterated integrals
∫

p35
Reg(b∗4,D35) for b4 = U245V123 with

U245 not empty vanish:

b4 = U245V123

with U245 ∈ {X24,X34,X45}
∗, U245 6= ∅

}

⇒

∫

p35

Reg(b∗4,D35) = 0.

• All the iterated integrals
∫

p35
Reg(b∗4,D35) for b4 = V123 are equal to

∫

p

ωp4(V123) =

∫

p

ωp4(b4).
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That is:

b4 = V123 ∈ {X12,X23}
∗ ⇒

∫

p35

Reg(b∗4,D35) =

∫

p

ωp4(b4).

Let t denote the dihedral coordinate t1 on D35 which takes values 0 at P5

and 1 at P3 (see Example 3.13). Example 3.13 shows that

ũ25 = t, ũ13 = 1− t.

Moreover, as

u24 + u13u35 = 1 and u14 + u25u35 = 1,

one has u24 = u14 = 1 on D35.
As the differential forms ω23 and ω34 are defined by

ω23 =d log(u31u41) = d log(u13) + d log(u14) and

ω34 =d log(u24u41) = d log(u24) + d log(u14),

and since one has

Reg(d log(u35),D35) = Reg(d log(u24),D35) = Reg(d log(u14),D35) = 0,

one concludes that

Reg(ω12,D35) =Reg(d log(u25),D35) =
dt

t
,

Reg(ω23,D35) =Reg(d log(u13),D35) =
dt

t− 1

and Reg(ωij,D35) = 0 otherwise.
It is now enough to show that for b4 in B4

• b4 is a word in the letters X12 and X23 (that is b4 ∈ {X12,X23}
∗) if

and only if

b∗4 = ωb4 with b4 ∈ {X12,X23}
∗

( = [ωinjn | · · · |ωi1j1 ] with Xikjk ∈ {X12,X23})

• b4 contains some Xij with i = 4 or j = 4 if and only if

b∗4 =
∑

λW ′ωW ′ with λW ′ 6= 0 ⇒ W ′ /∈ {X12,X23}
∗

that is, if and only if b∗4 is a linear combination of bar symbols
∑

λW ′ωW ′ (λW ′ 6= 0) with W ′ containing at least one of the letters
X34,X45,X24.

Using equations (24) and (22) that describe respectively b4 and b∗4, one
sees that Equation (23) (and thus the proposition) follows directly from the
relation defining UB5. �

From the previous proposition, we immediately deduce the following corol-
lary.
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Corollary 3.15. For any path γ in the standard cell homotopically equiva-
lent to pji j ≡ i− 2 mod 5 (1 6 i, j 6 5), we have

∀ω ∈ V (M0,5)

∫

γ

ω =

∫

pji

Reg(ω,Dji).

Let γ = p35 ◦ p52 ◦ p24 ◦ p41 ◦ p13 denote the composed path beginning and
ending at P3 and extending the map Reg(ω, γ) to paths that are piecewise
in some of the divisor Dij .

Theorem 3.16. The relation (IIIKZ) is equivalent to the family of relations

∀b4 ∈ B4, b4 6= 1

∫

γ

Reg(b∗4, γ) = 0

which is exactly the family (14).

Proof. For i in {1, 2, 3, 4, 5} and j = i − 2 mod 5, we define Zji by the
formula

Zji =




∑

b4∈B4

(
∫

pji

Reg(b∗4,Dji)

)

b4



.

By Proposition 3.14, one has

∀z ∈ M̂0,5 Li(z) = Lj(z)Z
ji.

Comparison between the 5 normalized solutions Li at the 5 tangential
base points Pi gives

(25) ∀z ∈ M̂0,5 L3(z) = L3(z)Z
35Z52Z24Z41Z13.

In the proof of Theorem 6.20 [Bro09] and the example which follows it,
Brown proves that the product of the Zji is equal to the L.H.S (that is the
product of the ΦKZ) of (IIIKZ). So, Equation (IIIKZ) can be written as

Z35Z52Z24Z41Z13 = 1.

It can also be proved directly using Proposition 3.14.
Equation (25) is given by the analytic continuation of the solution L3

along any path in the standard cell beginning and ending at P3 and going
through P1, P4, P2 and P5 (in that order). Such a path is homotopically
equivalent to γ (and to 0) and the product of the Zji can be written as

Z35Z52Z24Z41Z13 =
∑

b4∈B4

(∫

γ

b∗4

)

b4.

As γ is homotopically equivalent to 0, each of the homotopy invariant
regularized iterated integrals above are 0 (except for b4 = 1). Thus, the
product

Z35Z52Z24Z41Z13
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is equal to 1. We deduce from the previous discussion that the family of
relations

∀b4 ∈ B4, b4 6= 1

∫

γ

Reg(b∗4, γ) = 0

implies relation (IIIKZ). Moreover, one deduces from the equation

Z35Z52Z24Z41Z13 =
∑

b4∈B4

(∫

γ

b∗4

)

b4.

that relation (IIIKZ) (which says that the product of the Zji is 1) implies

∀b4 ∈ B4, b4 6= 1

∫

γ

Reg(b∗4, γ) = 0.

The first part of the theorem is then proved.
Using the expression of b∗4 in terms of ωW , the end of the theorem follows

from Proposition 3.18 below. �

From the previous theorem, one deduces the following corollary.

Corollary 3.17. For any basis B of UB5, the pentagon relation (IIIKZ) is
equivalent to

∀b ∈ B

∫

γ

Reg(b∗, γ) = 0

where γ, as previously, is the path p35 ◦ p52 ◦ p24 ◦ p41 ◦ p13.

Following the proof of 3.14, one proves Proposition 3.18, which completes
the proof of Theorem 3.16.

Proposition 3.18. For any bar symbol ωW dual to a word W in the letters
X34, X45, X24, X12, X23, we have

C5,W,KZ =

∫

γ

Reg(ωW , γ)

where C5,W,KZ is the coefficient C5,W defined in (10) in the particular case
of the Drinfel’d associator ΦKZ.

Proof. To show the proposition, it is enough, using the decomposition of γ =
p35 ◦p52 ◦p24 ◦p41 ◦p13, to show that for any U in {X34,X45,X24,X12,X23}

∗

and any i, one has

(−1)dpi(U)ζx(ρi(U)) =

∫

Ii

Reg(ωU , Ii)

where I5 = p13, I4 = p41, I3 = p24, I2 = p52 and I1 = p35.
As Reg(ωkl, Ii) = ωρi(Xkl), the proposition follows. �
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4. Appendix : relations in low degrees

4.1. Remarks. From the following tables, one can see that coefficients of
words in X12 and X23 yield the family of relations (2) (which is equivalent
to (I)). This can be proved directly from (13) (which is equivalent to (III)).
In order to do so, one observes that if b4 in the basis B4 is a word in X12

and X23, then lb4,W 6= 0 if and only if W = b4. In the case of the Drinfel’d
associator ΦKZ , only the term

∑

U1···U5=b4

(−1)dp1(U1)+dp2(U2)+dp3(U3)+dp4(U4)+dp5(U5)

ζx(ρ1(U1))ζ
x (ρ2(U2))ζ

x (ρ3(U3)ζ
x (ρ4(U4))ζ

x (ρ5(U5))

is non zero, and the Ui are words in X12 and X23. Then, the fact that
ρ2(X12) = ρ2(X23) = 0 tells us that ρ2(U2) = 0 if U2 6= ∅. As ρ4(X12) =
ρ5(X12) = 0, ρ4(X23) = X0 and ρ5(X23) = X1, we deduce that ρ4(U4) is 0
or a power of X0 and ρ5(U5) is 0 or a power of X1 (again with U4, U5 6= ∅).
We conclude using the fact that for k > 1,

ζx(0) = ζx(Xk
0 ) = ζx(Xk

1 ) = 0.

Using the explicit relations between the coefficients of the associator (13),
the above arguments show the well known implication “(III) implies (I)”
proved by Furusho in [Fur03].

In [Fur10], Furusho also proved that (III) implies (II). This implication
does not appear clearly looking at the coefficients and comparing (13) and
(8). In the case of ΦKZ, the first reason is that no π can arise from (14).
In order to see “(III) implies (II)” on the coefficients, one should first re-
place (2πi)2 by −24ζx (X0X1) in (9). The second reason is that the proof
of Furusho suggests that the linear combinations involved are much more
complicated than the ones involved for (III) implies (I) (which is deduced
from (III) by sending Xi,4 to 0).

Another set of well-known relations between multiple zeta values are the
double shuffle relations. As the representation of the multiple zeta values
with iterated integrals leads to the quadratic relations

ζx(V )ζx(W ) =
∑

U∈sh(V,W )

ζx(U),

writing the multiple zeta values as series ζ(k) =
∑ 1

n
k1
1 ···n

kp
p

leads to another

regularization ζ∗ and another set of quadratic relations ([Rac02])

ζ∗(k)ζ∗(l) =
∑

m∈st(k,l)

ζ∗(m)
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where st(k, l) is a family of tuples of integers defined from k and l by a
combinatorial process. The two regularizations are linked by an explicit
formula, and the set of relations induced by the two set of quadratic relations
is known as double shuffle relations (see for example [Rac02]).

More recently, in [Fur08], Furusho proved that (III) implies the double
shuffle relations. Seeing this fact directly on the coefficients is not easy
because one has to find the “right linear combination”. Although one can
give the first example in weight 3 (see below), already in degree 4 one has
to look at 211 relations ... Even looking only at the relations coming from
multiplicative generators of V (M0,5) is difficult. However, Theorem 2.15
tells us that no information is lost between relation (III) and the family
of relations given by (13). Thus, using Furusho’s theorem, this family of
relations implies the double shuffle relations.

Using a more suitable basis to write the relations, one that would give
“nice” multiplicative generators for V (M0,5), or one coming from a “simple”
basis of V (M0,5), may help to progress in the direction of the not known
implication

“Double shuffle” implies (III).

However, this is not certain. A global approach (interpreting the series
shuffle relations as a group-like property as in [Rac02] or in [Fur08]) or a
geometric approach could be better.

Example 4.1. In weight 2, double shuffle relations do not give extra rela-
tions between multiple zeta values. They tell us the values of the second
regularization of ζ∗(1, 1): ζ∗(1, 1) = ζ(2)/2, which is different from the shuf-
fle regularization ζx(1, 1) = ζx(Y, Y ) = 0.

In weight 3, the double shuffle relations lead to ζ(3, 1) = ζ(2), which can
be written as

ζx(X0X0X1) = ζx(X0X1X1).

This equality is a direct consequence of the duality relation; however, to
recover it from Table 3, one needs to use 3 relations. Indeed, using the
coefficients of monomials X45X24X24, X24X45X45, X34X45X45, one finds

ζx(X0X1X1) = ζx(X1X0X0) = ζx(X1X1X0) = ζx(X0X0X1).

4.2. Degree 1, 2 and 3. Here one can find the explicit relations given by
the pentagon equation (IIIKZ) in low degree. Writing the product

ΦKZ(X12,X23)ΦKZ(X34,X45)ΦKZ(X51,X12)ΦKZ(X23,X34)

ΦKZ(X45,X51) =
∑

b4

Cb4b4
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in the basis B4, the following tables give the relation Cb4 = 0 in terms of
regularized multiple zeta values.

Let Bdeg=i
4 denote the family of elements in B4 with degree equal to i.

For any S ⊂ B4, one defines S∗ to be the set {b∗ | b ∈ S}. Let N be an

integer, N > 1. A sequence {S1, . . . , SN} with Si ⊂ Bdeg=i
4 is called a set

of multiplicative generators up to degree N if for every i = 1, . . . , N and
every element ω of degree i in V (M0,5), ω is a linear combination of shuffles
of elements in {1} ∪ S∗1 ∪ · · ·S∗i . Let γ′ be a path in the standard cell
homotopically equivalent to γ = p35 ◦ p52 ◦ p24 ◦ p41 ◦ p13, and let f1 and
f2 be two elements in V (M0,5). Then it is a property of iterated integrals
([Che73]) that

(∫

γ′
f1

)(∫

γ′
f2

)

=

(∫

γ′
f1 x f2

)

.

Now, using Corollary 3.15, one deduces that

(∫

γ

Reg(f1, γ)

)(∫

γ

Reg(f2, γ)

)

=

(∫

γ

Reg(f1 x f2, γ)

)

.

In particular the family of relations

∀b4 ∈ B4, b4 6= 1

∫

γ

Reg(b∗4, γ) = 0

up to degree N is induced by

∀i = 1, . . . N, ∀s ∈ Si,

∫

γ

Reg(s∗, γ) = 0

for any set of multiplicative generators {S1, . . . , SN} up to degree N . More
precisely, let an element b4 in B4 be of degree less than or equal to N . The
corresponding relation between multiple zeta values given at Equation (14)
is exactly (Cf. Theorem 3.16)

∫

γ

Reg(b∗4, γ) = 0.

Now, we write b∗4 in terms of multiplicative generators

b∗4 =

M∑

k=1

λks
∗
ik
x s∗jk
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with s∗ik , s
∗
jk

in {1} ∪ S∗1 ∪ · · · S∗N . Using the previous discussion, one has

∫

γ

Reg(b∗4, γ) =

M∑

k=1

λk

∫

γ

Reg(s∗ik x s∗jk , γ)

=
M∑

k=1

λk

(∫

γ

Reg(s∗ik , γ)

)(∫

γ

Reg(s∗jk , γ)

)

.

Thus, the relation corresponding to b4 is a consequence of the shuffle re-
lations for the MZV and of the relations corresponding to the sik and the
sjk .

In degree 1 the basis is given by the letters X34, X45, X24, X12 and X23.
The corresponding relations (equivalent to (IIIKZ)) are given in Table 1.

In degree 2 the basis B4 is given by 19 monomials, but we have only 4
multiplicative generators and the corresponding relations are given in Table
2. In degree 3 there are 10 multiplicative generators and the corresponding
relations are given in Table 3.

The code used to produce the relations is given (and commented) in the
next section.

Example 4.2. The monomial b = X23X12 is an element of the basis B4 but
is not part of the chosen weight 2 multiplicative generators of Table 2. Its
dual element in V (M0,5) is given by

b∗ = [ω23|ω12] = [ω23]x [ω12]− [ω12|ω23].

As previously, let γ denote the path p35 ◦ p52 ◦ p24 ◦ p41 ◦ p13. Computing
the iterated integral

∫

γ
Reg([ω23|ω12], γ), one finds

(26) 0 =

∫

γ

Reg([ω23|ω12], γ) = −ζx(X1X0)− ζx(X0X1) + ζx(X1)
2.

In the other hand, the relations given by the iterated integrals of [ω23], [ω12]
and [ω12|ω23] are (see Tables 1 and 2)

(27) 0 =

∫

γ

Reg([ω23], γ) = 2 (ζx(X0)− ζx(X1)) ,

(28) 0 =

∫

γ

Reg([ω23], γ) = ζx(X0)− ζx(X1)

and

(29) 0 =

∫

γ

Reg([ω12|ω23], γ) = 2ζx (X0)
2 − 2ζx(X1)ζ

x(X0)

+ ζx(X1)
2 − ζx(X0X1)− ζx(X1X0).
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Multiplying Equations (27) and (28) and subtracting Equation (29), one
finds

0 = −2ζx(X0)ζ
x(X1) + ζx(X1)

2 + ζx(X0X1) + ζx(X1X0).

Using the shuffle relation on the product ζx(X0)ζ
x(X1), one gets

−ζx(X1X0)− ζx(X0X1) + ζx(X1)
2 = 0,

which is exactly the relation given by the iterated integral
∫

γ
Reg([ω23|ω12], γ)

at Equation (26). Here, we used the shuffle relation on the term

−2ζx(X0)ζ
x(X1)

because this term corresponds to the following integrals
∫

p35

Reg([ω23]x [ω12], p35) =

(∫

p35

Reg([ω23], p35)

)(∫

p35

Reg([ω12], p35)

)

and
∫

p24

Reg([ω23]x [ω12], p24) =

(∫

p24

Reg([ω23], p24)

)(∫

p24

Reg([ω12], p24)

)

.

Example 4.3. In weight 3, let us consider the monomial b = X24X23X12,
which is an element of the basis B4, without being one of the chosen multi-
plicative generators of Table 3. Its dual element b∗ is given by

b∗ = [ω24|ω23|ω12] + [ω23|ω24|ω12] + [ω23|ω12|ω24] = [ω24]x [ω23|ω12].

The element [ω23|ω12] in V (M0,5) is dual to the monomial X23X12 which is
not an element of the chosen weight 2 multiplicative generators (see Table 2).
However, we explained in the previous example (Example 4.2) how to derive
the relation corresponding to X23X12 from the relations corresponding to
X23X12, X23 and X12.

As previously, let γ denotes the path p35◦p52◦p24◦p41◦p13. The complete
relation given by the iterated integral

∫

γ
Reg(b∗, γ) is

(30) − ζx(X1)
3 + 2ζx(X1)ζ

x(X0X1)− ζx(X0)ζ
x(X1X0)

+ 2ζx (X1)ζ
x(X1X0)− 2ζx(X0X0X1)− ζx(X0X1X0) = 0.

The relations given by the iterated integral of [ω24] and [ω23|ω12] are respec-
tively

(31) ζx(X0)− ζx(X1) = 0

and

(32) −ζx(X1X0)− ζx(X0X1) + ζx(X1)
2 = 0.
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Multiplying those two equations one finds

(33) − ζx(X1X0)ζ
x(X0)− ζx(X0X1)ζ

x(X0) + ζx(X1)
2ζx(X0)+

ζx(X1X0)ζ
x(X1) + ζx(X0X1)ζ

x(X1)− ζx(X1)
3 = 0.

Now, using shuffle relations

−ζx(X0X1)ζ
x(X0) = −2ζx(X0X0X1)− ζx(X0X1X0)

and
ζx(X1)

2ζx(X0) = ζx(X1X0)ζ
x(X1) + ζx(X0X1)ζ

x(X1),

one recovers the relation corresponding to X24X23X12 given in Equation
(30). As in the previous example, using the shuffle relations between multiple
zeta values for some products corresponds to the shuffle relation between
some products of iterated integrals.

One should also remark that it is possible to recover directly from Table
3 the relation

−2ζx(X0X0X1)− ζx(X0X1X0) = 0

which is equivalent to Equation (30) as ζx(X0) = ζx(X1) = 0. In order
to do so, one uses the relations given by the monomials X34X34X45 and
X24X34X45.

5. Appendix : algorithm

5.1. Comments. The above computations were done using the software
Mathematica because its replacement rules and pattern recognition are very
efficient dealing with words. In this section, the algorithms used to produce
the tables from the previous sections are commented.

The naive algorithms described below were originally intended to provide
help in guessing the family of relations (14) given by the pentagon relation.
Concentrating our attention on understanding (14), proving it and explain-
ing the connection with the bar construction on M0,5, the author did not
make a particular effort to improve the algorithms (and their results).

5.2. Law, relations, and basis. Using Mathematica, we need to define a
new NonCommutativeMultiply function which behaves like the desired mul-
tiplicative law for a polynomial algebra with non-commutative variables.
This is done using Mathematica’s elementary operations such as pattern
recognition and replacement rules. All the non-commutative products used
in the algorithms below are understood as this new NonCommutativeMulti-
ply function.
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Monomials Dual elements
in V (M0,5)

Relations

X12 [ω12] ζx (X0)− ζx (X1) = 0

X23 [ω23] 2 (ζx (X0)− ζx (X1)) = 0

X24 [ω24] ζx (X0)− ζx (X1) = 0

X34 [ω34] 2 (ζx (X0)− ζx (X1)) = 0

X45 [ω45] ζx (X0)− ζx (X1) = 0

Table 1. Explicit set of relations equivalent to (IIIKZ) in
degree 1

Monomials Dual elements Relations
in V (M0,5)

b4 ∈ B4 b∗4 =
∑

lb4,WωW

X24X45 −[ω12|ω24] + [ω24|ω45] ζx (X0) ζ
x (X1)− ζx (X1)

2 = 0

X24X34 −[ω12|ω24] + [ω23|ω24] −ζx (X0)
2 + ζx (X1) ζ

x (X0)−
−[ω23|ω34] + [ω24|ω34] 2ζx (X1)

2 + ζx (X0X0)+
ζx (X0X1) + ζx (X1X0)+

ζx (X1X1) = 0

X34X45 [ω34|ω45] 2ζx (X0)
2 − ζx (X1) ζ

x (X0)−
ζx (X0X1)− ζx (X1X0) = 0

X12X23 [ω12|ω23] 2ζx (X0)
2 − 2ζx (X1) ζ

x (X0)+
ζx (X1)

2 − ζx (X0X1)−
ζx (X1X0) = 0

Table 2. Explicit set of relations equivalent to (IIIKZ) in
degree 2



46 I. SOUDÈRES

Monomials Relations

X34X24X24 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0) = 0

X12X23X23 ζx (X0X1X1)− ζx (X1X0X0) = 0

X34X45X45 ζx (X0X1X1)− ζx (X1X0X0) = 0

X45X24X24 ζx (X0X1X1)− ζx (X1X0X0) = 0

X12X12X23 ζx (X1X1X0)− ζx (X0X0X1) = 0

X34X34X45 ζx (X1X1X0)− ζx (X0X0X1) = 0

X24X45X45 ζx (X1X1X0)− ζx (X1X0X0) = 0

X24X34X34 ζx (X0X0X1) + ζx (X0X1X0)− ζx (X0X1X1)
+ζx (X1X0X0) + ζx (X1X1X0) = 0

X24X45X34 ζx (X1X0X0) + ζx (X1X0X1) + ζx (X1X1X0) = 0

X24X34X45 ζx (X0X1X0) + 2ζx (X1X1X0) = 0

Table 3. Explicit set of relations equivalent to (IIIKZ) in
degree 3 where we already have used the relations ζx(Xk

0 ) =
ζx(Xk

1 ) = 0.

Monomials Dual elements in V (M0,5)

b4 ∈ B4 b∗4 =
X

lb4,WωW

X34X24X24 [ω12|ω24|ω24] + [ω23|ω12|ω24]− [ω23|ω23|ω24]
+[ω23|ω23|ω34]− [ω23|ω24|ω24] + [ω23|ω34|ω24]

+[ω34|ω24|ω24]

X12X23X23 [ω12|ω23|ω23]

X34X45X45 [ω34|ω45|ω45]

X45X24X24 [ω12|ω24|ω24] + [ω45|ω24|ω24]

X12X12X23 [ω12|ω12|ω23]

X34X34X45 [ω34|ω34|ω45]

X24X45X45 [ω12|ω12|ω24]− [ω12|ω24|ω45] + [ω24|ω45|ω45]

X24X34X34 [ω12|ω12|ω24]− [ω12|ω23|ω24] + [ω12|ω23|ω34]
−[ω12|ω24|ω34]− [ω23|ω12|ω24] + [ω23|ω23|ω24]
−[ω23|ω23|ω34] + [ω23|ω24|ω34]− [ω23|ω34|ω34]

+[ω24|ω34|ω34]

X24X45X34 [ω12|ω12|ω24]− [ω12|ω23|ω24] + [ω12|ω23|ω34]
−[ω12|ω24|ω34] + [ω24|ω45|ω34]

X24X34X45 [ω12|ω12|ω24]− [ω12|ω24|ω45]− [ω23|ω12|ω24]
+[ω23|ω24|ω45]− [ω23|ω34|ω45] + [ω24|ω34|ω45]

Table 4. Correspondence between ten multiplicative gener-
ators of weight 3 in UB5 and their dual elements in V (M0,5)
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In order to write words in {X12,X23,X34,X45,X51}
∗ in the basis B4, we

need to use the relations in UB5 and thus to implement the functions REl51
and Relcom.

• The function Rel51 writes the letter X51 in terms of X23, X24, X34:

Rel51 : X51 7−→ X23 +X24 +X34

• The functionRelcom uses the commutation relations to write a prod-
uct XijXkl with X12 or X23 on the right side. It does nothing to
the product XijXkl if it is a word in the letters X12, X23 or if it is
a word in the letters X34, X45 and X24. Beginning with a word in
W and iterating applications of the function Relcom, one obtains its
decomposition in the basis B4.

Relcom : X12Xkl 7−→ XklX12 for k = 3 and l = 4, or k = 4, and l = 5

X23X45 7−→ X45X23

X12X24 7−→ (X24 +X34 +X45)X24 −X24(X24 +X34 +X45)

+X24X12

X23X24 7−→ X24X34 −X34X24 +X24X23

X23X34 7−→ X34X24 −X24X34 +X34X23

Computing up to a fixed weight n, we consider a basis restricted to weight
n and less, and we define functions BX0X1 and B4 which give respectively
the list of the corresponding monomials.

• BX0X1(n) := List of words W ∈ W0,1 with |W | 6 n.
• B4(n) := List of words W = W1W2 with W1 ∈ 24W34,45, W2 ∈
W12,23 and |W | 6 n.

Then, for any given A in UB5 given as

A =
∑

W∈{X51,X34,X45,X12,X23}∗,
|W |6n

aWW

one can write A in the basis B4 by using the function DecB4 below:

• DecB4 :=
– A1 := Rel51(A) and expand A1 as

∑

W∈W |W |6n bWW .

– Do A1 := Relcom(A1) until A1 =
∑

W∈B4 |W |6n cWW .

This function is defined using the build-in function Expand and Collect to-
gether with the previously defined functions. For later use, we need a func-
tion Deg(A,n) that truncates A at weight n.
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5.3. Exponential, associator. Working up to a fixed weight n, we now
construct a function that takes two variables A and B and an integer n as
inputs and gives as output a general polynomial Φn(A,B) of degree n with
formal coefficients

Φn(A,B) = 1 +
∑

W∈W0,1, {A,B}∗ 6=∅
|W |6n

(−1)dp(W )ZW̄W,

where W̄ is obtained from W by sending A to X0 and B to X1.
We also define a non-commutative exponential up to degree n

Expn(A) =
∑

06k6n

Ak

k!
.

5.4. Development of the associator relations. We detail here how we
develop the hexagonal and pentagonal relations.

In order to develop the hexagonal relation

ep∗X0Φn(X∞,X0)e
p∗X∞Φn(X1,X∞)ep∗X1Φn(X0,X1)

truncated in degree n and expand in the basis given by the words in X0 and
X1. We proceed as follows:

(1) We compute the successive products keeping only the terms of weight
less or equal to n. That is, we compute

P1 = Deg(epX0Φn(X∞,X0), n),

P2 = Deg(P1e
pX∞ , n),

. . .

P6 = Deg(P5Φn(X0,X1), n)

(2) Then, we apply X∞ 7−→ −X0 −X1 and p 7−→ iπ to P6.
(3) Finally, we expand the expression and collect the terms of the sum

with respect to the list BX0X1(n) and obtain an expression
∑

W∈W0,1, |W |6n

aWW.

The coefficients aW are expressed as a sum of products of a rational coeffi-
cient, a power of iπ and a product of ZU for U in W0,1. Formally replacing
ZU by ζx(U), the set of relations (9) is given by

aW = 0 (W 6= ∅).

Similarly, in order to find the set of relations (14) arising from the 5-cycle
equation (IIIKZ), we expand the product

Penta = Φn(X12, X23)Φn(X34, X45)Φn(X51, X12)Φn(X23, X34)Φn(X45, X51),
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computing the successive products and keeping only the part of weight less
or equal to n at each step.

Then, we develop the corresponding expression with the variables X12,
X23, X34, X45, X51 in the basis B4, applying the function DecB4 to the
expression Penta, to obtain an expression of the form

∑

b∈B4, |b|6n

a′bb.

The coefficients a′b are a sum of products of ZU for U in W0,1. One can
formally replace ZU by ζx(U) and obtain the set of relations (14) setting
a′b = 0 for b not equal to 1.

5.5. Using for (IIIKZ) the equivalent set of relations given in (14).
We describe here how to obtain the family of relations (14) up to degree n,
that is:
For any b ∈ B4 with |b| 6 n, b 6= 1

∑

W∈W

lb,WC5,W = 0,

by first generating the coefficients C5,W and then the coefficient lb,W .
In order to compute the coefficients C5,W for any word W in W, we first

construct a function Decw that takes a word as input and gives as output
all the possibilities to cut it into five sub-words.

Decw(W ) := List of decomposition (U1, . . . , U5) such that U1 · · ·U5 = W.

The function Decw is built inductively by first giving the list of all decom-
positions U1U2 = W , then iterating the process on each U1 and so forth.

Then, we implement functions corresponding to the ρi (Definition 2.13)
by programming the behavior on the letters as follow

rho(i,X12) :=X0 if i = 1, X1 if i = 3 and 0 otherwise,

rho(i,X23) :=X0 if i = 2, 3, X1 if i = 1, 5 and 0 otherwise,

rho(i,X45) :=X0 if i = 5, X1 if i = 2 and 0 otherwise,

rho(i,X34) :=X0 if i = 2, 3X1 if i = 4, 5 and 0 otherwise,

rho(i,X24) :=X0 if i = 3, X1 if i = 5 and 0 otherwise,

which extends to words. The function Zrho takes as input i and a word Ui

in W and gives the coefficient

(−1)dp(ρi(Ui))ζx(ρi(Ui)).

• Zrho(i, Ui) :=
– Do V = rho(i, Ui) and s = dp(V )
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– output : (−1)sζx(V )

Now, from a decomposition

U1 · · ·U5 = W

we can recover the coefficient

(−1)dp1(U1)+dp2(U2)+dp3(U3)+dp4(U4)+dp5(U5)

ζx(ρ1(U1))ζ
x(ρ2(U2))ζ

x (ρ3(U3)ζ
x(ρ4(U4))ζ

x(ρ5(U5)),

that is

Z(U1, U2, U3, U4, U5) :=
5∏

i=1

Zrho(i, Ui).

Using functions Decw and Z, we now compute the sum over the whole
set of decompositions and obtain a function that gives the coefficient C5,W :

C5(W ) :=
∑

(U1,...,U5)∈Decw(W )

Z(U1, U2, U3, U4, U5).

We now compute the lb,W coefficients up to some weight by the following
algorithm:

• Begin with L := List of words W ∈ W, |W | 6 n .
• L1 := for each element in L apply DecB4

• L2 := for each element in L1 replace
∑

b∈B4
lb,W b by the list of the

corresponding lb,W .
• output : L2.

One can then compute for any b ∈ B4 with |b| 6 n, b 6= 1
∑

W∈W

lb,WC5,W

which is the L.H.S. of (14).

Remark 5.1. One could imitate the algorithm that gives C5,W in order to re-
cover the pentagon relation using the bar construction side of the story. The
decomposition function Decw could be directly reused to cut a bar symbol
ωW in five pieces. The rho function corresponds to the implementation of
the regularization Reg on the uij. In order to recover the pentagon relation
from

∀b∗ ∈ B∗
∫

γ

Reg(b∗, γ) = 0,

B∗ being a basis of V (M0,5), one will have to implement linearity and the
correspondence between formal bar symbols and their iterated integrals.
The latter should be similar to the function Zrho but one may need to be
careful with possible signs.
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5.6. Remarks. The author, having recently discovered the software Sage-
math, thinks that it may be easier to do the computations with Sagemath.
This is because Sagemath seems to work well with non-commutative formal
power series and it has large libraries to deal with words.

In [BO96], M. Bigotte and N.E. Oussous have described a Maple package
to work with non-commutative power series. However, it was not yet possible
to have access to this package when this work began.
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Basel, 1994, pp. 497–512.



52 I. SOUDÈRES
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