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ON A GENERALIZATION OF QF-3′ MODULES AND

HEREDITARY TORSION THEORIES

Yasuhiko TAKEHANA

Let R be a ring with identity, and let Mod-R be the category of right
R-modules. Let M be a right R-module. We denote by E(M) the injective
hull of M . M is called QF-3′ module, if E(M) is M -torsionless, that is,
E(M) is isomorphic to a submodule of a direct product ΠM of some copies
of M .

A subfunctor of the identity functor of Mod-R is called a preradical.
For a preradical σ, Tσ := {M ∈ Mod-R : σ(M) = M} is the class of σ-
torsion right R-modules, and Fσ := {M ∈ Mod-R : σ(M) = 0} is the
class of σ-torsionfree right R-modules. A right R-module M is called σ-
injective if the functor HomR(−,M) preserves the exactness for any exact
sequence 0 → A → B → C → 0 with C ∈ Tσ. A right R-module M is
called σ-QF-3′ module if Eσ(M) is M -torsionless, where Eσ(M) is defined
by Eσ(M)/M := σ(E(M)/M).

In this paper, we characterize σ-QF-3′ modules and give some related
facts.

1. QF-3′ modules relative to torsion theories

In [8], Y. Kurata and H. Katayama characterize QF-3′ modules by using
torsion theories. In this section we generalize QF-3′ modules by using an
idempotent radical. A preradical σ is idempotent[radical] if σ(σ(M)) =
σ(M)[σ (M/σ(M)) = 0] for a module M , respectively. A subclass C of
Mod-R is closed under taking extensions if M ∈ C holds for any module M
and any submodule N such that N ∈ C and M/N ∈ C. It is well known
that if σ is idempotent preradical then Fσ is closed under taking extensions
and that if σ is a radical then Tσ is closed under taking extensions. It is
well known, too, that a preradical σ is idempotent if σ is left exact. For a
module M , Eσ(M) is the same as in the above introduction. If a preradical
σ is a radical, then E(M)/Eσ(M) ∈ Fσ, and so Eσ(M) is σ-injective for
any module M by Lemma 2.4 in [9]. Eσ(M) is called the σ-injective hull of
M . For a module M and N , kN (M) denote ∩{ker f : f ∈ HomR(M,N)}.
It is well known that kN is a radical for any module N and that TkN =
{M ∈ Mod-R : HomR(M,N) = 0} and FkN = {M ∈ Mod-R : M →֒ ΠN}.
For a preradical σ, N is called to be a σ-dense submodule of a module M if
M/N ∈ Tσ. For a preradical σ and t, we call t σ-left exact if t(N) = N∩t(M)
holds for any σ-dense submodule N of a module M . A subclass C of Mod-R
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is called to be closed under taking σ-extensions if M ∈ C holds for any
module M and any submodule N such that N ∈ C and M/N ∈ C ∩ T σ.
For a module M and a submodule N of M , N is called to be a σ-essential
extension of M if N is essential in M and is a σ-dense submodule of M .

Theorem 1. Let A be a nonzero module and σ a preradical. Then the
following conditions (1), (2) and (3) are equivalent. If σ is an idempotent
radical, then (1), (2), (3) and (4) are equivalent. Moreover if σ is a left
exact radical and A is σ-torsion, then all conditions are equivalent.

(1) A is a σ-QF-3′ module, that is, it holds that Eσ(A) →֒ ΠA.
(2) kA(Eσ(A)) = 0.
(3) kA(−) = kEσ(A)(−).
(4) kA is a σ-left exact preradical.

(5) Let 0 → N
f
→ M → L → 0 be an exact sequence such that L is

σ-torsion. If HomR(f,A) = 0, then HomR(N,A) = 0.
(6) (i) TkA is closed under taking σ-dense submodules.

(ii) FkA is closed under σ-extensions.
(7) FkA is closed under taking σ-injective hulls.
(8) FkA is closed under taking σ-essential extensions.

Proof. (1)→(3): It is clear that kA(M) ⊇ kEσ(A)(M) for a module M . We
will show that kA(M) ⊆ kEσ(A)(M). Let m be a nonzero element in kA(M).
Assume that f(m) 6= 0 for an f ∈ HomR(M,Eσ(A)). Since Eσ(A) is A-
torsionless, there exists a g ∈ HomR(Eσ(A), A) such that g(f(m)) 6= 0. It is
a contradiction for gf ∈ HomR(M,A) and m ∈ kA(M). Thus it holds that
kA(M) ⊆ kEσ(A)(M) as desired.

(3)→(2): This is clear, for 0 = kEσ(A)(Eσ(A)) = kA(Eσ(A)).
(2)→(1): Let φ be a homomorphism from Eσ(A) to Π

fi∈I
Afi

(I = HomR(Eσ(A), A), x ∈ Eσ(A) ⇒ φ(x) = Π
fi
(fi(x))). By the assump-

tion φ is a monomorphism.
(3)→(4): Suppose that σ is an idempotent radical. Let N be a submodule

of a module M such that M/N ∈ Tσ. It is clear that kA(N) ⊆ N ∩ kA(M)
holds. Since σ is a radical, Eσ(A) is σ-injective. Thus kEσ(A)(N) ⊇ N ∩
kEσ(A)(M) holds, and so by the assumption kA(N) ⊇ N ∩ kA(M) holds, as
desired.

(4)→(2): As σ is an idempotent preradical, it follows that Eσ(A)/A ∈ Tσ.
Thus by the assumption A ∩ kA(Eσ(A)) = kA(A) = 0. Since Eσ(A) is
essential in A, kA(Eσ(A)) = 0, as desired.

For the rest of the proof we assume that σ is a left exact radical and
A ∈ Tσ.
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(1)→(5): Let 0→ N
f
→M → L→ 0 be an exact sequence such that L is

σ-torsion. If HomR(N,A) ∋ g 6= 0, g is extended to g′ ∈ HomR(M,Eσ(A))
such that g′f = ig, where i is a inclusion from A to Eσ(A). Since ig 6= 0
and Eσ(A) ⊆ ΠA, there exists a p ∈ HomR(Eσ(A), A) such that pig 6= 0.
Then 0 6= pig = pg′f ∈ HomR(f,A) = 0, this is a contradiction, and so
HomR(N,A) = 0 holds.

(5)→(2): We put N = kA(Eσ(A)). Since Tσ is closed under taking exten-
sions, Eσ(A) ∈ Tσ. As Tσ is closed under taking factor modules, Eσ(A)/N ∈

Tσ. Consider the exact sequence 0→ N
f
→ Eσ(A)→ Eσ(A)/N → 0.

It follows that HomR(Eσ(A), A)
HomR(f,A)
→ HomR(N,A).Then it holds that

HomR(f,A) = 0, since N is kA(Eσ(A)). By the assumption, it holds that
HomR(N,A) = 0.

Next we will show that N = 0. Assume that N 6= 0. Since A is essential
in Eσ(A), N ∩A 6= 0. It follows that N/(N ∩A) ≃ (N +A)/A ⊆ Eσ(A)/A ∈

Tσ. Consider the sequence 0 → N ∩ A
g
→ N → N/(N ∩ A) → 0. Since

HomR(N ∩ A,A) 6= 0, HomR(g,A) 6= 0. However this is a contradiction to
the fact that HomR(N,A) = 0. Thus N = 0, as desired.

(4)→(8): Let N ∈ FkA be an essential submodule of a module M with
M/N ∈ Tσ. Then by the assumption 0 = kA(N) = N ∩ kA(M), and so
kA(M) = 0 since N is essential in M .

(8)→(7): It is clear, since Eσ(M) is σ-essential extension of M for any
module M .

(7)→(6): (i) Let N be a submodule of M ∈ TkA such that M/N ∈ Tσ.
Consider the following diagram with exact rows.

0 −→ N
i
−→ M −→ M/N −→ 0





y

h





y

f

0 −→ N/kA(N)
j
−→ Eσ(N/kA(N)),

where i and j are the inclusion maps, h is the canonical epimorphism and
f is a homomorphism induced by the σ-injectivity of Eσ(N/kA(N)).

Since N/kA(N) ∈ FkA , it holds that Eσ(N/kA(N)) ∈ FkA by the assump-
tion. Since M ∈ TkA, it follows that f = 0, and so h = 0. As h is onto, it
follows that N/kA(N) = 0, as desired.

(ii): Let N ∈ FkA be a submodule of a module M such that M/N ∈
FkA ∩ Tσ. By σ-injectivity of Eσ(N), the inclusion map i from N to Eσ(N)
is extended to f ∈ HomR(M,Eσ(N)). By the assumption, it follows that
Eσ(N) ∈ FkA , and so f(kA(M)) ⊆ kA(Eσ(N)) = 0. Since M/N ∈ FkA , 0 =
kA(M/N) ⊇ (kA(M) +N)/N , and so N ⊇ kA(M). Thus 0 = f(kA(M)) =
i(kA(M)) = kA(M), and so M ∈ FkA .
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(6)→(1): First we will show that kA(Eσ(A)) $ Eσ(A). If Eσ(A) ∈ TkA ,
then A ∈ TkA holds by (i) for Eσ(A)/A ∈ Tσ. However A ∈ FkA holds, and
so A = 0. This is a contradiction. Thus it follows that Eσ(A) /∈ TkA , and
then kA(Eσ(A)) $ Eσ(A) holds.

Next we will show that kA(Eσ(A)) = 0. We put K = kA(Eσ(A)). If
K 6= 0, then A ∩K 6= 0 holds since A is essential in Eσ(A). As HomR(A ∩
K,A) 6= 0, it follows that A ∩K /∈ TkA . Since K/(A ∩K) ≃ (A +K)/A ⊆
Eσ(A)/A ∈ Tσ, it follows that K /∈ TkA , and so kA(K) $ K. We put
K ′ = kA(K). Since A ∈ Tσ and Eσ(A)/A ∈ Tσ, it follows that Eσ(A) ∈ Tσ.
ThusEσ(A)/K ∈ Tσ∩FkA . AsK/K ′ ∈ FkA , it follows that Eσ(A)/K

′ ∈ FkA

by (ii). Then K = kA(Eσ(A)) ⊆ K ′ holds. This is a contradiction to the
fact that K ′ = kA(K) $ K. Thus K = 0, as desired.

�

If σ is identity functor, then σ is a left exact radical and A is σ-torsion.
Thus then σ-QF-3′ modules are QF-3′ modules.

Next let σ = kE(RR)(−). Then it is well known that σ is a left exact
radical. The torsion theory (Tσ,Fσ) is called the Lambek torsion theory.
The localization ofRR with respect to (Tσ,Fσ) is known as the right maximal
quotient ring. Let Q be the right maximal quotient ring. Then since Q =
Eσ(R), we have the following result as an application of (1), (2), (3) and (4)
of Theorem 1.

Corollary 2. Let Q be a maximal right quotient ring. Then the following
conditions are equivalent.

(1) Q is torsionless(i.e. Q →֒ ΠR)
(2) kR(Q) = 0
(3) kR(−) = kQ(−)
(4) kR(N) = N ∩ kR(M) holds for a module M and any submodule N of

M such that HomR(M/N,E(R)) = 0.

Proposition 3. Suppose that σ is a left exact radical, then the following
conditions are equivalent.

(1) TkA is closed under taking σ-dense submodules.
(2) TkA = TkEσ(A)

Proof. (2)→(1): Let N be a submodule of a module M ∈ TkA such that
M/N ∈ Tσ. We will show that N ∈ TkA. Since TkEσ(A)

is closed under taking
σ-dense submodules and M ∈ TkA = TkEσ(A)

, it follows that N ∈ TkEσ(A)
for

M/N ∈ Tσ. As TkA = TkEσ(A)
, it follows that N ∈ TkA, as desired.

(1)→(2): It is clear that TkA ⊇ TkEσ(A)
. Let M be a module in TkA .

Assume that M /∈ TkEσ(A)
. Then there exists 0 6= f ∈ HomR(M,Eσ(A)),

and so f(M) 6= 0. Since A is essential in Eσ(A), f(M) ∩ A 6= 0. Let N
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denote f−1(f(M) ∩ A). Then N 6= 0 and M/N ≃ f(M)/(A ∩ f(M)) ≃
(A + f(M)/A ⊆ Eσ(A)/A ∈ Tσ, and so M/N ∈ Tσ. 0 6= f |N : N ։

f(M)∩A ⊆ A, where f |N is a restriction map of f to N . Thus it follows that
N /∈ TkA . By the assumption, M /∈ TkA holds, but this is a contradiction,
and so M ∈ TkEσ(A)

. Thus TkA ⊆ TkEσ(A)
holds, as desired. �

For a module M , Z(M) denotes the singular submodule of M . Then the
singular functor Z is a left exact preradical. For singular modules, please
refer to [5].

Proposition 4. If σ is a left exact radical and A ∈ Tσ ∩ FZ , then the
following conditions are equivalent.

(1) TkA is closed under taking σ-dense submodules.
(2) A is a σ-QF-3′ module.

Proof. It is sufficient to prove that (1)→(2). We will show that kA(Eσ(A)) =
0. Suppose that kA(Eσ(A)) 6= 0. Let K denote kA(Eσ(A)).

First we will show that HomR(Eσ(K), A) 6= 0. Assume that
HomR(Eσ(K), A) = 0, then Eσ(K) ∈ TkA . Since Eσ(K)/(A ∩ Eσ(K)) ≃
(A + Eσ(K))/A ⊆ Eσ(A)/A ∈ Tσ, Eσ(K)/(A ∩ Eσ(K)) ∈ Tσ holds, and
so A ∩ Eσ(K) ∈ TkA holds by (1). Thus HomR(A ∩ Eσ(K), A) = 0, and
so A ∩ Eσ(K) = 0. Since A is essential in Eσ(A), Eσ(K) = 0. This is a
contradiction to the fact that K 6= 0, and so HomR(Eσ(K), A) 6= 0.

Thus there exists an f ∈ HomR(Eσ(K), A) and 0 6= x ∈ Eσ(K) with
f(x) 6= 0. Since Z(A) = 0, (0 : f(x)) is not essential in R. Then there exists
a nonzero right ideal L of R such that L ∩ (0 : f(x)) = 0.

Next we will show that xL ∩ K 6= 0. Suppose that xL ∩ K = 0. Since
xL ⊆ Eσ(K) and K is essential in Eσ(K), xL = 0 holds. Therefore there
exists a nonzero element r of L such that xr = 0. Then 0 = f(0) = f(xr) =
f(x)r, and so r ∈ L ∩ (0 : f(x)) = 0, this is a contradiction to the fact that
r 6= 0. Thus xL ∩K 6= 0 holds.

Thus there exists 0 6= r ∈ L such that 0 6= xr ∈ K. If f(xr) = 0, then r ∈
L ∩ (0 : f(x)) = 0, this is a contradiction to r 6= 0. Therefore it follows that
f(xr) 6= 0, and so f(K) 6= 0 for f(K) ∋ f(xr). Since A ∈ Tσ and Eσ(A)/A ∈
Tσ, it follows that Eσ(A) ∈ Tσ. And so Eσ(A)/Eσ(K) ∈ Tσ. Thus the
following exact sequence 0→ Eσ(K)→ Eσ(A)→ Eσ(A)/Eσ(K)→ 0 splits.
Since Eσ(K) is a direct summand of Eσ(A), f ∈ HomR(Eσ(K), A) can be
extended to g ∈ HomR(Eσ(A), A). Therefore g(K) = f(K) 6= 0 holds, but
this is a contradiction to the fact that K = kA(Eσ(A)). Thus K = 0, as
desired. �

A module M is called a σ-essential extension of N if N is an essential
submodule of M such that M/N is σ-torsion, and then N is also called as
a σ-essential submodule of M .
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Lemma 5. Let σ be an idempotent radical. If M is a σ-essential extension
of a module N , then Eσ(M) = Eσ(N) holds. The converse holds if σ is a
left exact radical.

Proof. Let N be an σ-essential submodule of a module M . Consider the
exact sequence 0 → M/N → Eσ(M)/N → Eσ(M)/M → 0. Since Tσ
is closed under taking extensions, Eσ(M)/N ∈ Tσ. As Tσ is closed under
taking factor modules, Eσ(M)/Eσ(N) ∈ Tσ. Thus there exists a submodule
K of Eσ(M) such that Eσ(M) = Eσ(N) ⊕ K. Since N is essential in M
and M is essential in Eσ(M), N is essential in Eσ(M). As Eσ(N) ∩K = 0,
N ∩K = 0, and so K = 0 holds. Thus Eσ(M) = Eσ(N) holds.

The converse is clear since M/N →֒ Eσ(M)/N = Eσ(N)/N ∈ Tσ. �

Proposition 6. Let σ be an idempotent radical. Then the class of σ-QF-3′

modules is closed under taking σ-essential extensions.

Proof. Let N be a σ-QF-3′ module and suppose that N is a σ-essential
submodule of M . Then Eσ(N) = Eσ(M) holds by Lemma 5, and so
Eσ(M) = Eσ(N) →֒ ΠN →֒ ΠM , as desired. �

2. σ-left exact preradical and σ-hereditary torsion theories

It is well known that preradical t is left exact iff t(N) = N ∩ t(M) holds
for any module M and any submodule N of M . In this section we generalize
left exact preradicals by using torsion theories.

Let σ be a preradical. We call a preradical t σ-left exact if t(N) =
N ∩ t(M) holds for any module M and any σ-dense submodule N of M . If
a module A is σ-QF-3′ and t = kA, then t is a σ-left exact radical. Now we
characterize σ-left exact preradicals.

Lemma 7. For a preradical t and an idempotent radical σ, let tσ(M) denote
M ∩ t(Eσ(M)) for any module M . Then tσ(M) is uniquely determined for
any choice of E(M).

Proof. Let E1 and E2 be σ-injective hulls of a module M . Then there
exists isomorphisms g : E1 → E2 and h : E2 → E1 such that gh = 1E2

and hg = 1E1 and h|M = g|M = 1M . Now we get the following equation
M ∩ t(E1) = g(M ∩ t(E1)) ⊆ g(M) ∩ g(t(E1)) ⊆ M ∩ t(E2). By the same
way M ∩ t(E2) ⊆M ∩ t(E1) holds. Therefore we conclude that M ∩ t(E2) =
M ∩ t(E1). �

Lemma 8. Let t be a preradical and σ an idempotent radical. Then tσ is a
σ-left exact preradical.

Proof. Let N be a submodule of a module M such that M/N ∈ Tσ. Since
M/N and Eσ(M)/M is σ-torsion, it follows that Eσ(M)/N ∈ Tσ, and so
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Eσ(M)/Eσ(N) ∈ Tσ. Since Eσ(N) is σ-injective, there exists a submodule
K of Eσ(M) such that Eσ(M) = Eσ(N) ⊕K. Then Eσ(N) ∩ t(Eσ(M)) =
Eσ(N) ∩ {t(Eσ(N))⊕ t(K)} = t(Eσ(N)) ⊕ (Eσ(N) ∩ t(K)) = t(Eσ(N)) by
modular law. Therefore tσ(N) = N ∩ t(Eσ(N)) = N ∩Eσ(N)∩ t(Eσ(M)) =
N ∩ t(Eσ(M)) = N ∩M ∩ t(Eσ(M)) = N ∩ tσ(M). �

Theorem 9. Let σ be an idempotent radical. We consider the following
conditions on a preradical t. Then the implications (5)←(1)⇔(2)→(3)⇔(4)
hold. If t is a radical, then (4)→(1) holds. If t is an idempotent preradical
and σ is left exact, then(5)(i)→(1)holds. Thus if t is an idempotent radical
and σ is a left exact radical, then all conditions are equivalent.

(1) t is a σ-left exact preradical.
(2) t(M) = M ∩ t(Eσ(M)) holds for any module M .
(3) Ft is closed under taking σ-essential extensions.
(4) Ft is closed under taking σ-injective hulls.
(5) (i) Tt is closed under taking σ-dense submodules.

(ii) Ft is closed under taking σ-extensions.

Proof. (1)→(2): It is clear, by Eσ(M)/M ∈ Tσ.
(2)→(1): LetN be a σ-dense submodule of a moduleM . SinceM/N ∈ Tσ

and Eσ(M)/M ∈ Tσ, it follows that Eσ(M)/N ∈ Tσ, and so
Eσ(M)/Eσ(N) ∈ Tσ. Thus there exists a submodule K such that
Eσ(M) = Eσ(N)⊕K. Then Eσ(N) ∩ t(Eσ(M)) = Eσ(N) ∩ {t(Eσ(N)⊕

t(K)} = t(Eσ(N)) ⊕ {Eσ(N) ∩ t(K)} = t(Eσ(N)) by modular law. Then
t(N) = N ∩ t(Eσ(N)) = N ∩ Eσ(N) ∩ t(Eσ(M)) = N ∩ t(Eσ(M)) = N ∩
M ∩ t(Eσ(M)) = N ∩ t(M)

(1)→(3): Let N ∈ Ft be a σ-essential submodule of a module M . Then
0 = t(N) = N ∩ t(M), and so t(M) = 0, as desired.

(3)→(4): This is clear, since M is σ-essential in Eσ(M) for any module
M .

(4)→(3): Let N ∈ Ft be a σ-essential submodule of a module M . It holds
that Eσ(N) ∈ Ft by the assumption and that Eσ(M) = Eσ(N) by Lemma
5. Thus it follows that Eσ(M) ∈ Ft. Therefore M ∈ Ft since Ft is closed
under taking submodules.

(1)→(5):(i) Let M ∈ Tt and N a σ-dense submodule of M . Then t(N) =
N ∩ t(M) = N ∩M = N , as desired.

(ii) Assume that N ∈ Ft and M/N ∈ Ft ∩ Tσ. Then 0 = t(M/N) ⊇
(t(M) + N)/N , and so N ⊇ t(M). By the assumption 0 = t(N) = N ∩
t(M) = t(M), as desired.

(4)→(1): We assume that t is a radical. Let N be a σ-dense submodule
of M . Consider the following diagram.
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0 −→ N
g
−→ M −→ M/N −→ 0





y

j





y

f

0 −→ N/t(N)
i
−→ Eσ(N/t(N)),

where g and i are the inclusion maps, j is the canonical homomorphism and
f is a homomorphism determined by the σ-injectivity of Eσ(N/t(N)).

Since t is a radical, N/t(N) ∈ Ft. By the assumption Eσ(N/t(N)) ∈ Ft.
Then it follows that f(t(M)) ⊆ t(Eσ(N/t(N))) = 0, and so t(M) ⊆ ker f .
Let f |N be a restriction map of f to N . Then it follows that t(N) = ker j =
ker f |N = N∩ker f ⊇ N∩t(M) ⊇ t(N), and so t(N) = N∩t(M), as desired.

(5)→(1): We assume that t is an idempotent radical and σ is left exact.
We know that Ft is closed under taking extensions since t is an idempotent
preradical. And so we use the condition (i) only. Let N be a σ-dense
submodule of M . Since t(M)/(N ∩ t(M)) ≃ (t(M) +N)/N ⊆ M/N ∈ Tσ,
N ∩ t(M) is a σ-dense submodule of t(M) ∈ Tt. Therefore N ∩ t(M) ∈ Tt
holds. Thus it follows that t(N) ⊆ N ∩ t(M) = t(N ∩ t(M)) ⊆ t(N), and so
t(N) = N ∩ t(M), as desired.

�

Proposition 10. Let σ be a left exact preradical and t a preradical. Then
the following conditions are equivalent.

(1) For any submodule N of any module M such that t(M) ⊇ N and
t(M)/N ∈ Tσ, it follows that N is in Tt.

(2) t is an idempotent preradical and a σ-left exact preradical.

Proof. (1)→(2): In (1) we use t(M) instead of N , then it is concluded that
t is idempotent preradical. Next in (1) we use N ∩ t(M) instead of N , for
t(M)/(N∩t(M)) ≃ (N+t(M))/N ⊆M/N ∈ Tσ. Thus N∩t(M) ∈ Tt holds,
and so t(N) ⊇ t(N ∩ t(M)) = N ∩ t(M) ⊇ t(N). Therefore t(N) = N ∩ t(M)
holds.

(2)→(1): Consider the exact sequence 0 → N → t(M) → t(M)/N → 0,
where t(M)/N ∈ Tσ. By the assumption t(N) = N ∩ t(t(M)) = N ∩ t(M) =
N , as desired. �

A torsion theory for C is a pair (T ,F) of classes of objects of C such that
(i) HomR(T, F ) = 0 for all T ∈ T , F ∈ F
(ii) HomR(M,F ) = 0 for all F ∈ F , then M ∈ T
(iii) HomR(T,N) = 0 for all T ∈ T , then N ∈ F
We put t(M) =

∑

N
T ∋N⊂M

(= ∩N
M/N∈F

), then T = T t and F = F t hold.

For a torsion theory (T ,F), if T is closed under taking submodules, then
(T ,F) is called a hereditary torsion theory. It is well known that T is closed
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under taking submodules if and only if F is closed under taking injective
hulls. Now we call (T ,F) a σ-hereditary torsion theory if T is closed under
taking σ-dense submodules, where σ is a preradical. If σ is a left exact
radical, T is closed under taking σ-dense submodules if and only if F is
closed under taking σ-injective hulls by Theorem 9.

Proposition 11. Let t be an idempotent preradical and σ a radical such that
Fσ ⊆ Ft. If Ft is closed under taking σ-injective hulls, then Ft is closed
under taking injective hulls.

Proof. Let M be a module in Ft. Then it follows that E(M)/Eσ(M) ≃
(E(M)/M)/σ(E(M)/M) ∈ Fσ ⊆ Ft, and so 0 = t(E(M)/Eσ(M)) ⊇
(t(E(M)) + Eσ(M))/Eσ(M). Thus t(E(M)) ⊆ Eσ(M) ∈ Ft, and so 0 =
t(t(E(M))) = t(E(M)). Therefore it follows that E(M) ∈ Ft. �

Proposition 12. If σ(M) ⊇ Z(M) for any module M , then a σ-left exact
preradical is left exact, where σ is a preradical.

Proof. Let t be a σ-left exact preradical. Since M is essential in E(M) for
a module M , it follows that E(M)/M = Z(E(M)/M) ⊆ σ(E(M)/M). So
it holds that E(M)/M ∈ Tσ. Thus t(M) = M ∩ t(E(M)) holds since t is
σ-left exact. If we use Lemma 8 for σ = 1, we find that t is a left exact
preradical. �

Theorem 13. Let σ be a left exact radical and (T ,F) a torsion theory.
Suppose that there exists Q ∈ F such that T = {M ∈ Mod-R : HomR(M,
Q) = 0}. Then (T ,F) is σ-hereditary if and only if T = {M ∈ Mod-R :
HomR(M,Eσ(Q)) = 0}

Proof. Suppose that T = {M ∈ Mod-R : HomR(M,Eσ(Q)) = 0}. Since it is
easily verified that T is closed under taking factor modules, direct sums and
extensions, T is a torsion part of some torsion theory. Thus it is sufficient
to be proved that T is closed under taking σ-dense submodules. Let M be
a module in T and N be a σ-dense submodule of M . Consider the following
diagram.

0 −→ N −→ M −→ M/N −→ 0

f





y

Eσ(Q) ⊆ ΠQ −→ Q

For any nonzero homomorphism f from N to Eσ(Q), f is extended to a
nonzero homomorphism g from M to Eσ(Q). Since Eσ(Q) is Q-torsionless,
there exists a nonzero homomorphism h from Eσ(Q) to Q such that hg is
a nonzero homomorphism from M to Q, which is a contradiction. Thus
HomR(N,Eσ(Q)) = 0 and so N ∈ T . Therefore T is closed under taking
σ-dense submodules.
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Conversely suppose that T is closed under taking σ-dense submodules.
Let t be a σ-left exact idempotent radical associated with (T ,F) such that
T = Tt and F = Ft. By Theorem 9, F is closed under taking σ-injective hulls
if and only if T is closed under taking σ-dense submodules. Since Q ∈ F
and F is closed under taking σ-injective hulls, it follows that Eσ(Q) ∈ F .

Next we show that T = {M : HomR(M,Eσ(Q)) = 0}.
If M ∈ T , then HomR(M,Eσ(Q)) = 0 since Eσ(Q) ∈ F . Thus it follows

that T ⊆ {M : HomR(M,Eσ(Q)) = 0}.
Conversely suppose that HomR(M,Eσ(Q)) = 0. Since 0 → Q →

Eσ(Q), it follows that 0 → HomR(M,Q) → HomR(M,Eσ(Q)), and so
HomR(M,Q) = 0. Thus it holds that M ∈ T . Therefore it follows that
T = {M : HomR(M,Eσ(Q)) = 0}. �

Proposition 14. Let σ be a left exact radical and (T ,F) be a σ-hereditary
torsion theory, where T = {M ∈ Mod-R : HomR(M,Q) = 0} for some
σ-QF-3′ module Q in F . Let M be in Tσ. Then M is in F if and only if M
is contained in a direct product of some copies of Q.

Proof. Let M be a nonzero module in F ∩ T σ and x a nonzero element in
M . Then xR is in F . If xR is in T , xR ∈ F ∩ T = {0}, a contradiction.
Thus it holds that xR /∈ T = {M : HomR(M,Q) = 0}, and so there exists
a nonzero h ∈ HomR(xR,Q). Consider the following diagram.

0 −→ xR
i
−→ M −→ M/xR −→ 0

h





y





y

fx

0 −→ Q
j
−→ Eσ(Q) −֒→ ΠQ −→ Q,

where i and j are the inclusion maps fx is induced by the σ-injectivity
of Eσ(Q) since M/xR ∈ Tσ. By considering the above diagram we can
find that there exists a nonzero f ′

x : M → Q and s : Q → Q such that
sh(x) = f ′

x(x) 6= 0. Let g : M → Π
x∈M−{0}

Qx be a homomorphism such that

g(y) = (f ′
x(y)). Then clearly g(y) 6= 0 if y 6= 0. Hence g is a monomorphism.

Thus M →֒ ΠQ.
Conversely If M is contained in a direct product of copies of Q, M is in

F , since Q ∈ F and F is closed under taking products and submodules. �
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