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ON A GENERALIZATION OF QF-3' MODULES AND
HEREDITARY TORSION THEORIES

YasuHIKO TAKEHANA

Let R be a ring with identity, and let Mod-R be the category of right
R-modules. Let M be a right R-module. We denote by E(M) the injective
hull of M. M is called QF-3' module, if E(M) is M-torsionless, that is,
E(M) is isomorphic to a submodule of a direct product IIM of some copies
of M.

A subfunctor of the identity functor of Mod-R is called a preradical.
For a preradical o, T, := {M € Mod-R : o(M) = M} is the class of o-
torsion right R-modules, and F, := {M € Mod-R : (M) = 0} is the
class of o-torsionfree right R-modules. A right R-module M is called o-
injective if the functor Hompg(—, M) preserves the exactness for any exact
sequence 0 - A — B — C — 0 with C' € T,. A right R-module M is
called 0-QF-3" module if E,(M) is M-torsionless, where E, (M) is defined
by E,(M)/M = o(E(M)/M).

In this paper, we characterize 0-QF-3' modules and give some related
facts.

1. QF-3' MODULES RELATIVE TO TORSION THEORIES

In [8], Y. Kurata and H. Katayama characterize QF-3" modules by using
torsion theories. In this section we generalize QF-3’ modules by using an
idempotent radical. A preradical ¢ is idempotent|radical] if o(c(M)) =
o(M)[o (M/o(M)) = 0] for a module M, respectively. A subclass C of
Mod-R is closed under taking extensions if M & C holds for any module M
and any submodule N such that N € C and M/N € C. It is well known
that if o is idempotent preradical then F, is closed under taking extensions
and that if o is a radical then 7, is closed under taking extensions. It is
well known, too, that a preradical o is idempotent if o is left exact. For a
module M, E,(M) is the same as in the above introduction. If a preradical
o is a radical, then E(M)/E,(M) € F,, and so E,(M) is o-injective for
any module M by Lemma 2.4 in [9]. E,(M) is called the o-injective hull of
M. For a module M and N, ky(M) denote N{ker f : f € Hompg(M,N)}.
It is well known that ky is a radical for any module N and that Tz, =
{M € Mod-R : Hompr(M,N) = 0} and Fj, = {M € Mod-R : M — IIN}.
For a preradical o, N is called to be a o-dense submodule of a module M if
M/N € 7,. For a preradical o and t, we call t o-left exact if t(N) = NNt(M)
holds for any o-dense submodule N of a module M. A subclass C of Mod-R
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is called to be closed under taking o-extensions if M € C holds for any
module M and any submodule N such that N € C and M/N € CNT,.
For a module M and a submodule N of M, N is called to be a o-essential
extension of M if N is essential in M and is a o-dense submodule of M.

Theorem 1. Let A be a nonzero module and o a preradical. Then the
following conditions (1), (2) and (3) are equivalent. If o is an idempotent
radical, then (1), (2), (3) and (4) are equivalent. Moreover if o is a left
exact radical and A is o-torsion, then all conditions are equivalent.

(1) A is a o-QF-3' module, that is, it holds that E,(A) — ILA.

(2) ka(E(4)) = 0.

(3) k(=) = ki, ().

(4) ka is a o-left exact preradical.

(5) Let 0 — N Jo M = L = 0 be an exact sequence such that L 1is

o-torsion. If Hompg(f, A) =0, then Hompg(N, A) = 0.
(6) (i) Tk, is closed under taking o-dense submodules.
(ii) Fi, is closed under o-extensions.
(7) Fi, is closed under taking o-injective hulls.
(8) Fi, is closed under taking o-essential extensions.

Proof. (1)—(3): It is clear that ka(M) 2 kg, (4)(M) for a module M. We
will show that ka(M) C kg, (a)(M). Let m be a nonzero element in ka(M).
Assume that f(m) # 0 for an f € Hompr(M, E,(A)). Since E,(A) is A-
torsionless, there exists a ¢ € Homp(E,(A), A) such that g(f(m)) # 0. It is
a contradiction for gf € Homp(M, A) and m € ka(M). Thus it holds that
ka(M) C kg, (M) as desired.

(3)—(2): This is clear, for 0 = kg, (4)(Es(A)) = ka(Es(A)).

(2)—(1): Let ¢ be a homomorphism from E,(A) to f_lgIAfi

(I = Hompg(E,(A),A), z € E;(A) = ¢(x) = I;E(fl(a:))) By the assump-

tion ¢ is a monomorphism.

(3)—(4): Suppose that ¢ is an idempotent radical. Let N be a submodule
of a module M such that M /N € T,. It is clear that k4(N) C N Nka(M)
holds. Since o is a radical, E,(A) is o-injective. Thus kg 4)(N) 2 N N
kg, a)(M) holds, and so by the assumption ka(N) 2 N Nka(M) holds, as
desired.

(4)—(2): As o is an idempotent preradical, it follows that E,(A)/A € T,.
Thus by the assumption A N ka(Es(A)) = ka(A) = 0. Since E,(A) is
essential in A, ka(Es(A)) =0, as desired.

For the rest of the proof we assume that o is a left exact radical and

AecT,.
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(1)=(5): Let 0 = N Iy M — L = 0 be an exact sequence such that L is
o-torsion. If Homp (N, A) 3 g # 0, g is extended to ¢ € Homg(M, E,(A))
such that ¢'f = ig, where i is a inclusion from A to E,(A). Since ig # 0
and E,(A) C IIA, there exists a p € Homg(E,(A), A) such that pig # 0.
Then 0 # pig = pg’f € Hompg(f,A) = 0, this is a contradiction, and so
Homp(N, A) = 0 holds.
(5)—(2): We put N = ka(E,(A)). Since 7, is closed under taking exten-
sions, E,(A) € T5. As T, is closed under taking factor modules, E,(A)/N €

7. Consider the exact sequence 0 — N ER E,(A) — E,(A)/N — 0.

It follows that Homp(E,(A), A) HomalhA) Hom r(N, A).Then it holds that
Homp(f, A) = 0, since N is ka(E,(A)). By the assumption, it holds that
HOIIlR(N, A) = 0.

Next we will show that N = 0. Assume that N £ 0. Since A is essential
in E;(A), NNA # 0. It follows that N/(NNA) ~ (N+A)/AC E,(A)/A €
7,. Consider the sequence 0 - NN A % N — N/(NN A) — 0. Since
Homp(N N A, A) # 0, Hompg(g, A) # 0. However this is a contradiction to
the fact that Homp(N, A) = 0. Thus N = 0, as desired.

(4)—(8): Let N € Fj, be an essential submodule of a module M with
M/N € T,. Then by the assumption 0 = ka(N) = N N ka(M), and so
kao(M) = 0 since N is essential in M.

(8)—(7): It is clear, since E,(M) is o-essential extension of M for any
module M.

(7)—=(6): (i) Let NV be a submodule of M € Ty, such that M/N € 7T,.
Consider the following diagram with exact rows.

0 —» N AN M — M/N — 0

oo b

0 — N/ka(N) -5 E,(N/ka(N)),

where ¢ and j are the inclusion maps, h is the canonical epimorphism and
f is a homomorphism induced by the o-injectivity of E,(N/ka(N)).

Since N/ks(N) € Fy,, it holds that E,(N/ka(N)) € Fj, by the assump-
tion. Since M € Tj,, it follows that f = 0, and so h = 0. As h is onto, it
follows that N/k4(N) = 0, as desired.

(ii): Let N € Fj, be a submodule of a module M such that M/N €
Fi, N To. By o-injectivity of E,(N), the inclusion map ¢ from N to Es(N)
is extended to f € Hompg(M, E,(N)). By the assumption, it follows that
Es(N) € Fi,, and so f(ka(M)) C ka(Es(N)) =0. Since M/N € Fj,,, 0 =
ka(M/N) 2 (ka(M)+ N)/N, and so N D ks(M). Thus 0 = f(ka(M)) =
’L(/{JA(M)) = kA(M), and so M € ka.
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(6)—(1): First we will show that ka(E,(A)) & Es(A). If E;(A) € T,
then A € T, holds by (i) for E,(A)/A € T,. However A € Fj,, holds, and
so A = 0. This is a contradiction. Thus it follows that E,(A) ¢ Tk,, and
then ka(E,(A)) & E,(A) holds.

Next we will show that k4(E,(A)) = 0. We put K = ka(E,(A)). If
K # 0, then AN K # 0 holds since A is essential in E,(A). As Homp(AN
K,A) # 0, it follows that AN K ¢ Ti,. Since K/(ANK) ~ (A+ K)/A C
E;(A)/A € T, it follows that K ¢ T,, and so ka(K) & K. We put
K' = ky(K). Since A € 7, and E,(A)/A € T, it follows that E,(A) € T,.
Thus E,(A)/K € ToNFi,. As K/K' € Fy,,, it follows that E,(A)/K' € Fi,,
by (ii). Then K = ka(FE,(A)) C K’ holds. This is a contradiction to the
fact that K' = ks(K) G K. Thus K = 0, as desired.

U

If o is identity functor, then o is a left exact radical and A is o-torsion.
Thus then o-QF-3" modules are QF-3' modules.

Next let 0 = kp(r,)(—). Then it is well known that o is a left exact
radical. The torsion theory (7,,Fs) is called the Lambek torsion theory.
The localization of Rr with respect to (75, F5) is known as the right maximal
quotient ring. Let () be the right maximal quotient ring. Then since ) =
E,(R), we have the following result as an application of (1), (2), (3) and (4)
of Theorem 1.

Corollary 2. Let () be a mazximal right quotient ring. Then the following
conditions are equivalent.

(1) Q is torsionless(i.e. @ — IIR)

(2) kr(Q) =0

(9) kr(=) = ko(-)

(4) kr(N) = N Nkg(M) holds for a module M and any submodule N of
M such that Homg(M /N, E(R)) = 0.

Proposition 3. Suppose that o is a left exact radical, then the following
conditions are equivalent.
(1) T, is closed under taking o-dense submodules.

(2) Tey = 77€EU(A)

Proof. (2)—(1): Let N be a submodule of a module M € T}, such that
M/N € T,. We will show that N € T ,. Since EEU(A) is closed under taking
o-dense submodules and M € T, = EEU " it follows that N € EEU ) for
M/N €T As T, = EEU(A), it follows that N € Ty, as desired.

(1)—(2): It is clear that Ty, 2 Ty, - Let M be a module in Tj,.
Assume that M ¢ Ty, , . Then there exists 0 # f € Hompg(M, E(A)),
and so f(M) # 0. Since A is essential in E,(A), f(M)N A # 0. Let N
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denote f~1(f(M)N A). Then N # 0 and M/N ~ f(M)/(AN f(M)) ~
(A+ f(M)/A C E,(A)/JA € T,, and so M/N € T,. 0 # fly : N —
f(M)NA C A, where f|y is a restriction map of f to N. Thus it follows that
N ¢ Ty,. By the assumption, M ¢ T, holds, but this is a contradiction,
and so M € EEU(A). Thus Ti, C EEU(A) holds, as desired. O

For a module M, Z(M) denotes the singular submodule of M. Then the
singular functor Z is a left exact preradical. For singular modules, please
refer to [5].

Proposition 4. If o is a left exact radical and A € T, N Fyz, then the
following conditions are equivalent.

(1) T, is closed under taking o-dense submodules.
(2) A is a o-QF-3" module.

Proof. 1t is sufficient to prove that (1)—(2). We will show that k4 (E,(A)) =
0. Suppose that k4(E,(A)) # 0. Let K denote ka(E,(A)).

First we will show that Hompg(E,(K),A) # 0. Assume that
Homp(E,(K),A) = 0, then E,(K) € Ti,. Since E,(K)/(AN E,(K)) ~
(A+ Ey(K))/A C E;(A)/JA € T,, E;(K)/(AN E,(K)) € T, holds, and
so AN E,(K) € T, holds by (1). Thus Homgr(A N E,(K),A) = 0, and
so AN E,(K) = 0. Since A is essential in E,(A), E,(K) = 0. This is a
contradiction to the fact that K # 0, and so Hompg(E,(K), A) # 0.

Thus there exists an f € Homp(FE,(K),A) and 0 # x € E,(K) with
f(z) # 0. Since Z(A) =0, (0: f(z)) is not essential in R. Then there exists
a nonzero right ideal L of R such that LN (0: f(x)) = 0.

Next we will show that L N K # 0. Suppose that xL N K = 0. Since
xL C E;(K) and K is essential in F,(K), L = 0 holds. Therefore there
exists a nonzero element r of L such that zr = 0. Then 0 = f(0) = f(zr) =
f(x)r,and sor € LN (0: f(x)) =0, this is a contradiction to the fact that
r # 0. Thus L N K # 0 holds.

Thus there exists 0 # r € L such that 0 # xr € K. If f(xr) =0, then r €
LN (0: f(z)) =0, this is a contradiction to r # 0. Therefore it follows that
f(xr) #0,and so f(K) # 0 for f(K) > f(zr). Since A € T, and E,(A)/A €
75, it follows that E,(A) € T,. And so E,(A)/E,(K) € T,. Thus the
following exact sequence 0 — E,(K) — Es(A) — E;(A)/E,(K) — 0 splits.
Since E,(K) is a direct summand of FE,(A), f € Hompg(E,(K),A) can be
extended to g € Homp(E,(A), A). Therefore g(K) = f(K) # 0 holds, but
this is a contradiction to the fact that K = ka(Es(A)). Thus K = 0, as
desired. O

A module M is called a o-essential extension of NV if N is an essential
submodule of M such that M/N is o-torsion, and then N is also called as
a o-essential submodule of M.
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Lemma 5. Let o be an idempotent radical. If M is a o-essential extension
of a module N, then E,(M) = E,(N) holds. The converse holds if o is a
left exact radical.

Proof. Let N be an o-essential submodule of a module M. Consider the
exact sequence 0 - M/N — E,(M)/N — E,(M)/M — 0. Since T,
is closed under taking extensions, E,(M)/N € T,. As 7T, is closed under
taking factor modules, E,(M)/Es(N) € T,. Thus there exists a submodule
K of E,(M) such that E,(M) = E,(N) @ K. Since N is essential in M
and M is essential in E,(M), N is essential in E,(M). As E,(N)NK =0,
NNK =0, and so K =0 holds. Thus E,(M) = E,(N) holds.

The converse is clear since M/N — E,(M)/N = E,(N)/N € 7T,. O

Proposition 6. Let o be an idempotent radical. Then the class of o-QF-3'
modules is closed under taking o-essential extensions.

Proof. Let N be a 0-QF-3 module and suppose that N is a o-essential
submodule of M. Then E,(N) = E,(M) holds by Lemma 5, and so
E,(M) = E,;(N) < IIN — IIM, as desired. O

2. 0-LEFT EXACT PRERADICAL AND 0-HEREDITARY TORSION THEORIES

It is well known that preradical ¢ is left exact iff t(N) = N N¢(M) holds
for any module M and any submodule N of M. In this section we generalize
left exact preradicals by using torsion theories.

Let o be a preradical. We call a preradical ¢ o-left exact if ¢(N) =
N Nt(M) holds for any module M and any o-dense submodule N of M. If
a module A is 0-QF-3’" and ¢t = k4, then ¢ is a o-left exact radical. Now we
characterize o-left exact preradicals.

Lemma 7. For a preradical t and an idempotent radical o, let t,(M) denote
M Nt(E,(M)) for any module M. Then t,(M) is uniquely determined for
any choice of E(M).

Proof. Let E1 and FE5 be o-injective hulls of a module M. Then there
exists isomorphisms g : £y — Ey and h : By — Ej such that gh = 1,
and hg = 1g, and h|y = glpr = 1y Now we get the following equation
M Nt(Ey) = g(MNt(E)) Cg(M)ng(t(Er)) € M Nt(E2). By the same
way M Nt(Ey) C M Nt(E7) holds. Therefore we conclude that M Nt(Esy) =
M Nt(Ey). O

Lemma 8. Lett be a preradical and o an idempotent radical. Then t, is a
o-left exact preradical.

Proof. Let N be a submodule of a module M such that M /N € 7,. Since
M/N and E,(M)/M is o-torsion, it follows that E,(M)/N € 7T,, and so
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E,(M)/E,(N) € T,. Since E,(N) is o-injective, there exists a submodule
K of E,(M) such that E,(M) = E,(N) ® K. Then E,(N)Nt(E,(M)) =
Eo(N) N{t(Eo(N)) @ t(K)} = t(E;(N)) © (E;(N) Nt(K)) = t(Es(N)) by
modular law. Therefore t,(N) = NNt(E,(N)) = NNE;(N)Nt(E,(M))

NNt(E,(M))=NNMnNt(E,(M)) =N Nt,(M).

Ol

Theorem 9. Let o be an idempotent radical. We consider the following
conditions on a preradical t. Then the implications (5)«(1)=(2)—(3)<(4)
hold. If t is a radical, then (4)—(1) holds. If t is an idempotent preradical
and o is left exact, then(5)(i)—(1)holds. Thus if t is an idempotent radical
and o 1s a left exact radical, then all conditions are equivalent.

(1) t is a o-left exact preradical.

(2) t(M) =M Nt(E,(M)) holds for any module M .

(3) Fi is closed under taking o-essential extensions.

(4) F is closed under taking o-injective hulls.

(5) (1) T; is closed under taking o-dense submodules.

(i1) Fy is closed under taking o-extensions.

Proof. (1)—(2): Tt is clear, by E,(M)/M € T,
(2)—(1): Let N be a o-dense submodule of a module M. Since M/N € T,
and EU(M)/M € 75, it follows that E,(M)/N € T, and so
E,(M)/E;(N) € T,. Thus there exists a submodule K such that
E,(M)=E,(N)@® K. Then E,(N)Nt(E,(M)) = E;(N)N{t(E,(N) ®
t(K)} = t(E;(N)) ® {E,(N)Nt(K)} = t(E;(N)) by modular law. Then
t(N) = NNt(E;(N)) = NNE;(N)Nt(Es(M)) = NNt(E,(M)) = Nn

M N HE,(M)) = NN t(M)

(1)=(3): Let N € F; be a o-essential submodule of a module M. Then
0=t(N)=NnNt(M), and so t(M) = 0, as desired.

3)—(4): This is clear, since M is o-essential in E,(M) for any module

(
(4)—(3): Let N € F; be a g-essential submodule of a module M. It holds
that E,(N) € F; by the assumption and that E,(M) = E,(N) by Lemma
5. Thus it follows that E,(M) € F;. Therefore M € F; since F; is closed
under taking submodules.

(1)—=(5):(i) Let M € T; and N a o-dense submodule of M. Then ¢(N) =
NNt(M)=NnNM = N, as desired.

(ii) Assume that N € F and M/N € F; N T,. Then 0 = t(M/N) D
(t(M)+ N)/N, and so N D t(M). By the assumption 0 = ¢(N) = N N
t(M) =t(M), as desired.

(4)—(1): We assume that ¢ is a radical. Let N be a o-dense submodule
of M. Consider the following diagram.

M
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o — N L M — M/N — 0

!
0 — N/t(N) -5 E,(N/{(N)),

where g and 7 are the inclusion maps, j is the canonical homomorphism and
f is a homomorphism determined by the o-injectivity of E,(N/t(NN)).
Since t is a radical, N/t(N) € F;. By the assumption E,(N/t(N)) € F;.
Then it follows that f(t(M)) C t(E,(N/t(N))) = 0, and so t(M) C ker f.
Let f|n be a restriction map of f to N. Then it follows that ¢(IN) = ker j =
ker f|y = NNker f D NNt(M) D t(N), and so t(N) = NNt(M), as desired.
(5)—(1): We assume that ¢ is an idempotent radical and o is left exact.
We know that F; is closed under taking extensions since ¢ is an idempotent
preradical. And so we use the condition (i) only. Let N be a o-dense
submodule of M. Since t(M)/(N Nt(M)) ~ (¢(M)+ N)/N C M/N € T,,
N Nt(M) is a o-dense submodule of ¢(M) € T;. Therefore N Nt(M) € T;
holds. Thus it follows that t(N) C NNt(M) =t(NNt(M)) C t(N), and so
t(N) = NnNt(M), as desired.
U

Proposition 10. Let o be a left exact preradical and t a preradical. Then
the following conditions are equivalent.

(1) For any submodule N of any module M such that t(M) O N and
t(M)/N € T, it follows that N is in Ty.

(2) t is an idempotent preradical and a o-left exact preradical.

Proof. (1)—(2): In (1) we use t(M) instead of N, then it is concluded that
t is idempotent preradical. Next in (1) we use N N¢(M) instead of N, for
t(M)/(NOt(M)) ~ (N +t(M))/N C M/N € T,. Thus NNt(M) € 7T; holds,
and so t(N) D t(NNt(M)) = NNt(M) D t(N). Therefore t(N) = NNt(M)
holds.

(2)—(1): Consider the exact sequence 0 — N — t(M) — t(M)/N — 0,
where t(M)/N € T,. By the assumption t(N) = NNt(t(M)) = NNt(M) =
N, as desired. ]

A torsion theory for C is a pair (7, .F) of classes of objects of C such that
(i) Homp(T,F) =0forall T € T, F € F

(ii) Homp(M, F) =0 for all F € F, then M € T

(iii)) Hompg(T,N) =0 for all T' € T, then N € F

Weput t(M)= > N (= NN ), then T =T, and F = F; hold.
TSNcM  M/INEF

For a torsion theory (7, F), if T is closed under taking submodules, then
(T, F) is called a hereditary torsion theory. It is well known that 7 is closed
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under taking submodules if and only if F is closed under taking injective
hulls. Now we call (7, F) a o-hereditary torsion theory if T is closed under
taking o-dense submodules, where ¢ is a preradical. If ¢ is a left exact
radical, T is closed under taking o-dense submodules if and only if F is
closed under taking o-injective hulls by Theorem 9.

Proposition 11. Lett be an idempotent preradical and o a radical such that
Fo C Fi. If Fi is closed under taking o-injective hulls, then F; is closed
under taking injective hulls.

Proof. Let M be a module in F;. Then it follows that E(M)/E,(M)
(E(M)/M)/o(EQM)/M) € Fo C F, and so 0 = t(E(M)/E,(M))
(t(E(M)) + E;(M))/Es(M). Thus t(E(M)) C E,(M) € F, and so 0
t(t(E(M))) = t(E(M)). Therefore it follows that E(M) € F;.

Proposition 12. If o(M) D Z(M) for any module M, then a o-left exact
preradical is left exact, where o is a preradical.

O v R

Proof. Let t be a o-left exact preradical. Since M is essential in F(M) for
a module M, it follows that E(M)/M = Z(E(M)/M) C o(E(M)/M). So
it holds that E(M)/M € T,. Thus t(M) = M Nt(E(M)) holds since t is
o-left exact. If we use Lemma 8 for o = 1, we find that ¢ is a left exact
preradical. O

Theorem 13. Let o be a left exact radical and (T,F) a torsion theory.
Suppose that there exists QQ € F such that T = {M € Mod-R : Hompg(M,
Q) = 0}. Then (T,F) is o-hereditary if and only if T = {M € Mod-R :
Hompg (M, E,(Q)) = 0}

Proof. Suppose that T = {M € Mod-R : Homg (M, E,(Q)) = 0}. Since it is
easily verified that 7 is closed under taking factor modules, direct sums and
extensions, 7 is a torsion part of some torsion theory. Thus it is sufficient
to be proved that 7 is closed under taking o-dense submodules. Let M be
a module in 7 and N be a o-dense submodule of M. Consider the following
diagram.
O — N — M — M/N — 0
7|
EO'(Q) g HQ — Q

For any nonzero homomorphism f from N to E,(Q), f is extended to a
nonzero homomorphism g from M to E,(Q). Since E,(Q) is Q-torsionless,
there exists a nonzero homomorphism h from E,(Q) to @ such that hg is
a nonzero homomorphism from M to (), which is a contradiction. Thus

Hompg(N, E;(Q)) = 0 and so N € T. Therefore T is closed under taking
o-dense submodules.
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Conversely suppose that 7T is closed under taking o-dense submodules.
Let t be a o-left exact idempotent radical associated with (7, F) such that
T =Ty and F = F;. By Theorem 9, F is closed under taking o-injective hulls
if and only if 7 is closed under taking o-dense submodules. Since Q) € F
and F is closed under taking o-injective hulls, it follows that E,(Q) € F.

Next we show that 7 = {M : Homg(M, E,(Q)) = 0}.

If M € T, then Homg(M, E,(Q)) = 0 since E,(Q) € F. Thus it follows
that 7 C {M : Homg(M, E,(Q)) = 0}.

Conversely suppose that Homp(M, E,(Q)) = 0. Since 0 — @Q —
E,;(Q), it follows that 0 — Hompg(M,Q) — Hompg(M, E,(Q)), and so
Homp(M,Q) = 0. Thus it holds that M € T. Therefore it follows that
T ={M : Homgr(M, E;(Q)) = 0}. O

Proposition 14. Let o be a left exact radical and (T, F) be a o-hereditary
torsion theory, where T = {M € Mod-R : Homgr(M,Q) = 0} for some
o-QF-3' module Q in F. Let M be in T,. Then M is in F if and only if M
18 contained in a direct product of some copies of Q.

Proof. Let M be a nonzero module in N T, and x a nonzero element in
M. Then zR isin F. If xR isin T, zR € FNT = {0}, a contradiction.
Thus it holds that R ¢ T = {M : Homg(M,Q) = 0}, and so there exists

a nonzero h € Hompg (xR, Q). Consider the following diagram.

0 — 2R % M — M/zR — 0

L

0 — Q@ L E Q) — 0Q — Q,

where ¢ and j are the inclusion maps f, is induced by the c-injectivity
of E,(Q) since M/xR € T,. By considering the above diagram we can
find that there exists a nonzero f., : M — @ and s : Q — @ such that

sh(z) = fl(x) #0. Let g : M — MH {O}Qx be a homomorphism such that
reM—

9(y) = (fL(y)). Then clearly g(y) # 0if y # 0. Hence g is a monomorphism.
Thus M — T1Q).

Conversely If M is contained in a direct product of copies of (), M is in
F, since () € F and F is closed under taking products and submodules. [J
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