ON A GENERALIZATION OF QF-3' MODULES AND HEREDITARY TORSION THEORIES

YASUHIKO TAKEHANA

Let R be a ring with identity, and let Mod-R be the category of right R-modules. Let M be a right R-module. We denote by E(M) the injective hull of M. M is called QF-3' module, if E(M) is M-torsionless, that is, E(M) is isomorphic to a submodule of a direct product ΠM of some copies of M.

A subfunctor of the identity functor of Mod-R is called a preradical. For a preradical σ , $\mathcal{T}_{\sigma} := \{M \in \text{Mod-}R : \sigma(M) = M\}$ is the class of σ torsion right R-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R : \sigma(M) = 0\}$ is the class of σ -torsionfree right R-modules. A right R-module M is called σ injective if the functor $\text{Hom}_R(-, M)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $C \in \mathcal{T}_{\sigma}$. A right R-module M is called σ -QF-3' module if $E_{\sigma}(M)$ is M-torsionless, where $E_{\sigma}(M)$ is defined by $E_{\sigma}(M)/M := \sigma(E(M)/M)$.

In this paper, we characterize σ -QF-3' modules and give some related facts.

1. QF-3' modules relative to torsion theories

In [8], Y. Kurata and H. Katayama characterize QF-3' modules by using torsion theories. In this section we generalize QF-3' modules by using an idempotent radical. A preradical σ is idempotent radical if $\sigma(\sigma(M)) =$ $\sigma(M)[\sigma(M/\sigma(M)) = 0]$ for a module M, respectively. A subclass C of Mod-R is closed under taking extensions if $M \in \mathcal{C}$ holds for any module M and any submodule N such that $N \in \mathcal{C}$ and $M/N \in \mathcal{C}$. It is well known that if σ is idempotent preradical then \mathcal{F}_{σ} is closed under taking extensions and that if σ is a radical then \mathcal{T}_{σ} is closed under taking extensions. It is well known, too, that a preradical σ is idempotent if σ is left exact. For a module M, $E_{\sigma}(M)$ is the same as in the above introduction. If a preradical σ is a radical, then $E(M)/E_{\sigma}(M) \in \mathcal{F}_{\sigma}$, and so $E_{\sigma}(M)$ is σ -injective for any module M by Lemma 2.4 in [9]. $E_{\sigma}(M)$ is called the σ -injective hull of M. For a module M and N, $k_N(M)$ denote $\cap \{ \ker f : f \in \operatorname{Hom}_R(M, N) \}$. It is well known that k_N is a radical for any module N and that \mathcal{T}_{k_N} = $\{M \in \operatorname{Mod} R : \operatorname{Hom}_R(M, N) = 0\}$ and $\mathcal{F}_{k_N} = \{M \in \operatorname{Mod} R : M \hookrightarrow \Pi N\}.$ For a preradical σ , N is called to be a σ -dense submodule of a module M if $M/N \in \mathcal{T}_{\sigma}$. For a preradical σ and t, we call t σ -left exact if $t(N) = N \cap t(M)$ holds for any σ -dense submodule N of a module M. A subclass C of Mod-R

Key words and phrases. QF-3', hereditary.

YASUHIKO TAKEHANA

is called to be closed under taking σ -extensions if $M \in \mathcal{C}$ holds for any module M and any submodule N such that $N \in \mathcal{C}$ and $M/N \in \mathcal{C} \cap \mathcal{T}_{\sigma}$. For a module M and a submodule N of M, N is called to be a σ -essential extension of M if N is essential in M and is a σ -dense submodule of M.

Theorem 1. Let A be a nonzero module and σ a preradical. Then the following conditions (1), (2) and (3) are equivalent. If σ is an idempotent radical, then (1), (2), (3) and (4) are equivalent. Moreover if σ is a left exact radical and A is σ -torsion, then all conditions are equivalent.

- (1) A is a σ -QF-3' module, that is, it holds that $E_{\sigma}(A) \hookrightarrow \Pi A$.
- (2) $k_A(E_{\sigma}(A)) = 0.$
- (3) $k_A(-) = k_{E_{\sigma}(A)}(-).$

(4) k_A is a σ -left exact preradical.

(5) Let $0 \to N \xrightarrow{f} M \to L \to 0$ be an exact sequence such that L is σ -torsion. If $\operatorname{Hom}_R(f, A) = 0$, then $\operatorname{Hom}_R(N, A) = 0$.

(6) (i) \mathcal{T}_{k_A} is closed under taking σ -dense submodules.

(ii) \mathcal{F}_{k_A} is closed under σ -extensions.

(7) \mathcal{F}_{k_A} is closed under taking σ -injective hulls.

(8) \mathcal{F}_{k_A} is closed under taking σ -essential extensions.

Proof. (1) \rightarrow (3): It is clear that $k_A(M) \supseteq k_{E_{\sigma}(A)}(M)$ for a module M. We will show that $k_A(M) \subseteq k_{E_{\sigma}(A)}(M)$. Let m be a nonzero element in $k_A(M)$. Assume that $f(m) \neq 0$ for an $f \in \operatorname{Hom}_R(M, E_{\sigma}(A))$. Since $E_{\sigma}(A)$ is Atorsionless, there exists a $g \in \operatorname{Hom}_R(E_{\sigma}(A), A)$ such that $g(f(m)) \neq 0$. It is a contradiction for $gf \in \operatorname{Hom}_R(M, A)$ and $m \in k_A(M)$. Thus it holds that $k_A(M) \subseteq k_{E_{\sigma}(A)}(M)$ as desired.

(3) \rightarrow (2): This is clear, for $0 = k_{E_{\sigma}(A)}(E_{\sigma}(A)) = k_A(E_{\sigma}(A))$. (2) \rightarrow (1): Let ϕ be a homomorphism from $E_{\sigma}(A)$ to $\prod_{f \in \mathcal{I}} A_{f_i}$

$$(I = \operatorname{Hom}_R(E_{\sigma}(A), A), x \in E_{\sigma}(A) \Rightarrow \phi(x) = \prod_{f_i}(f_i(x))).$$
 By the assump-

tion ϕ is a monomorphism.

 $(3) \rightarrow (4)$: Suppose that σ is an idempotent radical. Let N be a submodule of a module M such that $M/N \in \mathcal{T}_{\sigma}$. It is clear that $k_A(N) \subseteq N \cap k_A(M)$ holds. Since σ is a radical, $E_{\sigma}(A)$ is σ -injective. Thus $k_{E_{\sigma}(A)}(N) \supseteq N \cap k_{E_{\sigma}(A)}(M)$ holds, and so by the assumption $k_A(N) \supseteq N \cap k_A(M)$ holds, as desired.

 $(4) \rightarrow (2)$: As σ is an idempotent preradical, it follows that $E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$. Thus by the assumption $A \cap k_A(E_{\sigma}(A)) = k_A(A) = 0$. Since $E_{\sigma}(A)$ is essential in A, $k_A(E_{\sigma}(A)) = 0$, as desired.

For the rest of the proof we assume that σ is a left exact radical and $A \in \mathcal{T}_{\sigma}$.

 $(1) \to (5)$: Let $0 \to N \xrightarrow{f} M \to L \to 0$ be an exact sequence such that L is σ -torsion. If $\operatorname{Hom}_R(N, A) \ni g \neq 0$, g is extended to $g' \in \operatorname{Hom}_R(M, E_{\sigma}(A))$ such that g'f = ig, where i is a inclusion from A to $E_{\sigma}(A)$. Since $ig \neq 0$ and $E_{\sigma}(A) \subseteq \Pi A$, there exists a $p \in \operatorname{Hom}_R(E_{\sigma}(A), A)$ such that $pig \neq 0$. Then $0 \neq pig = pg'f \in \operatorname{Hom}_R(f, A) = 0$, this is a contradiction, and so $\operatorname{Hom}_R(N, A) = 0$ holds.

 $(5) \to (2)$: We put $N = k_A(E_{\sigma}(A))$. Since \mathcal{T}_{σ} is closed under taking extensions, $E_{\sigma}(A) \in \mathcal{T}_{\sigma}$. As \mathcal{T}_{σ} is closed under taking factor modules, $E_{\sigma}(A)/N \in \mathcal{T}_{\sigma}$.

 \mathcal{T}_{σ} . Consider the exact sequence $0 \to N \xrightarrow{f} E_{\sigma}(A) \to E_{\sigma}(A)/N \to 0$. It follows that $\operatorname{Hom}_{R}(E_{\sigma}(A), A) \xrightarrow{\operatorname{Hom}_{R}(f, A)} \operatorname{Hom}_{R}(N, A)$. Then it holds that

It follows that $\operatorname{Hom}_R(E_{\sigma}(A), A) \xrightarrow{\operatorname{Hom}_R(G, \sigma)} \operatorname{Hom}_R(N, A)$. Then it holds that $\operatorname{Hom}_R(f, A) = 0$, since N is $k_A(E_{\sigma}(A))$. By the assumption, it holds that $\operatorname{Hom}_R(N, A) = 0$.

Next we will show that N = 0. Assume that $N \neq 0$. Since A is essential in $E_{\sigma}(A), N \cap A \neq 0$. It follows that $N/(N \cap A) \simeq (N+A)/A \subseteq E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$. Consider the sequence $0 \to N \cap A \xrightarrow{g} N \to N/(N \cap A) \to 0$. Since $\operatorname{Hom}_{R}(N \cap A, A) \neq 0$, $\operatorname{Hom}_{R}(g, A) \neq 0$. However this is a contradiction to the fact that $\operatorname{Hom}_{R}(N, A) = 0$. Thus N = 0, as desired.

 $(4) \rightarrow (8)$: Let $N \in \mathcal{F}_{k_A}$ be an essential submodule of a module M with $M/N \in \mathcal{T}_{\sigma}$. Then by the assumption $0 = k_A(N) = N \cap k_A(M)$, and so $k_A(M) = 0$ since N is essential in M.

(8) \rightarrow (7): It is clear, since $E_{\sigma}(M)$ is σ -essential extension of M for any module M.

 $(7) \rightarrow (6)$: (i) Let N be a submodule of $M \in \mathcal{T}_{k_A}$ such that $M/N \in \mathcal{T}_{\sigma}$. Consider the following diagram with exact rows.

where *i* and *j* are the inclusion maps, *h* is the canonical epimorphism and *f* is a homomorphism induced by the σ -injectivity of $E_{\sigma}(N/k_A(N))$.

Since $N/k_A(N) \in \mathcal{F}_{k_A}$, it holds that $E_{\sigma}(N/k_A(N)) \in \mathcal{F}_{k_A}$ by the assumption. Since $M \in \mathcal{T}_{k_A}$, it follows that f = 0, and so h = 0. As h is onto, it follows that $N/k_A(N) = 0$, as desired.

(ii): Let $N \in \mathcal{F}_{k_A}$ be a submodule of a module M such that $M/N \in \mathcal{F}_{k_A} \cap \mathcal{T}_{\sigma}$. By σ -injectivity of $E_{\sigma}(N)$, the inclusion map i from N to $E_{\sigma}(N)$ is extended to $f \in \operatorname{Hom}_R(M, E_{\sigma}(N))$. By the assumption, it follows that $E_{\sigma}(N) \in \mathcal{F}_{k_A}$, and so $f(k_A(M)) \subseteq k_A(E_{\sigma}(N)) = 0$. Since $M/N \in \mathcal{F}_{k_A}$, $0 = k_A(M/N) \supseteq (k_A(M) + N)/N$, and so $N \supseteq k_A(M)$. Thus $0 = f(k_A(M)) = i(k_A(M)) = k_A(M)$, and so $M \in \mathcal{F}_{k_A}$.

 $(6) \to (1)$: First we will show that $k_A(E_{\sigma}(A)) \subsetneq E_{\sigma}(A)$. If $E_{\sigma}(A) \in \mathcal{T}_{k_A}$, then $A \in \mathcal{T}_{k_A}$ holds by (i) for $E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$. However $A \in \mathcal{F}_{k_A}$ holds, and so A = 0. This is a contradiction. Thus it follows that $E_{\sigma}(A) \notin \mathcal{T}_{k_A}$, and then $k_A(E_{\sigma}(A)) \subsetneq E_{\sigma}(A)$ holds.

Next we will show that $k_A(E_{\sigma}(A)) = 0$. We put $K = k_A(E_{\sigma}(A))$. If $K \neq 0$, then $A \cap K \neq 0$ holds since A is essential in $E_{\sigma}(A)$. As $\operatorname{Hom}_R(A \cap K, A) \neq 0$, it follows that $A \cap K \notin \mathcal{T}_{k_A}$. Since $K/(A \cap K) \simeq (A+K)/A \subseteq E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$, it follows that $K \notin \mathcal{T}_{k_A}$, and so $k_A(K) \subsetneq K$. We put $K' = k_A(K)$. Since $A \in \mathcal{T}_{\sigma}$ and $E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$, it follows that $E_{\sigma}(A) \in \mathcal{T}_{\sigma}$. Thus $E_{\sigma}(A)/K \in \mathcal{T}_{\sigma} \cap \mathcal{F}_{k_A}$. As $K/K' \in \mathcal{F}_{k_A}$, it follows that $E_{\sigma}(A)/K' \in \mathcal{F}_{k_A}$ by (ii). Then $K = k_A(E_{\sigma}(A)) \subseteq K'$ holds. This is a contradiction to the fact that $K' = k_A(K) \subsetneqq K$. Thus K = 0, as desired.

If σ is identity functor, then σ is a left exact radical and A is σ -torsion. Thus then σ -QF-3' modules are QF-3' modules.

Next let $\sigma = k_{E(R_R)}(-)$. Then it is well known that σ is a left exact radical. The torsion theory $(\mathcal{T}_{\sigma}, \mathcal{F}_{\sigma})$ is called the Lambek torsion theory. The localization of R_R with respect to $(\mathcal{T}_{\sigma}, \mathcal{F}_{\sigma})$ is known as the right maximal quotient ring. Let Q be the right maximal quotient ring. Then since $Q = E_{\sigma}(R)$, we have the following result as an application of (1), (2), (3) and (4) of Theorem 1.

Corollary 2. Let Q be a maximal right quotient ring. Then the following conditions are equivalent.

(1) Q is torsionless(i.e. $Q \hookrightarrow \Pi R$)

(2) $k_R(Q) = 0$

$$(3) \ k_R(-) = k_Q(-)$$

(4) $k_R(N) = N \cap k_R(M)$ holds for a module M and any submodule N of M such that $\operatorname{Hom}_R(M/N, E(R)) = 0$.

Proposition 3. Suppose that σ is a left exact radical, then the following conditions are equivalent.

(1) \mathcal{T}_{k_A} is closed under taking σ -dense submodules.

(2)
$$\mathcal{T}_{k_A} = \mathcal{T}_{k_{E_{\sigma}(A)}}$$

Proof. (2) \rightarrow (1): Let N be a submodule of a module $M \in \mathcal{T}_{k_A}$ such that $M/N \in \mathcal{T}_{\sigma}$. We will show that $N \in \mathcal{T}_{k_A}$. Since $\mathcal{T}_{k_{E_{\sigma}(A)}}$ is closed under taking σ -dense submodules and $M \in \mathcal{T}_{k_A} = \mathcal{T}_{k_{E_{\sigma}(A)}}$, it follows that $N \in \mathcal{T}_{k_{E_{\sigma}(A)}}$ for $M/N \in \mathcal{T}_{\sigma}$. As $\mathcal{T}_{k_A} = \mathcal{T}_{k_{E_{\sigma}(A)}}$, it follows that $N \in \mathcal{T}_{k_A}$, as desired.

(1) \rightarrow (2): It is clear that $\mathcal{T}_{k_A} \supseteq \mathcal{T}_{k_{E_{\sigma}(A)}}$. Let M be a module in \mathcal{T}_{k_A} . Assume that $M \notin \mathcal{T}_{k_{E_{\sigma}(A)}}$. Then there exists $0 \neq f \in \operatorname{Hom}_R(M, E_{\sigma}(A))$, and so $f(M) \neq 0$. Since A is essential in $E_{\sigma}(A)$, $f(M) \cap A \neq 0$. Let N denote $f^{-1}(f(M) \cap A)$. Then $N \neq 0$ and $M/N \simeq f(M)/(A \cap f(M)) \simeq (A + f(M)/A \subseteq E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$, and so $M/N \in \mathcal{T}_{\sigma}$. $0 \neq f|_{N} : N \twoheadrightarrow f(M) \cap A \subseteq A$, where $f|_{N}$ is a restriction map of f to N. Thus it follows that $N \notin \mathcal{T}_{k_{A}}$. By the assumption, $M \notin \mathcal{T}_{k_{A}}$ holds, but this is a contradiction, and so $M \in \mathcal{T}_{k_{E_{\sigma}(A)}}$. Thus $\mathcal{T}_{k_{A}} \subseteq \mathcal{T}_{k_{E_{\sigma}(A)}}$ holds, as desired. \Box

For a module M, Z(M) denotes the singular submodule of M. Then the singular functor Z is a left exact preradical. For singular modules, please refer to [5].

Proposition 4. If σ is a left exact radical and $A \in \mathcal{T}_{\sigma} \cap \mathcal{F}_{Z}$, then the following conditions are equivalent.

(1) \mathcal{T}_{k_A} is closed under taking σ -dense submodules.

(2) A is a σ -QF-3' module.

Proof. It is sufficient to prove that $(1) \rightarrow (2)$. We will show that $k_A(E_{\sigma}(A)) = 0$. Suppose that $k_A(E_{\sigma}(A)) \neq 0$. Let K denote $k_A(E_{\sigma}(A))$.

First we will show that $\operatorname{Hom}_R(E_{\sigma}(K), A) \neq 0$. Assume that $\operatorname{Hom}_R(E_{\sigma}(K), A) = 0$, then $E_{\sigma}(K) \in \mathcal{T}_{k_A}$. Since $E_{\sigma}(K)/(A \cap E_{\sigma}(K)) \simeq (A + E_{\sigma}(K))/A \subseteq E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$, $E_{\sigma}(K)/(A \cap E_{\sigma}(K)) \in \mathcal{T}_{\sigma}$ holds, and so $A \cap E_{\sigma}(K) \in \mathcal{T}_{k_A}$ holds by (1). Thus $\operatorname{Hom}_R(A \cap E_{\sigma}(K), A) = 0$, and so $A \cap E_{\sigma}(K) = 0$. Since A is essential in $E_{\sigma}(A)$, $E_{\sigma}(K) = 0$. This is a contradiction to the fact that $K \neq 0$, and so $\operatorname{Hom}_R(E_{\sigma}(K), A) \neq 0$.

Thus there exists an $f \in \text{Hom}_R(E_{\sigma}(K), A)$ and $0 \neq x \in E_{\sigma}(K)$ with $f(x) \neq 0$. Since Z(A) = 0, (0 : f(x)) is not essential in R. Then there exists a nonzero right ideal L of R such that $L \cap (0 : f(x)) = 0$.

Next we will show that $xL \cap K \neq 0$. Suppose that $xL \cap K = 0$. Since $xL \subseteq E_{\sigma}(K)$ and K is essential in $E_{\sigma}(K)$, xL = 0 holds. Therefore there exists a nonzero element r of L such that xr = 0. Then 0 = f(0) = f(xr) = f(x)r, and so $r \in L \cap (0 : f(x)) = 0$, this is a contradiction to the fact that $r \neq 0$. Thus $xL \cap K \neq 0$ holds.

Thus there exists $0 \neq r \in L$ such that $0 \neq xr \in K$. If f(xr) = 0, then $r \in L \cap (0: f(x)) = 0$, this is a contradiction to $r \neq 0$. Therefore it follows that $f(xr) \neq 0$, and so $f(K) \neq 0$ for $f(K) \ni f(xr)$. Since $A \in \mathcal{T}_{\sigma}$ and $E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$, it follows that $E_{\sigma}(A) \in \mathcal{T}_{\sigma}$. And so $E_{\sigma}(A)/E_{\sigma}(K) \in \mathcal{T}_{\sigma}$. Thus the following exact sequence $0 \to E_{\sigma}(K) \to E_{\sigma}(A) \to E_{\sigma}(A)/E_{\sigma}(K) \to 0$ splits. Since $E_{\sigma}(K)$ is a direct summand of $E_{\sigma}(A), f \in \operatorname{Hom}_{R}(E_{\sigma}(K), A)$ can be extended to $g \in \operatorname{Hom}_{R}(E_{\sigma}(A), A)$. Therefore $g(K) = f(K) \neq 0$ holds, but this is a contradiction to the fact that $K = k_{A}(E_{\sigma}(A))$. Thus K = 0, as desired.

A module M is called a σ -essential extension of N if N is an essential submodule of M such that M/N is σ -torsion, and then N is also called as a σ -essential submodule of M.

Lemma 5. Let σ be an idempotent radical. If M is a σ -essential extension of a module N, then $E_{\sigma}(M) = E_{\sigma}(N)$ holds. The converse holds if σ is a left exact radical.

Proof. Let N be an σ -essential submodule of a module M. Consider the exact sequence $0 \to M/N \to E_{\sigma}(M)/N \to E_{\sigma}(M)/M \to 0$. Since \mathcal{T}_{σ} is closed under taking extensions, $E_{\sigma}(M)/N \in \mathcal{T}_{\sigma}$. As \mathcal{T}_{σ} is closed under taking factor modules, $E_{\sigma}(M)/E_{\sigma}(N) \in \mathcal{T}_{\sigma}$. Thus there exists a submodule K of $E_{\sigma}(M)$ such that $E_{\sigma}(M) = E_{\sigma}(N) \oplus K$. Since N is essential in M and M is essential in $E_{\sigma}(M)$, N is essential in $E_{\sigma}(M)$. As $E_{\sigma}(N) \cap K = 0$, $N \cap K = 0$, and so K = 0 holds. Thus $E_{\sigma}(M) = E_{\sigma}(N)$ holds.

The converse is clear since $M/N \hookrightarrow E_{\sigma}(M)/N = E_{\sigma}(N)/N \in \mathcal{T}_{\sigma}$. \Box

Proposition 6. Let σ be an idempotent radical. Then the class of σ -QF-3' modules is closed under taking σ -essential extensions.

Proof. Let N be a σ -QF-3' module and suppose that N is a σ -essential submodule of M. Then $E_{\sigma}(N) = E_{\sigma}(M)$ holds by Lemma 5, and so $E_{\sigma}(M) = E_{\sigma}(N) \hookrightarrow \Pi N \hookrightarrow \Pi M$, as desired.

2. σ -left exact preradical and σ -hereditary torsion theories

It is well known that preradical t is left exact iff $t(N) = N \cap t(M)$ holds for any module M and any submodule N of M. In this section we generalize left exact preradicals by using torsion theories.

Let σ be a preradical. We call a preradical $t \sigma$ -left exact if $t(N) = N \cap t(M)$ holds for any module M and any σ -dense submodule N of M. If a module A is σ -QF-3' and $t = k_A$, then t is a σ -left exact radical. Now we characterize σ -left exact preradicals.

Lemma 7. For a preradical t and an idempotent radical σ , let $t_{\sigma}(M)$ denote $M \cap t(E_{\sigma}(M))$ for any module M. Then $t_{\sigma}(M)$ is uniquely determined for any choice of E(M).

Proof. Let E_1 and E_2 be σ -injective hulls of a module M. Then there exists isomorphisms $g: E_1 \to E_2$ and $h: E_2 \to E_1$ such that $gh = 1_{E_2}$ and $hg = 1_{E_1}$ and $h|_M = g|_M = 1_M$. Now we get the following equation $M \cap t(E_1) = g(M \cap t(E_1)) \subseteq g(M) \cap g(t(E_1)) \subseteq M \cap t(E_2)$. By the same way $M \cap t(E_2) \subseteq M \cap t(E_1)$ holds. Therefore we conclude that $M \cap t(E_2) =$ $M \cap t(E_1)$.

Lemma 8. Let t be a preradical and σ an idempotent radical. Then t_{σ} is a σ -left exact preradical.

Proof. Let N be a submodule of a module M such that $M/N \in \mathcal{T}_{\sigma}$. Since M/N and $E_{\sigma}(M)/M$ is σ -torsion, it follows that $E_{\sigma}(M)/N \in \mathcal{T}_{\sigma}$, and so

 $E_{\sigma}(M)/E_{\sigma}(N) \in \mathcal{T}_{\sigma}. \text{ Since } E_{\sigma}(N) \text{ is } \sigma\text{-injective, there exists a submodule} K \text{ of } E_{\sigma}(M) \text{ such that } E_{\sigma}(M) = E_{\sigma}(N) \oplus K. \text{ Then } E_{\sigma}(N) \cap t(E_{\sigma}(M)) = E_{\sigma}(N) \cap \{t(E_{\sigma}(N)) \oplus t(K)\} = t(E_{\sigma}(N)) \oplus (E_{\sigma}(N) \cap t(K)) = t(E_{\sigma}(N)) \text{ by} modular law. \text{ Therefore } t_{\sigma}(N) = N \cap t(E_{\sigma}(N)) = N \cap E_{\sigma}(N) \cap t(E_{\sigma}(M)) = N \cap t(E_{\sigma}(M)) = N \cap t(E_{\sigma}(M)) = N \cap t(E_{\sigma}(M)) = N \cap t_{\sigma}(M).$

Theorem 9. Let σ be an idempotent radical. We consider the following conditions on a preradical t. Then the implications $(5) \leftarrow (1) \Leftrightarrow (2) \rightarrow (3) \Leftrightarrow (4)$ hold. If t is a radical, then $(4) \rightarrow (1)$ holds. If t is an idempotent preradical and σ is left exact, then $(5)(i) \rightarrow (1)$ holds. Thus if t is an idempotent radical and σ is a left exact radical, then all conditions are equivalent.

(1) t is a σ -left exact preradical.

(2) $t(M) = M \cap t(E_{\sigma}(M))$ holds for any module M.

- (3) \mathcal{F}_t is closed under taking σ -essential extensions.
- (4) \mathcal{F}_t is closed under taking σ -injective hulls.
- (5) (i) \mathcal{T}_t is closed under taking σ -dense submodules.
 - (ii) \mathcal{F}_t is closed under taking σ -extensions.

Proof. (1) \rightarrow (2): It is clear, by $E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$.

(2) \rightarrow (1): Let N be a σ -dense submodule of a module M. Since $M/N \in \mathcal{T}_{\sigma}$ and $E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$, it follows that $E_{\sigma}(M)/N \in \mathcal{T}_{\sigma}$, and so

 $E_{\sigma}(M)/E_{\sigma}(N) \in \mathcal{T}_{\sigma}$. Thus there exists a submodule K such that

 $E_{\sigma}(M) = E_{\sigma}(N) \oplus K. \text{ Then } E_{\sigma}(N) \cap t(E_{\sigma}(M)) = E_{\sigma}(N) \cap \{t(E_{\sigma}(N) \oplus t(K))\} = t(E_{\sigma}(N)) \oplus \{E_{\sigma}(N) \cap t(K)\} = t(E_{\sigma}(N)) \text{ by modular law. Then}$ $t(N) = N \cap t(E_{\sigma}(N)) = N \cap E_{\sigma}(N) \cap t(E_{\sigma}(M)) = N \cap t(M)$

(1) \rightarrow (3): Let $N \in \mathcal{F}_t$ be a σ -essential submodule of a module M. Then $0 = t(N) = N \cap t(M)$, and so t(M) = 0, as desired.

(3) \rightarrow (4): This is clear, since M is σ -essential in $E_{\sigma}(M)$ for any module M.

 $(4) \rightarrow (3)$: Let $N \in \mathcal{F}_t$ be a σ -essential submodule of a module M. It holds that $E_{\sigma}(N) \in \mathcal{F}_t$ by the assumption and that $E_{\sigma}(M) = E_{\sigma}(N)$ by Lemma 5. Thus it follows that $E_{\sigma}(M) \in \mathcal{F}_t$. Therefore $M \in \mathcal{F}_t$ since \mathcal{F}_t is closed under taking submodules.

 $(1) \rightarrow (5):$ (i) Let $M \in \mathcal{T}_t$ and N a σ -dense submodule of M. Then $t(N) = N \cap t(M) = N \cap M = N$, as desired.

(ii) Assume that $N \in \mathcal{F}_t$ and $M/N \in \mathcal{F}_t \cap \mathcal{T}_\sigma$. Then $0 = t(M/N) \supseteq (t(M) + N)/N$, and so $N \supseteq t(M)$. By the assumption $0 = t(N) = N \cap t(M) = t(M)$, as desired.

 $(4) \rightarrow (1)$: We assume that t is a radical. Let N be a σ -dense submodule of M. Consider the following diagram.

where g and i are the inclusion maps, j is the canonical homomorphism and f is a homomorphism determined by the σ -injectivity of $E_{\sigma}(N/t(N))$.

Since t is a radical, $N/t(N) \in \mathcal{F}_t$. By the assumption $E_{\sigma}(N/t(N)) \in \mathcal{F}_t$. Then it follows that $f(t(M)) \subseteq t(E_{\sigma}(N/t(N))) = 0$, and so $t(M) \subseteq \ker f$. Let $f|_N$ be a restriction map of f to N. Then it follows that $t(N) = \ker j = \ker f|_N = N \cap \ker f \supseteq N \cap t(M) \supseteq t(N)$, and so $t(N) = N \cap t(M)$, as desired.

 $(5) \rightarrow (1)$: We assume that t is an idempotent radical and σ is left exact. We know that \mathcal{F}_t is closed under taking extensions since t is an idempotent preradical. And so we use the condition (i) only. Let N be a σ -dense submodule of M. Since $t(M)/(N \cap t(M)) \simeq (t(M) + N)/N \subseteq M/N \in \mathcal{T}_{\sigma}$, $N \cap t(M)$ is a σ -dense submodule of $t(M) \in \mathcal{T}_t$. Therefore $N \cap t(M) \in \mathcal{T}_t$ holds. Thus it follows that $t(N) \subseteq N \cap t(M) = t(N \cap t(M)) \subseteq t(N)$, and so $t(N) = N \cap t(M)$, as desired.

Proposition 10. Let σ be a left exact preradical and t a preradical. Then the following conditions are equivalent.

(1) For any submodule N of any module M such that $t(M) \supseteq N$ and $t(M)/N \in \mathcal{T}_{\sigma}$, it follows that N is in \mathcal{T}_t .

(2) t is an idempotent preradical and a σ -left exact preradical.

Proof. (1) \rightarrow (2): In (1) we use t(M) instead of N, then it is concluded that t is idempotent preradical. Next in (1) we use $N \cap t(M)$ instead of N, for $t(M)/(N \cap t(M)) \simeq (N+t(M))/N \subseteq M/N \in \mathcal{T}_{\sigma}$. Thus $N \cap t(M) \in \mathcal{T}_{t}$ holds, and so $t(N) \supseteq t(N \cap t(M)) = N \cap t(M) \supseteq t(N)$. Therefore $t(N) = N \cap t(M)$ holds.

(2) \rightarrow (1): Consider the exact sequence $0 \rightarrow N \rightarrow t(M) \rightarrow t(M)/N \rightarrow 0$, where $t(M)/N \in \mathcal{T}_{\sigma}$. By the assumption $t(N) = N \cap t(t(M)) = N \cap t(M) = N$, as desired.

A torsion theory for \mathcal{C} is a pair $(\mathcal{T}, \mathcal{F})$ of classes of objects of \mathcal{C} such that (i) $\operatorname{Hom}_R(T, F) = 0$ for all $T \in \mathcal{T}, F \in \mathcal{F}$

(ii) $\operatorname{Hom}_R(M, F) = 0$ for all $F \in \mathcal{F}$, then $M \in \mathcal{T}$

(iii) $\operatorname{Hom}_{R}(T, N) = 0$ for all $T \in \mathcal{T}$, then $N \in \mathcal{F}$ We put $t(M) = \sum_{\mathcal{T} \ni N \subset M} (= \bigcap_{M/N \in \mathcal{F}})$, then $\mathcal{T} = \mathcal{T}_{t}$ and $\mathcal{F} = \mathcal{F}_{t}$ hold.

For a torsion theory $(\mathcal{T}, \mathcal{F})$, if \mathcal{T} is closed under taking submodules, then $(\mathcal{T}, \mathcal{F})$ is called a hereditary torsion theory. It is well known that \mathcal{T} is closed

under taking submodules if and only if \mathcal{F} is closed under taking injective hulls. Now we call $(\mathcal{T}, \mathcal{F})$ a σ -hereditary torsion theory if \mathcal{T} is closed under taking σ -dense submodules, where σ is a preradical. If σ is a left exact radical, \mathcal{T} is closed under taking σ -dense submodules if and only if \mathcal{F} is closed under taking σ -injective hulls by Theorem 9.

Proposition 11. Let t be an idempotent preradical and σ a radical such that $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_t$. If \mathcal{F}_t is closed under taking σ -injective hulls, then \mathcal{F}_t is closed under taking injective hulls.

Proof. Let M be a module in \mathcal{F}_t . Then it follows that $E(M)/E_{\sigma}(M) \simeq (E(M)/M)/\sigma(E(M)/M) \in \mathcal{F}_{\sigma} \subseteq \mathcal{F}_t$, and so $0 = t(E(M)/E_{\sigma}(M)) \supseteq (t(E(M)) + E_{\sigma}(M))/E_{\sigma}(M)$. Thus $t(E(M)) \subseteq E_{\sigma}(M) \in \mathcal{F}_t$, and so 0 = t(t(E(M))) = t(E(M)). Therefore it follows that $E(M) \in \mathcal{F}_t$. \Box

Proposition 12. If $\sigma(M) \supseteq Z(M)$ for any module M, then a σ -left exact preradical is left exact, where σ is a preradical.

Proof. Let t be a σ -left exact preradical. Since M is essential in E(M) for a module M, it follows that $E(M)/M = Z(E(M)/M) \subseteq \sigma(E(M)/M)$. So it holds that $E(M)/M \in \mathcal{T}_{\sigma}$. Thus $t(M) = M \cap t(E(M))$ holds since t is σ -left exact. If we use Lemma 8 for $\sigma = 1$, we find that t is a left exact preradical.

Theorem 13. Let σ be a left exact radical and $(\mathcal{T}, \mathcal{F})$ a torsion theory. Suppose that there exists $Q \in \mathcal{F}$ such that $\mathcal{T} = \{M \in \text{Mod-}R : \text{Hom}_R(M, Q) = 0\}$. Then $(\mathcal{T}, \mathcal{F})$ is σ -hereditary if and only if $\mathcal{T} = \{M \in \text{Mod-}R : \text{Hom}_R(M, E_{\sigma}(Q)) = 0\}$

Proof. Suppose that $\mathcal{T} = \{M \in \text{Mod-}R : \text{Hom}_R(M, E_{\sigma}(Q)) = 0\}$. Since it is easily verified that \mathcal{T} is closed under taking factor modules, direct sums and extensions, \mathcal{T} is a torsion part of some torsion theory. Thus it is sufficient to be proved that \mathcal{T} is closed under taking σ -dense submodules. Let M be a module in \mathcal{T} and N be a σ -dense submodule of M. Consider the following diagram.

For any nonzero homomorphism f from N to $E_{\sigma}(Q)$, f is extended to a nonzero homomorphism g from M to $E_{\sigma}(Q)$. Since $E_{\sigma}(Q)$ is Q-torsionless, there exists a nonzero homomorphism h from $E_{\sigma}(Q)$ to Q such that hg is a nonzero homomorphism from M to Q, which is a contradiction. Thus $\operatorname{Hom}_{R}(N, E_{\sigma}(Q)) = 0$ and so $N \in \mathcal{T}$. Therefore \mathcal{T} is closed under taking σ -dense submodules.

YASUHIKO TAKEHANA

Conversely suppose that \mathcal{T} is closed under taking σ -dense submodules. Let t be a σ -left exact idempotent radical associated with $(\mathcal{T}, \mathcal{F})$ such that $\mathcal{T} = \mathcal{T}_t$ and $\mathcal{F} = \mathcal{F}_t$. By Theorem 9, \mathcal{F} is closed under taking σ -injective hulls if and only if \mathcal{T} is closed under taking σ -dense submodules. Since $Q \in \mathcal{F}$ and \mathcal{F} is closed under taking σ -injective hulls, it follows that $E_{\sigma}(Q) \in \mathcal{F}$.

Next we show that $\mathcal{T} = \{M : \operatorname{Hom}_R(M, E_\sigma(Q)) = 0\}.$

If $M \in \mathcal{T}$, then $\operatorname{Hom}_R(M, E_{\sigma}(Q)) = 0$ since $E_{\sigma}(Q) \in \mathcal{F}$. Thus it follows that $\mathcal{T} \subseteq \{M : \operatorname{Hom}_R(M, E_{\sigma}(Q)) = 0\}.$

Conversely suppose that $\operatorname{Hom}_R(M, E_{\sigma}(Q)) = 0$. Since $0 \to Q \to E_{\sigma}(Q)$, it follows that $0 \to \operatorname{Hom}_R(M, Q) \to \operatorname{Hom}_R(M, E_{\sigma}(Q))$, and so $\operatorname{Hom}_R(M, Q) = 0$. Thus it holds that $M \in \mathcal{T}$. Therefore it follows that $\mathcal{T} = \{M : \operatorname{Hom}_R(M, E_{\sigma}(Q)) = 0\}$.

Proposition 14. Let σ be a left exact radical and $(\mathcal{T}, \mathcal{F})$ be a σ -hereditary torsion theory, where $\mathcal{T} = \{M \in \text{Mod-}R : \text{Hom}_R(M,Q) = 0\}$ for some σ -QF-3' module Q in \mathcal{F} . Let M be in \mathcal{T}_{σ} . Then M is in \mathcal{F} if and only if M is contained in a direct product of some copies of Q.

Proof. Let M be a nonzero module in $\mathcal{F} \cap \mathcal{T}_{\sigma}$ and x a nonzero element in M. Then xR is in \mathcal{F} . If xR is in $\mathcal{T}, xR \in \mathcal{F} \cap \mathcal{T} = \{0\}$, a contradiction. Thus it holds that $xR \notin \mathcal{T} = \{M : \operatorname{Hom}_R(M,Q) = 0\}$, and so there exists a nonzero $h \in \operatorname{Hom}_R(xR,Q)$. Consider the following diagram.

where *i* and *j* are the inclusion maps f_x is induced by the σ -injectivity of $E_{\sigma}(Q)$ since $M/xR \in \mathcal{T}_{\sigma}$. By considering the above diagram we can find that there exists a nonzero $f'_x : M \to Q$ and $s : Q \to Q$ such that $sh(x) = f'_x(x) \neq 0$. Let $g : M \to \prod_{x \in M - \{0\}} Q_x$ be a homomorphism such that $g(y) = (f'_x(y))$. Then clearly $g(y) \neq 0$ if $y \neq 0$. Hence g is a monomorphism. Thus $M \hookrightarrow \Pi Q$.

Conversely If M is contained in a direct product of copies of Q, M is in \mathcal{F} , since $Q \in \mathcal{F}$ and \mathcal{F} is closed under taking products and submodules. \Box

ACKNOWLEDGEMENT

The author would like to thank the referee for many valuable suggestions and advices of this paper, especially in Theorem 13.

References

- [1] L. Bican, QF-3' modules and rings, Commentationes Mathematicae, Universitatis Carolinae, 14 (1973), 295-301.
- [2] R. R. Colby and E. A. Rutter Jr., Semi-primary QF-3' rings, Nagoya Math. J. 32 (1968), 253-258.
- [3] S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
- [4] J. S. Golan, *Localization of Noncommutative Rings*, Marcel Dekker, New York, 1975.
- [5] K. R. Goodearl, *Ring Theory*, Marcel Dekker, New York, 1976.
- [6] J. P. Jans, H. Y. Mochizuki and L. E. T. Wu, A characterization of QF-3 rings, Nagoya Math. J. 27 (1966), 7-13.
- [7] J. P. Jans, H. Y. Mochizuki, Torsion associated with duality, Tohoku Math. J. 32 (1972), 449-452.
- [8] Y. Kurata and H. Katayama, On a generalization of QF-3' rings, Osaka Journal of Mathematics, 13 (1976), 407-418.
- [9] K. Ohtake, Colocalization and Localization, Journal of pure and applied algebra 11 (1977), 217-241.
- [10] K. Ohtake, Equivalence between colocalization and localization in abelian categories with applications to the theory of modules, Journal of Algebra 79 (1982), 169-205.
- [11] Bo Stenstrom, Rings and Modules of Quotients, Springer -Verlag, Berlin, 1975.
- [12] C. Vinsonhaler, A note on two generalizations of QF-3, Pac. J. Math. 40 (1972), 229-233.

YASUHIKO TAKEHANA GENERAL EDUCATION HAKODATE NATIONAL COLLEGE OF TECHNOLOGY 14-1, TOKURA-CHO, HAKODATE-SHI, HOKKAIDO, 042-8501 JAPAN *e-mail address*: takehana@hakodate-ct.ac.jp

(Received December 11, 2009) (Revised May 21, 2010)