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HILBERT-SPEISER NUMBER FIELDS AND

STICKELBERGER IDEALS; THE CASE p = 2

Humio Ichimura

Abstract. We say that a number field F satisfies the condition (H ′

2m)
when any abelian extension of exponent dividing 2m has a normal basis
with respect to rings of 2-integers. We say that it satisfies (H ′

2∞) when
it satisfies (H ′

2m) for all m. We give a condition for F to satisfy (H ′

2m),
and show that the imaginary quadratic fields F = Q(

√

−1) and Q(
√

−2)
satisfy the very strong condition (H ′

2∞) if the conjecture that h+

2m = 1
for all m is valid. Here, h+

2m is the class number of the maximal real
abelian field of conductor 2m.

1. Introduction

Let p be a prime number. For a number field F , let OF be the ring of inte-
gers and O′

F = OF [1/p] the ring of p-integers. A finite Galois extension N/F
with group G has a normal p-integral basis (p-NIB for short) when O′

N is
cyclic over the group ring O′

FG. We say that F satisfies the Hilbert-Speiser
condition (H ′

pn) when any abelian extension N/F of exponent dividing pn

has a p-NIB, and that it satisfies (H ′
p∞) when it satisfies (H ′

pn) for all n ≥ 1.

It is known that the rationals Q satisfy (H ′
p∞) for any p.

In the previous paper [8], we studied the above conditions when p ≥ 3. We
gave a necessary and sufficient condition ([8, Theorem 1.1]) for F to satisfy
(H ′

pn) in terms of the ideal class group of K = F (ζpn) and the Stickelberger
ideal associated to the Galois group Gal(K/F ), where ζpn is a primitive pn-
th root of unity. As an application, we showed that for p = 3, 7, 11, 19, 43,
67 or 163, the imaginary quadratic field F = Q(

√−p) has a possibility of
satisfying the very strong condition (H ′

p∞) ([8, Theorem 1.2]).
The purpose of this paper is to show corresponding results for the re-

maining case p = 2. In all what follows, we let p = 2. For a number field
F , let ClF and Cl′F be the ideal class groups of the Dedekind domains OF

and O′
F = OF [1/2], and let hF = |ClF | and h′F = |Cl′F |. When the prime

ideals of OF over 2 are principal, Cl′F is naturally isomorphic to ClF , and
h′F = hF . When ζ2n ∈ F×, the following assertion is known.
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Lemma 1.1. ([7, Theorem]) (i) When ζ2n ∈ F×, F satisfies (H ′
2n) if and

only if h′F = 1.
(ii) In particular, F satisfies (H ′

2) if and only if h′F = 1.

In view of Lemma 1.1(ii), we consider the condition (H ′
2n+2) for integers

n ≥ 0 under the assumption h′F = 1. Let Gn = (Z/2n+2)× be the mul-
tiplicative group, and let SGn be the Stickelberger ideal of the group ring
ZGn associated to the abelian extension Q(ζ2n+2)/Q in the sense of Sinnott
[14, page 189]. Let H be a subgroup of Gn. For an element α ∈ QGn, let

αH =
∑

σ∈H

aσσ with α =
∑

σ∈Gn

aσσ

be the H-part of α. The Stickelberger ideal SH of ZH is defined by

SH = {αH

∣

∣ α ∈ SGn}.

Let F be a number field, and Kn = F (ζ2n+2). We regard the Galois group
H = HF,n = Gal(Kn/F ) as a subgroup of Gn through the Galois action
on ζ2n+2 . Let SF,n = SHF,n

be the Stickelberger ideal associated to the
subgroup HF,n ⊆ Gn.

Theorem 1.2. Let F be a number field with h′F = 1, and let n ≥ 0 be an
integer. If F satisfies (H ′

2n+2), then for any 0 ≤ i ≤ n, the Stickelberger
ideal SF,i annihilates the class group Cl′Ki

.

We show that the converse of Theorem 1.2 holds under some condition.
We say that a number field F satisfies the condition (C) when F ∩Q(ζ2∞)
is imaginary. For F satisfying (C), denote by n0 ≥ 0 the least integer such
that F ∩Q(ζ2n0+2) is imaginary.

Theorem 1.3. Let F be a number field with h′F = 1 satisfying the condition
(C). Then the following assertions hold.

(I) Assume that F satisfies the condition (H ′
2n0+1) when n0 ≥ 1. Then

the converse of Theorem 1.2 holds for any n ≥ n0.
(II) When n0 ≥ 1, F satisfies (H ′

2n0+1) if h
′
Ki

= 1 for all 0 ≤ i ≤ n0 − 1.

Let h2m be the class number of Q(ζ2m), and h+2m the class number of the
maximal real subfield of Q(ζ2m). Since h25 = 1, we see from Theorem 1.3
that F = Q(

√
−1) and Q(

√
−2) satisfy (H ′

2n+2) with n = 3. For n ≥ 4,
we show the following assertion using Theorem 1.3 and some results on
Stickelberger ideals.

Theorem 1.4. Let F = Q(
√
−1) or Q(

√
−2). Let n ≥ 4. If h+

2n+2 = 1,
then F satisfies the condition (H ′

2n+2).
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It is known that h+
2n+2 = 1 for 0 ≤ n ≤ 5, and for n = 6 under GRH

(van der Linden [12]). It is conjectured that h+2m = 1 for all m (see Buhler
et al [1]). If the conjecture is valid, then the imaginary quadratic fields in
Theorem 1.4 satisfy the condition (H ′

2∞). For other abelian fields of 2 power
conductors, we show the following:

Proposition 1.5. Any abelian number field F of 2-power conductor with
F 6= Q, Q(

√
−1), Q(

√
−2) does not satisfy (H ′

26).

Remark 1.1. (I) The case p = 2 is complicated mainly because the sub-
groups HF,n are not necessarily cyclic. The condition that F satisfies (C) in
Theorem 1.3 is equivalent to saying that F (ζ2∞)/F is a Z2-extension (the
cyclotomic Z2-extension). Hence, the groups HF,n are cyclic for all n ≥ 0
under the condition.

(II) So far, we have given 9 number fields (6= Q) as candidates for p-
Hilbert-Speiser number fields. They are the 9 imaginary quadratic fields
of class number one. It might be possible that other number field can not
satisfy (H ′

p∞) for any p. And the 9 imaginary quadratic fields might be
“singularities” among all number fields with respect to the Hilbert-Speiser
condition.

2. Stickelberger ideals

In this section, we recall and collect some properties of the Stickelberger
ideals. Among four lemmas we give in this section, the first two ones are
necessary for proving Theorems 1.2 and 1.3, and the last two ones for Propo-
sition 1.5. We show these lemmas in Section 5.

For a while, we fix an integer n ≥ 0. We write an element of Gn =
(Z/2n+2)× in the form σi = ī = i mod 2n+2. Let SGn be the Stickelberger
ideal of the group ring ZGn in the sense of Sinnott [14, page 189]. We put

θGn =
2n+2−1
∑

i=1

i

2n+2
σ−1
i and θGn,r =

2n+2−1
∑

i=1

[

ri

2n+2

]

σ−1
i

for an integer r ∈ Z. Here, i runs over the odd integers with 1 ≤ i ≤ 2n+2−1,
and [x] is the largest integer ≤ x. It is known that θGn,r ∈ SGn and that SGn

is generated over Z by the elements θGn,r for all r. (For this, see Remark
2.1 at the end of this section.) In particular,

NGn =
∑

i

σ−1
i = −θGn,−1

and

eGn =
∑

i

iσ−1
i = θGn,2n+2 = 2n+2θGn
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are elements of SGn . For an odd integer r, we easily see that (r− σr)θGn =
θGn,r and hence,

(2.1) σreGn ≡ reGn mod 2n+2SGn .

From the definition, we easily see that

(2.2) SG0
= ZG0.

Let H be a subgroup of Gn. Let

SH = {αH

∣

∣ α ∈ SGn}
be the H-part of SGn , and let

θH = (θGn)H , θH,r = (θGn,r)H , NH = (NGn)H , eH = (eGn)H

be the H-parts of the respective elements. From what we have recalled
above, we see that SH is generated over Z by θH,r for all r. Further, it
follows from (2.1) that

(2.3) σreH ≡ reH mod 2n+2SH

for an odd integer r with r̄ ∈ H. We put J = σ−1.

Lemma 2.1. Let H be a subgroup of Gn with J /∈ H, and let H1 = H · 〈J〉.
Then, for any integer r,

θH1,r = (1− J)θH,r + (r − δr)JNH .

Here, δr = 0 or 1 according to whether 2n+2 divides r or not.

Lemma 2.2. Let ϕ : ZGn → ZGn−1 be the restriction map. Let H ′ be a
subgroup of Gn, and let H = ϕ(H ′). If |H ′| = 2|H|, then we have

ϕ(SH′) ⊆ SH and ϕ(eH′) ≡ 2(1 + 2n)eH mod 2n+2SH .

Let TGn be the ideal of ZGn consisting of elements α ∈ ZGn such that
(1 + J)α ∈ ZNGn . Denote by G+

n the subgroup of Gn generated by σ5. We
easily see that TGn is generated by NG+

n
and 1 − J over ZGn. It is known

that SGn ⊆ TGn , and that

(2.4) [TGn : SGn ] = h−
2n+2

([14, Theorems 2.1, 5.1]). Here, h−
2n+2 is the relative class number of

Q(ζ2n+2). For a subgroup H of Gn, let

TH = {αH

∣

∣ α ∈ TGn}
be the H-part of TGn . We have SH ⊆ TH as SGn ⊆ TGn . When J = σ−1 ∈
H, we have H = H+ × 〈J〉 with H+ = H ∩G+

n . We can easily show that

(2.5) TH =

{

〈NH+ , 1− J〉ZH , if J ∈ H
ZH, if J /∈ H.
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Lemma 2.3. For each subgroup H of Gn, the index [TH : SH ] is finite, and
divides the class number h−

2n+2 .

As is well known, h−
2n+2 is odd for all n (cf. [16, Theorem 10.4]). Hence,

it follows that 2 ∤ [TH : SH ] for any H.

Lemma 2.4. Let H be a subgroup of Gn, and q an odd prime number. If
q divides the index [TH : SH ], then q[Gn:H] (resp. q[Gn:H]/2) divides h−

2n+2

when J ∈ H (resp. J /∈ H).

Remark 2.1. Let S ′
Gn

be the Stickelberger ideal of ZGn defined in Sinnott

[13, page 116]. From the definitions of SGn and S ′
Gn

, it is clear that S ′
Gn

⊆
SGn . We see that S ′

Gn
= SGn from the class number formulas (2.4) and

Kučera [11, Corollary]. A set of Z-generators of S ′
Gn

is given in [11, Lemma
3.1]. We can easily show that the elements θGn, r with r ∈ Z generate SGn =
S ′
Gn

over Z using [11, Lemma 3.1] and the formula (5.2) with H = Gn.

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 and Proposition 1.5 using Theorems
1.2, 1.3 and the results in Section 2.

Proof of Theorem 1.4. Let F = Q(
√
−1) or Q(

√
−2). Let n ≥ 4. Let

K = Kn = Q(ζ2n+2), and H = HF,n = Gal(K/F ) ⊆ Gn. As the unique
prime ideal of OK over 2 is principal, we have Cl′K = ClK . By Theorem 1.3,
it suffices to show that SF,i kills ClKi

for all 0 ≤ i ≤ n under the assumption
h+
2n+2 = 1. For this, it suffices to show that SH = SF,n kills ClK since the

assumption h+
2n+2 = 1 implies that h+

2i+2 = 1 for all 0 ≤ i ≤ n. We see that
J /∈ H and Gn = H · 〈J〉. Therefore, by Lemma 2.1, we have

θGn,r = (1− J)θH,r + (r − δr)JNH .

It follows that

Cl
(1−J)SH

K = {0}
because (i) θGn,r kills ClK by the classical Stickelberger theorem ([14, The-

orem 3.1]) and (ii) NH kills ClK as hF = 1. As h+
2n+2 = 1 and h−

2n+2 is odd,
this implies that SH kills ClK. Therefore, we obtain the assertion. �

Lemma 3.1. Let F be a number field, and K0 = F (ζ4). Then F satisfies
(H ′

4) only when h′K0
= 1.

Proof. Let H = Gal(K0/F ) ⊆ G0 = (Z/4)×. By (2.2), we have SH = ZH.
Therefore, the assertion follows immediately from Theorem 1.2. �



38 HUMIO ICHIMURA

Proof of Proposition 1.5. Let F be an abelian field of 2-power conductor
with F 6= Q, Q(

√
−1), Q(

√
−2). Assume to the contrary that F satisfies

(H ′
26). Then, as F satisfies (H ′

4), the class group of K0 = F (ζ4) is trivial by

Lemma 3.1. This implies that F ⊆ Q(ζ25) since h
−
26

= 17 (cf. [16, page 412]).

Let K = K4 = Q(ζ26) and H = Gal(K/F ) ⊆ G4 = (Z/26)×. When J /∈ H,
F is imaginary but F 6= Q(

√
−1), Q(

√
−2), and hence [G4 : H]/2 ≥ 2.

When J ∈ H, F is real but F 6= Q, and hence [G4 : H] ≥ 2. In both
cases, it follows from Lemma 2.4 and h−

26
= 17 that q = 17 does not divide

[TH : SH ]. Therefore, by Theorem 1.2 and (2.5), ZqH (resp. (1 − J)ZqH)
kills ClK when J /∈ H (resp. J ∈ H), where Zq is the ring of q-adic integers.
However, this is impossible as h−

26
= 17. �

4. Proofs of Theorems 1.2 and 1.3

4.1. Lemmas. The following two lemmas are exercise in Galois theory.

Lemma 4.1. Let F be a number field. Let K = Kn = F (ζ2n+2), H =
Gal(K/F ) ⊆ Gn = (Z/2n+2)×, and e = eH ∈ ZH.

(i) Let L/K be a cyclic extension of degree 2n+2. Assume that there

exists an element a ∈ K× with L = K((ae)1/2
n+2

). Then there exists a
cyclic extension N/F of degree 2n+2 such that NK = L and N ∩K = F .

(ii) Assume that F∩Q(ζ2n+2) is imaginary. Let N/F be a cyclic extension
of degree dividing 2n+2. If N ∩K = F , then there exists an element a ∈ K×

such that NK = K((ae)1/2
n+2

).

Remark 4.1. In the second assertion of Lemma 4.1, we can not remove the
assumption that F ∩Q(ζ2n+2) is imaginary. Actually, let F = Q and n = 0
(and hence K = Q(

√
−1)). In this case, e ≡ 1 − J mod 4. Let q be a

prime number with q ≡ 3 mod 4, and put N = Q(
√
q). If NK = K(

√
q) =

K((a1−J )1/4) for some a ∈ K×, then we easily see that q ∈ NK/Q(K×),

which is impossible.

Outline of Proof of Lemma 4.1(ii). We give an outline of a proof for the
convenience of the reader. Let |H| = 2e. When e = 0, the assertion is
obvious. Hence, we may as well assume that e ≥ 1. Then, as F ∩Q(ζ2n+2)
is imaginary, we see that n ≥ 1 and that H is a cyclic group generated by

ρ = σg with g = 52
n−e

or g = −52
n−e

. We have g2
e
= 1 + 2n+2s for some

odd integer s. We put

f =

2e−1
∑

λ=0

gλρ−λ.

We see that f ≡ e mod 2n+2. Let N/F be a cyclic extension of degree 2I

with 1 ≤ I ≤ n+ 2. Assume that N ∩K = F , and put L = NK. We have
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L = K(b1/2
I
) for some b ∈ K×. As L/F is an abelian extension, we see that

bρ = bga2
I
for some a ∈ K×. We put β = b1/2

I
, ζ = ζ2n+2 and ξ = ζ2

n+2−I

for brevity. We see that there exists an extension ρ̃ of ρ to L whose order
is 2e. The extension ρ̃ sends β to βgaξi for some i. Replacing a with aξi

for simplicity, we may as well assume that ρ̃(β) = βga. Using the relation
ρ̃(β) = βga repeatedly, we see that

βg = ρ̃2
e

(βg) = (βg)g
2
e

aX

with

X = f + 2n+2s ≡ e mod 2n+2.

Since (βg)1−g2
e

= β−2n+2sg and sg is odd, we obtain the assertion. �

When F satisfies the condition (C), the extension F (ζ2∞)/F is a Z2-
extension (the cyclotomic Z2-extension). Let Bn

F be the n-th layer of this
extension with B0

F = F . When F satisfies (C) and F $ K = Kn, the
condition N ∩ K = F in Lemma 4.1 is equivalent to N ∩ B1

F = F (or

N ∩Bn+2
F = F ).

Lemma 4.2. Let F be a number field satisfying the condition (C). Then, for
an abelian extension N/F of exponent dividing 2n+2, there exists an abelian
extension N1/F of exponent dividing 2n+2 such that N1B

n+2
F = NBn+2

F and

N1 ∩Bn+2
F = F .

Lemma 4.3. Let F be a number field satisfying the condition (C). Assume
that any abelian extension N/F of exponent dividing 2n+2 such that N ∩
Bn+2

F = F has a 2-NIB. Then F satisfies (H ′
2n+2).

Proof. Let N/F be an arbitrary abelian extension of exponent dividing
2n+2. Choose an abelian extension N1/F as in Lemma 4.2. By the assump-
tion, N1/F has a 2-NIB. By using Kawamoto and Komatsu [10, Theorem
3.3], we see that Bn+2

F /F has a 2-NIB. Therefore, since N1 ∩ Bn+2
F = F ,

N1B
n+2
F = NBn+2

F has a 2-NIB over F by [3, (2.13)]. As N ⊆ NBn+2
F , the

extension N/F has a 2-NIB. �

Remark 4.2. It is already shown in Greither [5, Proposition I.2.4] that
Bn+2

F /F has a 2-NIB under the additional assumption that ζ4 ∈ F×.

Let F be a number field satifying (C). We say that F satisfies the Galois
descent condition (D′

2n+2) when for any abelian extension N/F of exponent

dividing 2n+2 and satisfying N ∩Bn+2
F = F , the extension N/F has a 2-NIB

if the pushed up extension NKn/Kn has a 2-NIB.
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Lemma 4.4. Let F be a number field satisfying (C). Then F satisfies the
condition (D′

2n+2) if it satisfies (H ′
2n+1).

Proof. A corresponding assertion for the case p ≥ 3 is shown in [8, Theorem
4.1]. The argument there can be applied to the case p = 2 without any
change. �

Let A be a 2n+2-th power free integral ideal of O′
F . Namely, ℘2n+2

∤ A for
any prime ideal ℘ of O′

F . Then we can uniquely write

A =
2n+2−1
∏

i=1

Ai
i

for some square free integral ideals Ai of O′
F relatively prime to each other.

The associated ideals Br of A are defined by

(4.1) Br =
2n+2−1
∏

i=1

A
[ri/2n+2]
i for 0 ≤ r ≤ 2n+2 − 1.

The following is a version of a theorem of Gómez Ayala [4]. See [6, Theorem
2], [8, Theorem 5.2], Del Corso and Rossi [2, Theorem 1].

Lemma 4.5. Let K be a number field with ζ2n+2 ∈ K×, and let L =

K(a1/2
n+2

)/K be a cyclic Kummer extension of degree 2n+2 with a ∈ K×.
Write

aO′
K =

2n+2−1
∏

i=1

Ai
i · A2n+2

2n+2

for some fractional ideals Ai of O′
K such that the ideals Ai with 0 ≤ i ≤

2n+2 − 1 are integral, square free and relatively prime to each other. Then
the extension L/K has a 2-NIB if and only if (i) the ideal A2n+2 is principal
and (ii) the ideals Br associated by (4.1) to the 2n+2-th power free integral

ideal aO′
K · A−2n+2

2n+2 are principal.

Remark 4.3. Let m ≥ 2 be an integer, and K a number field with ζm ∈
K×. In [6, Theorem 2], we gave a necessary and sufficient condition for a
cyclic Kummer extension L/K of degree m to have a normal integral basis.
Recently, Del Corso and Rossi [2] pointed out that the “only if” part of [6,
Theorem 2] is incorrect when m is not a power of a prime number, and
corrected this mistake.

4.2. Proofs of Theorems. For an integer x ∈ Z, let (x)2n+2 be the least
residue modulo 2n+2. We can easily show the following simple formulas for
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x, y, z ∈ Z.

(4.2) x =
[ x

2n+2

]

2n+2 + (x)2n+2 .

(4.3)

[

xy(z)2n+2

2n+2

]

=

[

x(yz)2n+2

2n+2

]

+ x

[

y(z)2n+2

2n+2

]

.

Proof of Theorem 1.2. Let K = F (ζ2n+2), H = HF,n and e = eH . Let
c ∈ Cl′K be an arbitrary ideal class, and r ∈ Z an integer with r 6= 0.
Choose prime ideals P ∈ c−r and Q ∈ c of relative degree one over F such
that (NK/FP, NK/FQ) = O′

F , where NK/F is the norm map. The condition

that P is of relative degree one over F means that ℘ = P ∩ O′
F splits

completely in K. There exists an element a ∈ K× such that aO′
K = PQr.

Let b = ae and L = K(b1/2
n+2

). We easily see that

(4.4) bO′
K =

∏

i∈H

Piσ−1

i Q(ri)
2n+2σ

−1

i · (QθH,r)2
n+2

by using (4.2). Here, i runs over the odd integers with ī ∈ H and 1 ≤ i ≤
2n+2 − 1. As P‖bO′

K , the extension L/K is of degree 2n+2. Further, by
Lemma 4.1(i), there exists a cyclic extension N/F of degree 2n+2 such that
NK = L and N ∩K = F . As F satisfies (H ′

2n+2), N/F has a 2-NIB. Hence,

L/K has a 2-NIB. Therefore, it follows from (4.4) and Lemma 4.5 that QθH,r

is principal. This implies that SH kills Cl′K . �

To show Theorem 1.3, we prepare two lemmas. Let F be a number field,
K = Kn = F (ζ2n+2), H = HF,n, e = eF,n = eHF,n

.

Lemma 4.6. Assume that SH kills Cl′K . Let P be a prime ideal of O′
K

with ℘ = P ∩ O′
F . Let π ∈ O′

K be an integer such that Pe = πO′
K , the

existence of which is assured by the assumption. Let L = K(π1/2n+2

). If P
is of relative degree one over F , then the extension L/K has a 2-NIB and
is unramified outside ℘ and totally ramified at P.

Proof. We can show the assertion using Lemma 4.5. The argument is ex-
actly the same as the proof of the corresponding assertion for the case p ≥ 3
([8, Lemma 5.2]). �

Until the end of this section, we assume that F satisfies (C) and n ≥ n0.
Hence, F ∩Q(ζ2n+2) is imaginary. For a prime ideal ℘ of O′

F , let D = D℘ ⊆
H = HF,n be the decomposition group of ℘ at K/F . We define an integer
ℓ = ℓ℘ by

ℓ = ℓ℘ =

{

n− ord2(|D|), if F = K0 or D $ H
−1, if F $ K0 and D = H.
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We see that ℓ ≥ 0 when F = K0 or D $ H.

Lemma 4.7. Assume that SF,i kills Cl′Ki
for all 0 ≤ i ≤ n. Let P be a

prime ideal of O′
K with ℘ = P∩O′

F . Let ℓ = ℓ℘ be the integer defined above.

Then there exists an integer π℘ ∈ O′
K such that (i) Pe = π2n−ℓ

℘ x2
n+2O′

K

for some x ∈ K× and (ii) the extension K(π
1/2ℓ+2

℘ )/K has a 2-NIB and is
unramified outside ℘ and totally ramified at P.

Proof. First, we deal with the case where F = K0 or D $ H. In this
case, Kℓ is the decomposition field of ℘. Let Pℓ = P ∩ O′

Kℓ
. Since Pℓ is

of relative degree one over F and SF,ℓ kills Cl′Kℓ
, it follows from Lemma

4.6 that there exists an integer π ∈ O′
Kℓ

such that P
eF,ℓ

ℓ = πO′
Kℓ

and the

extension Kℓ(π
1/2ℓ+2

)/Kℓ has a 2-NIB and satisfies the desired condition

on ramification. We see that the pushed up extension K(π1/2ℓ+2

)/K has
the same properties. Let ϕ : ZHF,n → ZHF,ℓ be the restriction map. As

|HF,n| = 2n−ℓ|HF,ℓ|, we see from Lemma 2.2 that

ϕ(eF,n) = 2n−ℓueF,ℓ + 2n+2s

for some odd integer u ∈ Z and some s ∈ SF,ℓ. Since SF,ℓ kills Cl′Kℓ
, it

follows that

Pe = P
ϕ(eF,n)
ℓ O′

K = π2n−ℓux2
n+2O′

K

for some x ∈ K×
ℓ . Therefore, letting π℘ = πu, we obtain the assertion.

Next, we deal with the case where F $ K0 and D = H. We put k =
F ∩Q(ζ2n+2). We have [k : Q] = 2s with 1 ≤ s ≤ n since k is imaginary and
F $ K0. Further, we see that k is the unique imaginary subfield of Q(ζ2s+2)
satisfying [Q(ζ2s+2) : k] = 2 and k 6= Q(ζ2s+1). Hence, we have

F $ K0 = K1 = · · · = Ks $ Ks+1 $ · · · $ Kn.

Let ϕ : ZHF,n → ZHF,s be the restriction map. As |HF,n| = 2n−s|HF,s|, it
follows from Lemma 2.2 that

Pe = ℘2n−sueF,sx2
n+2O′

K

for some odd integer u and some x ∈ K×. From the above characterization of
k, we see that eF,s equals 1+iσi ∈ ZHF,s ⊆ ZGs with i = −1+2s+1. Hence,

Pe = ℘2n+1vx2
n+2O′

K for some odd integer v. Since SF,0 = ZHF,0 kills Cl′K0
,

Cl′K0
is trivial. It follows that ℘O′

K0
= πO′

K0
for some π ∈ O′

K0
. Further,

we see that the cyclic extension K0(π
1/2)/K0 has a 2-NIB by Lemma 1.1(i)

and that it satisfies the desired condition on ramification. Letting π℘ = πv,
we obtain the assertion. �
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Proof of Theorem 1.3 (I). Let F be a number field satisfying (C) with h′F = 1.
It satisfies (H ′

2n0+1) by the assumption (resp. by h′F = 1 and Lemma 1.1(i))
when n0 ≥ 1 (resp. n0 = 0). Let n be an integer with n ≥ n0. Let
K = Kn and e = eF,n. Assume that SF,i kills Cl′Ki

for all 0 ≤ i ≤ n. As

F satisfies (H ′
2n0+1), it satisfies (D′

2n0+2) by Lemma 4.4. For an integer i
with n0 ≤ i ≤ n, F ∩ Q(ζ2i+2) is imaginary. Hence, we can use Lemma
4.1(ii) for showing that F satisfies (H ′

2i+2). By induction, we may assume
that F satisfies (H ′

2n+1), and hence (D′
2n+2). By Lemma 4.3, it suffices to

show that each abelian extension N/F of exponent dividing 2n+2 such that
N ∩Bn+2

F = F has a 2-NIB. For this, it suffices to show that NK/K has a
2-NIB. By Lemma 4.1(ii), we have

L = NK = K((aej )
1/2n+2 ∣

∣ 1 ≤ j ≤ r)

for some integers aj ∈ O′
K . For each prime ideal ℘ of O′

F , choose a prime
ideal P of O′

K over ℘. By using (2.3), we see that

aej O′
K =

∏

℘

Psj,℘e · x2n+2

j O′
K

for some integer sj,℘ ∈ Z and some xj ∈ K×, where ℘ runs over the prime
ideals dividing NK/F (aj). Let π℘ ∈ O′

K be an integer satisfying the condi-
tions in Lemma 4.7, and let ǫ1, · · · , ǫs be a system of fundamental units of
O′

K . Then we see that

L ⊆ L̃ = K(ǫ
1/2n+2

i , π1/2ℓ℘+2

℘

∣

∣ ℘|NK/F (a1 · · · ar)).

Here, ℓ℘ is the integer defined before Lemma 4.7 and ℘ runs over the prime

ideals of O′
F dividing NK/F (a1 · · · ar). The extension K(ǫ

1/2n+2

i )/K has a

2-NIB by [5, Proposition 0.6.5] or [10, Theorem 3.3], and K(π
1/2ℓ℘+2

℘ )/K
has a 2-NIB by Lemma 4.7. Further, these extensions over K are linearly
disjoint and their relative discriminants are relatively prime to each other.
Therefore, L̃/K has a 2-NIB by [3, (2.13)]. Hence, as N ⊆ L̃, the extension
N/K has a 2-NIB. �

Proof of Theorem 1.3(II). Assume that n0 ≥ 1 and h′Ki
= 1 for 0 ≤ i ≤ n0−1.

We see that F satisfies (H ′
2) as h

′
F = 1, and hence it satisfies (D′

4) by Lemma
4.4. Further, as h′K0

= 1, K0 satisfies (H ′
4) by Lemma 1.1. Therefore, F

satisfies (H ′
4) because of the condition (D′

4) and Lemma 4.3. Repeating this
process, we can show that F satisfies (H ′

2n0+1). �
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5. Proofs of Lemmas 2.1-2.4

Proof of Lemma 2.1. Let H be a subgroup of Gn with J /∈ H, and H1 =
H · 〈J〉. We choose a generator ρ = σκ (κ ∈ Z) of the cyclic group H.
Let h be the order of H. Then H1 consists of 2h elements σκi , σ−κi with
0 ≤ i ≤ h − 1. Noting that (−x)2n+2 = 2n+2 − (x)2n+2 for an odd integer
x ∈ Z, we see from the definition that

θH1,r =
h−1
∑

i=0

[

r(κi)2n+2

2n+2

]

ρ−i +
h−1
∑

i=0

[

r(−κi)2n+2

2n+2

]

ρ−iJ

= θH,r +

h−1
∑

i=0

[

r − r(κi)2n+2

2n+2

]

ρ−iJ

= (1− J)θH,r + (r − δr)JNH .

�

Proof of Lemma 2.2. From the definition of the Stickelberger ideal SGn ([14,
page 189]), we see that

(5.1) ϕ(SGn) ⊆ SGn−1
.

Let H ′ be a subgroup of Gn, and H = ϕ(H ′). Assume that |H ′| = 2|H|. We
write an element of Gn (resp. Gn−1) in the form σj (resp. τi). Let X be the
set of odd integers i with 1 ≤ i ≤ 2n+1 − 1 and τi ∈ H. Then H ′ consists
of elements σi and σi+2n+1 with i ∈ X. Using this, we easily see that for
an element α ∈ QGn, ϕ(αH′) = ϕ(α)H . Hence, it follows from (5.1) that
ϕ(SH′) ⊆ SH . We also see that

ϕ(eH′) = ϕ

(

∑

i∈X

iσi +
∑

i∈X

(i+ 2n+1)σi+2n+1

)

= 2eH + 2n+1NH .

Further, we easily see that

θH,2 =
∑

i∈X

[

2i

2n+1

]

τ−1
i =

∑

i

′′
τ−1
i

and

θH,1+2n =
∑

i∈X

[

i

2
+

i

2n+1

]

τ−1
i =

∑

i

′ i− 1

2
τ−1
i +

∑

i

′′ i+ 1

2
τ−1
i .

Here, in the sum
∑

i
′ (resp.

∑

i
′′), i runs over the integers i ∈ X with i < 2n

(resp. i ≥ 2n). Hence, it follows that

(5.2) θH,1+2n − θH,2 =
1

2
(eH −NH) ∈ SH .
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Therefore, we see that

ϕ(eH′) = 2(1 + 2n)eH + 2n+2 · 1
2
(NH − eH)

is congruent to 2(1 + 2n)eH modulo 2n+2SH . �

To show Lemma 2.3, we prepare the following two lemmas.

Lemma 5.1. Let A and B be subgroups of Gn with A ⊆ B. Then we have
SB ⊆ SAZB ∩ TB.

Proof. As SB ⊆ TB, it suffices to show that SB ⊆ SAZB. Let {κ} be a
complete set of representatives of the quotient B/A. Then, using (4.3), we
see that

θB,r =
∑

j∈B

[

rj

2n+2

]

σ−1
j =

∑

κ

∑

i∈A

[

r(κi)2n+2

2n+2

]

σ−1
κi

=
∑

κ

(

∑

i∈A

([

rκi

2n+2

]

− r

[

κi

2n+2

])

σ−1
i

)

σ−1
κ

=
∑

κ

(θA,rκ − rθA,κ)σ
−1
κ .

Here, j (resp. i) runs over the odd integers with 1 ≤ j ≤ 2n+2 − 1 with
j̄ ∈ B (resp. ī ∈ A). The assertion follows from this. �

Lemma 5.2. Let A and B be subgroups of Gn with A ⊆ B. When J /∈ A
and J ∈ B, assume that B = A · 〈J〉. Then there exists a natural injection

ϕ̄ : TA/SA →֒ TB/(SAZB ∩ TB).

Proof. There are three cases to be considered: the case (i) where J ∈ A, the
case (ii) where J /∈ B, and the case (iii) where J /∈ A and B = A · 〈J〉. In
each case, we construct a homomorphism ϕ : TA → TB/(SAZB ∩ TB) with
kerϕ = SA.

First, we deal with the case (i). Let A+ = A∩G+
n and B+ = B∩G+

n . By
(2.5), we have

TA = 〈1− J, NA+〉 and TB = 〈1− J, NB+〉.
Let ρ be a generator of the cyclic group B+, and let t = [B+ : A+] = [B : A].
Then ρt is a generator of A+. We see that

NB+ = NA+ ·XA,B with XA,B =
t−1
∑

j=0

ρj.
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Let α be an element of TA. Then (1+J)α = mNA = m(1+J)NA+ for some
m ∈ Z. It follows that

(1 + J)αXA,B = m(1 + J)NB+ = mNB ,

and αXA,B ∈ TB . We define ϕ by ϕ(α) = αXA,B mod SAZB ∩ TB .
Next, we deal with the case (ii). In this case, both A and B are cyclic,

and TA = ZA, TB = ZB. We define ϕ by sending α ∈ TA to α modulo
SAZB ∩ TB .

Finally, let J /∈ A and B = A · 〈J〉. For α ∈ TA = ZA, we have
(1 + J)(1 − J)α = 0, and hence (1 − J)α ∈ TB. We define ϕ by send-
ing α ∈ TA to (1− J)α modulo SAZB ∩ TB .

In each case, it is easy to show that kerϕ = SA similary as in the proof
of [9, Lemma 4]. �

Proof of Lemma 2.3. Let A and B be subgroups of Gn with A ⊆ B. In the
cases (i)-(iii) in the proof of Lemma 5.2, we see that TA/SA is a subquotient
of TB/SB by Lemmas 5.1 and 5.2. Let J /∈ A and B be an arbitrary sub-
group of Gn with J ∈ B and A ⊆ B. Letting A1 = A · 〈J〉, we see from the
above that TA/SA is a subquotient of TA1

/SA1
, and TA1

/SA1
that of TB/SB .

Therefore, we obtain the assertion from the class number formula (2.4). �

Let H be a subgroup of Gn. For an odd prime number q, let Zq be the
ring of q-adic integers, Qq the field of q-adic rationals, and Q̄q an algebraic

closure of Qq. We regard a Q̄q-valued character χ of H as a homomorphism

ZqH → Q̄q by linearity. Let χ0 = χH,0 be the trivial character of H. When
J ∈ H, we say that χ is even (resp. odd) if χ(J) = 1 (resp. −1). Let Zq[χ]
be the subring of Q̄q generated over Zq by the values of χ. For simplicity,
we put

TH,q = TH ⊗Zq and SH,q = SH ⊗Zq.

We see from (2.5) that χ(TH,q) = Zq[χ] if J /∈ H, or J ∈ H and χ is odd.

Lemma 5.3. Let H be a subgroup of Gn. Assume that an odd prime number
q divides the index [TH : SH ]. When J /∈ H (resp. J ∈ H), there exists
a nontrivial (resp. odd) Q̄q-valued character χ of H such that χ(SH,q) $
Zq[χ].

Proof. We naturally regard M = TH,q/SH,q as a module over the group
ring ZqH. The module M is nontrivial as q divides [TH : SH ]. As |H| is a
2-power and q is odd, we can canonically decompose the module M as

M =
⊕

χ

M(χ).
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Here, χ runs over a complete set of representatives of the Qq-equivalent

classes of the Q̄q-valued characters ofH, andM(χ) denotes the χ-component
of M . (For the definition of the χ-component and some of its proper-
ties, see Tsuji [15, §2].) Therefore, there exists some χ for which M(χ)
is nontrivial. Hence, χ(SH,q) $ χ(TH,q). If χ equals the trivial charac-
ter χ0, then the q-adic unit |H| = χ0(NH) is contained in χ(SH,q) and
hence χ0(SH,q) = χ(TH,q) = Zq, a contradiction. If J ∈ H but χ is
even, we see that χ(θH,r) = (r − δr)χ(NH+) from Lemma 2.1 and that
χ(TH,q) = χ(NH+)Zq[χ] by (2.5). It follows that χ(SH,q) = χ(TH,q). Hence,
χ must be odd when J ∈ H. �

Proof of Lemma 2.4. We use the analytic class number formula:

(5.3) h−
2n+2 = 2n+2

∏

χ

(

−1

2
B1,χ−1

)

where χ runs over the odd characters of Gn (or the odd primitive Dirichlet
characters of conductor dividing 2n+2), and

B1,χ−1 = χ(θGn) =
1

2n+2

∑

i

iχ(i)−1

is the 1-st Bernoulli number. Let q be an odd prime number, and assume
that q divides [TH : SH ].

First, we deal with the case J 6∈ H. By Lemma 5.3, there exists a nontriv-
ial Q̄q-valued character χ of H such that χ(SH,q) $ Zq[χ]. Let H1 = H ·〈J〉,
and let χ1 be the unique odd character of H1 with χ1|H = χ. As χ is

nontrivial, we have χ(NH) = 0. Hence, it follows from Lemma 2.1, that
χ1(SH1,q) = χ(SH,q). Therefore, χ1(SH1,q) $ Zq[χ1] = Zq[χ]. There are
[G : H]/2 odd characters χ̃ of Gn such that χ̃|H1

= χ1. For such a char-
acter χ̃, we see from the above and Lemma 5.1 that χ̃(SGn,q) $ Zq[χ̃]. As
χ̃(θGn) ∈ χ̃(SGn,q), we obtain q|B1,χ̃−1 . Now, from the class number formula
(5.3), we obtain the assertion.

When J ∈ H, we can show the assertion similary. �
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