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A CAUCHY-KOWALEVSKI THEOREM FOR
INFRAMONOGENIC FUNCTIONS

HeLMUTH R. MALONEK, DixaN PENA PENA AND FRANK SOMMEN

ABSTRACT. In this paper we prove a Cauchy-Kowalevski theorem for
the functions satisfying the system 0, f0; = 0 (called inframonogenic
functions).

1. INTRODUCTION

Let Rg,, be the 2™-dimensional real Clifford algebra constructed over
the orthonormal basis (e1, ..., ey) of the Euclidean space R™ (see [3]). The
multiplication in Rg,, is determined by the relations eje;, + ere; = =201,
J.k=1,...,m, where J;; is the Kronecker delta. A general element of Rq ,
is of the form

a= ZCLAeA, as € R,
A

where for A = {j1,...,5k} C{1,...,m}, j1 <--- < jr, ea = ¢€j, ...¢j,. For
the empty set (), we put ey = 1, the latter being the identity element.

Notice that any a € Ry ,, may also be written as a = ;" ,[a]i where [a],

is the projection of a on R¥) | Here Réfm

om denotes the subspace of k-vectors
defined by
R(()]fr)n = {a €ERom: a= Z aA€A, GA € R}.
|A|=k
Observe that R™*! may be naturally identified with ]Rg?,)n @ ]R(()?n by associ-
ating to any element (zg,z1,...,2y,) € R™! the “paravector” z = xg+x =
xo + Z;nzl Tje;j.
Conjugation in R ,, is given by

where €4 = €j,...€;,, ¢j = —ej, 7 = 1,...,m. One easily checks that
ab = ba for any a,b € Rq ,,. Moreover, by means of the conjugation a norm
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la| may be defined for each a € Ry, by putting
jaf? = [adlo = ) d%.
A

Let us denote by 0, = 0y, + 0y = Og + Z;nzl €0y, the generalized Cauchy-
Riemann operator and let {2 be an open set of R™*!. According to [11], an
Ro,m-valued function f € C?(Q) is called an inframonogenic function in
if and only if it fulfills in 2 the “sandwich” equation 9, f0, = 0.

It is obvious that monogenic functions (i.e. null-solutions of d,) are in-
framonogenic. At this point it is worth mentioning that the monogenic
functions are the central object of study in Clifford analysis (see [2, 4, 5, 7,
8, 9, 10, 14]). Furthermore, the concept of monogenicity of a function may
be seen as the higher dimensional counterpart of holomorphy in the complex
plane.

Moreover, as
m

ANy = 02 = 0,0, = 0,0s,
§=0
every inframonogenic function f € C*(Q) satisfies in {2 the biharmonic equa-
tion A2f =0 (see e.g. [1, 6, 12, 15]).

This paper is intended to study the following Cauchy-type problem for
the inframonogenic functions. Given the functions Ap(z) and A;(z) analytic
in an open and connected set 2 C R™, find a function F'(z) inframonogenic
in some open neighbourhood Q of Q in R™! which satisfies

(1.1) F(2)]zo=0 = Ao(z),
(1.2) O F'(2)|z9=0 = A1(2)-

2. CAUCHY-TYPE PROBLEM FOR INFRAMONOGENIC FUNCTIONS

Consider the formal series
(2.1) Fz) =) agAn(z).
n=0
It is clear that F' satisfies conditions (1.1) and (1.2). We also see at once
that
Oy (x4 An) Oy = n(n — D)ag 2 A, + nay ' (0pAn + Ands) + 2403 An0,.
We thus get

o0

0.F0, = > g:g((n+2)(n+ 1) An o+ (n+1) (0 A1+ Ant10y) +6£An8£).

n=0
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From the above it follows that F'is inframonogenic if and only if the functions
A,, satisfy the recurrence relation

1
n
m+axn+n((
It may be easily proved by induction that

Ao = — + 1) (OpAni + Aps10) + agAnag), n> 0.

(22) An="—F— Z oI~ Agdl Tt + Zag—ﬂ—lAlai , n>2.
Jj=0 j=0

We now proceed to examine the convergence of the series (2.1) with the

functions A, (n > 2) given by (2.2). Let y be an arbitrary point in 2. Then

there exist a ball B(y, R(y)) of radius R(y) centered at y and a positive

constant M (y), such that

n!

07 Au@)] < M) s,

gEB(g,R(g)), j=0,...,n, s=0,1.
It follows that

Anfe)] < T,

and therefore the series (2.1) converges normally in

Q= U (=Rw). R(y)) x B(y. R(y)).
yeQ

z € B(y,R(y)),

Note that Q is a zo-normal open neighbourhood of  in R™*! i.e. for each
z € Q the line segment {z 4+t : t € R} N is connected and contains one
point in €.

We thus have proved the following.

Theorem 2.1. The function CK[Ay, A1] given by

n—2 n—1
> opI T Ag(z)od T + > ar I Ay (2)0)
=0 §=0

is inframonogenic in a xo-normal open neighbourhood of  in R™! and
satisfies conditions (1.1)-(1.2).

It is worth noting that if in particular A;(z) = —0,Ao(z), then

CK[Ag, —0p Ag)(x) = > (_;”7?)” " Ao (),

n=0
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which is nothing else but the left monogenic extension (or CK-extension)
of Ap(z). Similarly, it is easy to see that CK[Ag, —Ao0z|(x) yields the right
monogenic extension of Ag(z) (see [2, 5, 13, 16, 17]).

Let P(k) (k € Ny fixed) denote the set of all Ry ,,-valued homogeneous
polynomials of degree k in R™. Let us now take Ag(z) = Pr(z) € P(k) and
Ai(z) = Pr-1(z) € P(k — 1). Clearly,

CK[Py, Py—1](x) = Py(z) + 20 Pr—1(2)

k n n—2 ' - n—1 ‘ '
- ER S o p ot + Y o P @)l |
n=2 ) j=0 j=0

since the other terms in the series (2.3) vanish. Moreover, we can also claim
that CK[Py, Pr—1](x) is a homogeneous inframonogenic polynomial of degree
k in R+

Conversely, if P;(x) is a homogeneous inframonogenic polynomial of de-
gree k in R™T then Pp(2)|zo=0 € P(k), 01y Pr(7)|zy=0 € P(k — 1) and
obviously CK[Pk‘:I:o:Oa aacoPk:|:C0=0](x) = Pk:(x)

Call I(k) the set of all homogeneous inframonogenic polynomials of degree
k in R™*1. Then CK].,.] establishes a bijection between P(k) x P(k —1) and
(k).

It is easy to check that

k

Pela) = Py(o) B2

where Py(0,) is the differential operator obtained by replacing in P (u)
each variable u; by 9,;. Therefore, in order to characterize I(k), it suffices
to calculate CK[(L g)k eA,O} and CK[O, (x, g)kfl eA} with u € R™.

A simple computation shows that

Py(z) € P(k),

CK[(z,u)" ea,0](z) = (z,u)* ea
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