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A CAUCHY-KOWALEVSKI THEOREM FOR

INFRAMONOGENIC FUNCTIONS

Helmuth R. MALONEK, Dixan PEÑA PEÑA and Frank SOMMEN

Abstract. In this paper we prove a Cauchy-Kowalevski theorem for
the functions satisfying the system ∂xf∂x = 0 (called inframonogenic
functions).

1. Introduction

Let R0,m be the 2m-dimensional real Clifford algebra constructed over
the orthonormal basis (e1, . . . , em) of the Euclidean space R

m (see [3]). The
multiplication in R0,m is determined by the relations ejek + ekej = −2δjk,
j, k = 1, . . . , m, where δjk is the Kronecker delta. A general element of R0,m

is of the form

a =
∑

A

aAeA, aA ∈ R,

where for A = {j1, . . . , jk} ⊂ {1, . . . , m}, j1 < · · · < jk, eA = ej1 . . . ejk
. For

the empty set ∅, we put e∅ = 1, the latter being the identity element.
Notice that any a ∈ R0,m may also be written as a =

∑m
k=0[a]k where [a]k

is the projection of a on R
(k)
0,m. Here R

(k)
0,m denotes the subspace of k-vectors

defined by

R
(k)
0,m =

{
a ∈ R0,m : a =

∑

|A|=k

aAeA, aA ∈ R

}
.

Observe that R
m+1 may be naturally identified with R

(0)
0,m ⊕R

(1)
0,m by associ-

ating to any element (x0, x1, . . . , xm) ∈ R
m+1 the “paravector” x = x0 +x =

x0 +
∑m

j=1 xjej .
Conjugation in R0,m is given by

a =
∑

A

aAeA,

where eA = ejk
. . . ej1 , ej = −ej , j = 1, . . . , m. One easily checks that

ab = ba for any a, b ∈ R0,m. Moreover, by means of the conjugation a norm
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|a| may be defined for each a ∈ R0,m by putting

|a|2 = [aa]0 =
∑

A

a2
A.

Let us denote by ∂x = ∂x0
+ ∂x = ∂x0

+
∑m

j=1 ej∂xj
the generalized Cauchy-

Riemann operator and let Ω be an open set of R
m+1. According to [11], an

R0,m-valued function f ∈ C2(Ω) is called an inframonogenic function in Ω
if and only if it fulfills in Ω the “sandwich” equation ∂xf∂x = 0.

It is obvious that monogenic functions (i.e. null-solutions of ∂x) are in-
framonogenic. At this point it is worth mentioning that the monogenic
functions are the central object of study in Clifford analysis (see [2, 4, 5, 7,
8, 9, 10, 14]). Furthermore, the concept of monogenicity of a function may
be seen as the higher dimensional counterpart of holomorphy in the complex
plane.

Moreover, as

∆x =

m∑

j=0

∂2
xj

= ∂x∂x = ∂x∂x,

every inframonogenic function f ∈ C4(Ω) satisfies in Ω the biharmonic equa-
tion ∆2

xf = 0 (see e.g. [1, 6, 12, 15]).
This paper is intended to study the following Cauchy-type problem for

the inframonogenic functions. Given the functions A0(x) and A1(x) analytic
in an open and connected set Ω ⊂ R

m, find a function F (x) inframonogenic

in some open neighbourhood Ω̃ of Ω in R
m+1 which satisfies

F (x)|x0=0 = A0(x),(1.1)

∂x0
F (x)|x0=0 = A1(x).(1.2)

2. Cauchy-type problem for inframonogenic functions

Consider the formal series

(2.1) F (x) =
∞∑

n=0

xn
0An(x).

It is clear that F satisfies conditions (1.1) and (1.2). We also see at once
that

∂x (xn
0An) ∂x = n(n − 1)xn−2

0 An + nxn−1
0

(
∂xAn + An∂x

)
+ xn

0∂xAn∂x.

We thus get

∂xF∂x =
∞∑

n=0

xn
0

(
(n+2)(n+1)An+2+(n+1)

(
∂xAn+1+An+1∂x

)
+∂xAn∂x

)
.
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From the above it follows that F is inframonogenic if and only if the functions
An satisfy the recurrence relation

An+2 = −
1

(n + 2)(n + 1)

(
(n + 1)

(
∂xAn+1 + An+1∂x

)
+ ∂xAn∂x

)
, n ≥ 0.

It may be easily proved by induction that

(2.2) An =
(−1)n+1

n!




n−2∑

j=0

∂n−j−1
x A0∂

j+1
x +

n−1∑

j=0

∂n−j−1
x A1∂

j
x


 , n ≥ 2.

We now proceed to examine the convergence of the series (2.1) with the
functions An (n ≥ 2) given by (2.2). Let y be an arbitrary point in Ω. Then

there exist a ball B
(
y, R(y)

)
of radius R(y) centered at y and a positive

constant M(y), such that

∣∣∂n−j
x As(x)∂j

x

∣∣ ≤ M(y)
n!

Rn(y)
, x ∈ B

(
y, R(y)

)
, j = 0, . . . , n, s = 0, 1.

It follows that

|An(x)| ≤ M(y)
n + R(y) − 1

Rn(y)
, x ∈ B

(
y, R(y)

)
,

and therefore the series (2.1) converges normally in

Ω̃ =
⋃

y∈Ω

(
−R(y), R(y)

)
× B

(
y, R(y)

)
.

Note that Ω̃ is a x0-normal open neighbourhood of Ω in R
m+1, i.e. for each

x ∈ Ω̃ the line segment {x + t : t ∈ R} ∩ Ω̃ is connected and contains one
point in Ω.

We thus have proved the following.

Theorem 2.1. The function CK[A0, A1] given by

(2.3) CK[A0, A1](x) = A0(x) + x0A1(x)

−
∞∑

n=2

(−x0)
n

n!




n−2∑

j=0

∂n−j−1
x A0(x)∂j+1

x +
n−1∑

j=0

∂n−j−1
x A1(x)∂j

x




is inframonogenic in a x0-normal open neighbourhood of Ω in R
m+1 and

satisfies conditions (1.1)-(1.2).

It is worth noting that if in particular A1(x) = −∂xA0(x), then

CK[A0,−∂xA0](x) =
∞∑

n=0

(−x0)
n

n!
∂n

xA0(x),
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which is nothing else but the left monogenic extension (or CK-extension)
of A0(x). Similarly, it is easy to see that CK[A0,−A0∂x](x) yields the right
monogenic extension of A0(x) (see [2, 5, 13, 16, 17]).

Let P(k) (k ∈ N0 fixed) denote the set of all R0,m-valued homogeneous
polynomials of degree k in R

m. Let us now take A0(x) = Pk(x) ∈ P(k) and
A1(x) = Pk−1(x) ∈ P(k − 1). Clearly,

CK[Pk, Pk−1](x) = Pk(x) + x0Pk−1(x)

−
k∑

n=2

(−x0)
n

n!




n−2∑

j=0

∂n−j−1
x Pk(x)∂j+1

x +
n−1∑

j=0

∂n−j−1
x Pk−1(x)∂j

x


 ,

since the other terms in the series (2.3) vanish. Moreover, we can also claim
that CK[Pk, Pk−1](x) is a homogeneous inframonogenic polynomial of degree
k in R

m+1.
Conversely, if Pk(x) is a homogeneous inframonogenic polynomial of de-

gree k in R
m+1, then Pk(x)|x0=0 ∈ P(k), ∂x0

Pk(x)|x0=0 ∈ P(k − 1) and
obviously CK[Pk|x0=0, ∂x0

Pk|x0=0](x) = Pk(x).
Call I(k) the set of all homogeneous inframonogenic polynomials of degree

k in R
m+1. Then CK[., .] establishes a bijection between P(k)×P(k−1) and

I(k).
It is easy to check that

Pk(x) = Pk(∂u)
〈x, u〉k

k!
, Pk(x) ∈ P(k),

where Pk(∂u) is the differential operator obtained by replacing in Pk(u)
each variable uj by ∂uj

. Therefore, in order to characterize I(k), it suffices

to calculate CK
[
〈x, u〉k eA, 0

]
and CK

[
0, 〈x, u〉k−1

eA

]
with u ∈ R

m.
A simple computation shows that

CK
[
〈x, u〉k eA, 0

]
(x) = 〈x, u〉k eA

−
k∑

n=2

(
k

n

)
(−x0)

n 〈x, u〉k−n




n−2∑

j=0

un−j−1eAuj+1


 ,

CK
[
0, 〈x, u〉k−1 eA

]
(x) = x0 〈x, u〉k−1 eA

−
1

k

k∑

n=2

(
k

n

)
(−x0)

n 〈x, u〉k−n




n−1∑

j=0

un−j−1eAuj


 .
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