A CAUCHY-KOWALEVSKI THEOREM FOR INFRAMONOGENIC FUNCTIONS

HELMUTH R. MALONEK, DIXAN PEÑA PEÑA AND FRANK SOMMEN

ABSTRACT. In this paper we prove a Cauchy-Kowalevski theorem for the functions satisfying the system $\partial_x f \partial_x = 0$ (called inframonogenic functions).

1. INTRODUCTION

Let $\mathbb{R}_{0,m}$ be the 2^m -dimensional real Clifford algebra constructed over the orthonormal basis (e_1, \ldots, e_m) of the Euclidean space \mathbb{R}^m (see [3]). The multiplication in $\mathbb{R}_{0,m}$ is determined by the relations $e_j e_k + e_k e_j = -2\delta_{jk}$, $j, k = 1, \ldots, m$, where δ_{jk} is the Kronecker delta. A general element of $\mathbb{R}_{0,m}$ is of the form

$$a = \sum_{A} a_A e_A, \quad a_A \in \mathbb{R},$$

where for $A = \{j_1, \ldots, j_k\} \subset \{1, \ldots, m\}, j_1 < \cdots < j_k, e_A = e_{j_1} \ldots e_{j_k}$. For the empty set \emptyset , we put $e_{\emptyset} = 1$, the latter being the identity element.

Notice that any $a \in \mathbb{R}_{0,m}$ may also be written as $a = \sum_{k=0}^{m} [a]_k$ where $[a]_k$ is the projection of a on $\mathbb{R}_{0,m}^{(k)}$. Here $\mathbb{R}_{0,m}^{(k)}$ denotes the subspace of k-vectors defined by

$$\mathbb{R}_{0,m}^{(k)} = \left\{ a \in \mathbb{R}_{0,m} : \ a = \sum_{|A|=k} a_A e_A, \quad a_A \in \mathbb{R} \right\}.$$

Observe that \mathbb{R}^{m+1} may be naturally identified with $\mathbb{R}_{0,m}^{(0)} \oplus \mathbb{R}_{0,m}^{(1)}$ by associating to any element $(x_0, x_1, \ldots, x_m) \in \mathbb{R}^{m+1}$ the "paravector" $x = x_0 + \underline{x} = x_0 + \sum_{j=1}^m x_j e_j$.

Conjugation in $\mathbb{R}_{0,m}$ is given by

$$\overline{a} = \sum_{A} a_A \overline{e}_A,$$

where $\overline{e}_A = \overline{e}_{j_k} \dots \overline{e}_{j_1}$, $\overline{e}_j = -e_j$, $j = 1, \dots, m$. One easily checks that $\overline{ab} = \overline{ba}$ for any $a, b \in \mathbb{R}_{0,m}$. Moreover, by means of the conjugation a norm

Key words and phrases. Inframonogenic functions, Cauchy-Kowalevski theorem.

Mathematics Subject Classification. 30G35, 35G10.

The second author was supported by a Post-Doctoral Grant of *Fundação para a Ciência* e a Tecnologia, Portugal (grant number: SFRH/BPD/45260/2008).

|a| may be defined for each $a \in \mathbb{R}_{0,m}$ by putting

$$|a|^2 = [a\overline{a}]_0 = \sum_A a_A^2.$$

Let us denote by $\partial_x = \partial_{x_0} + \partial_{\underline{x}} = \partial_{x_0} + \sum_{j=1}^m e_j \partial_{x_j}$ the generalized Cauchy-Riemann operator and let Ω be an open set of \mathbb{R}^{m+1} . According to [11], an $\mathbb{R}_{0,m}$ -valued function $f \in C^2(\Omega)$ is called an inframonogenic function in Ω if and only if it fulfills in Ω the "sandwich" equation $\partial_x f \partial_x = 0$.

It is obvious that monogenic functions (i.e. null-solutions of ∂_x) are inframonogenic. At this point it is worth mentioning that the monogenic functions are the central object of study in Clifford analysis (see [2, 4, 5, 7, 8, 9, 10, 14]). Furthermore, the concept of monogenicity of a function may be seen as the higher dimensional counterpart of holomorphy in the complex plane.

Moreover, as

$$\Delta_x = \sum_{j=0}^m \partial_{x_j}^2 = \partial_x \overline{\partial}_x = \overline{\partial}_x \partial_x,$$

every inframonogenic function $f \in C^4(\Omega)$ satisfies in Ω the biharmonic equation $\Delta_x^2 f = 0$ (see e.g. [1, 6, 12, 15]).

This paper is intended to study the following Cauchy-type problem for the inframonogenic functions. Given the functions $A_0(\underline{x})$ and $A_1(\underline{x})$ analytic in an open and connected set $\underline{\Omega} \subset \mathbb{R}^m$, find a function F(x) inframonogenic in some open neighbourhood $\widetilde{\Omega}$ of $\underline{\Omega}$ in \mathbb{R}^{m+1} which satisfies

(1.1)
$$F(x)|_{x_0=0} = A_0(\underline{x}),$$

(1.2)
$$\partial_{x_0} F(x)|_{x_0=0} = A_1(\underline{x}).$$

2. CAUCHY-TYPE PROBLEM FOR INFRAMONOGENIC FUNCTIONS

Consider the formal series

(2.1)
$$F(x) = \sum_{n=0}^{\infty} x_0^n A_n(\underline{x})$$

It is clear that F satisfies conditions (1.1) and (1.2). We also see at once that

$$\partial_x \left(x_0^n A_n \right) \partial_x = n(n-1)x_0^{n-2}A_n + nx_0^{n-1} \left(\partial_{\underline{x}} A_n + A_n \partial_{\underline{x}} \right) + x_0^n \partial_{\underline{x}} A_n \partial_{\underline{x}}.$$

We thus get

$$\partial_x F \partial_x = \sum_{n=0}^{\infty} x_0^n \Big((n+2)(n+1)A_{n+2} + (n+1) \big(\partial_{\underline{x}} A_{n+1} + A_{n+1} \partial_{\underline{x}} \big) + \partial_{\underline{x}} A_n \partial_{\underline{x}} \Big).$$

168

From the above it follows that F is inframonogenic if and only if the functions A_n satisfy the recurrence relation

$$A_{n+2} = -\frac{1}{(n+2)(n+1)} \Big((n+1) \big(\partial_{\underline{x}} A_{n+1} + A_{n+1} \partial_{\underline{x}} \big) + \partial_{\underline{x}} A_n \partial_{\underline{x}} \Big), \quad n \ge 0.$$

It may be easily proved by induction that

(2.2)
$$A_n = \frac{(-1)^{n+1}}{n!} \left(\sum_{j=0}^{n-2} \partial_{\underline{x}}^{n-j-1} A_0 \partial_{\underline{x}}^{j+1} + \sum_{j=0}^{n-1} \partial_{\underline{x}}^{n-j-1} A_1 \partial_{\underline{x}}^j \right), \quad n \ge 2.$$

We now proceed to examine the convergence of the series (2.1) with the functions A_n $(n \ge 2)$ given by (2.2). Let \underline{y} be an arbitrary point in $\underline{\Omega}$. Then there exist a ball $B(\underline{y}, R(\underline{y}))$ of radius $R(\underline{y})$ centered at \underline{y} and a positive constant M(y), such that

$$\left|\partial_{\underline{x}}^{n-j}A_s(\underline{x})\partial_{\underline{x}}^j\right| \le M(\underline{y})\frac{n!}{R^n(\underline{y})}, \ \underline{x} \in B(\underline{y}, R(\underline{y})), \ j = 0, \dots, n, \ s = 0, 1.$$

It follows that

$$|A_n(\underline{x})| \le M(\underline{y}) \frac{n + R(\underline{y}) - 1}{R^n(\underline{y})}, \quad \underline{x} \in B(\underline{y}, R(\underline{y})),$$

and therefore the series (2.1) converges normally in

$$\widetilde{\Omega} = \bigcup_{\underline{y} \in \underline{\Omega}} \left(-R(\underline{y}), R(\underline{y}) \right) \times B(\underline{y}, R(\underline{y})).$$

Note that $\widetilde{\Omega}$ is a x_0 -normal open neighbourhood of $\underline{\Omega}$ in \mathbb{R}^{m+1} , i.e. for each $x \in \widetilde{\Omega}$ the line segment $\{x + t : t \in \mathbb{R}\} \cap \widetilde{\Omega}$ is connected and contains one point in $\underline{\Omega}$.

We thus have proved the following.

Theorem 2.1. The function $CK[A_0, A_1]$ given by

(2.3)
$$\mathsf{CK}[A_0, A_1](x) = A_0(\underline{x}) + x_0 A_1(\underline{x})$$

$$-\sum_{n=2}^{\infty} \frac{(-x_0)^n}{n!} \left(\sum_{j=0}^{n-2} \partial_{\underline{x}}^{n-j-1} A_0(\underline{x}) \partial_{\underline{x}}^{j+1} + \sum_{j=0}^{n-1} \partial_{\underline{x}}^{n-j-1} A_1(\underline{x}) \partial_{\underline{x}}^j \right)$$

is inframonogenic in a x_0 -normal open neighbourhood of $\underline{\Omega}$ in \mathbb{R}^{m+1} and satisfies conditions (1.1)-(1.2).

It is worth noting that if in particular $A_1(\underline{x}) = -\partial_{\underline{x}} A_0(\underline{x})$, then

$$\mathsf{CK}[A_0, -\partial_{\underline{x}}A_0](x) = \sum_{n=0}^{\infty} \frac{(-x_0)^n}{n!} \partial_{\underline{x}}^n A_0(\underline{x}),$$

which is nothing else but the left monogenic extension (or CK-extension) of $A_0(\underline{x})$. Similarly, it is easy to see that $\mathsf{CK}[A_0, -A_0\partial_{\underline{x}}](x)$ yields the right monogenic extension of $A_0(\underline{x})$ (see [2, 5, 13, 16, 17]).

Let $\mathsf{P}(k)$ $(k \in \mathbb{N}_0 \text{ fixed})$ denote the set of all $\mathbb{R}_{0,m}$ -valued homogeneous polynomials of degree k in \mathbb{R}^m . Let us now take $A_0(\underline{x}) = P_k(\underline{x}) \in \mathsf{P}(k)$ and $A_1(\underline{x}) = P_{k-1}(\underline{x}) \in \mathsf{P}(k-1)$. Clearly,

$$\mathsf{CK}[P_k, P_{k-1}](x) = P_k(\underline{x}) + x_0 P_{k-1}(\underline{x}) - \sum_{n=2}^k \frac{(-x_0)^n}{n!} \left(\sum_{j=0}^{n-2} \partial_{\underline{x}}^{n-j-1} P_k(\underline{x}) \partial_{\underline{x}}^{j+1} + \sum_{j=0}^{n-1} \partial_{\underline{x}}^{n-j-1} P_{k-1}(\underline{x}) \partial_{\underline{x}}^j \right),$$

since the other terms in the series (2.3) vanish. Moreover, we can also claim that $\mathsf{CK}[P_k, P_{k-1}](x)$ is a homogeneous inframonogenic polynomial of degree k in \mathbb{R}^{m+1} .

Conversely, if $P_k(x)$ is a homogeneous inframonogenic polynomial of degree k in \mathbb{R}^{m+1} , then $P_k(x)|_{x_0=0} \in \mathsf{P}(k)$, $\partial_{x_0}P_k(x)|_{x_0=0} \in \mathsf{P}(k-1)$ and obviously $\mathsf{CK}[P_k|_{x_0=0}, \partial_{x_0}P_k|_{x_0=0}](x) = P_k(x)$.

Call I(k) the set of all homogeneous inframonogenic polynomials of degree k in \mathbb{R}^{m+1} . Then $\mathsf{CK}[.,.]$ establishes a bijection between $\mathsf{P}(k) \times \mathsf{P}(k-1)$ and I(k).

It is easy to check that

$$P_k(\underline{x}) = P_k(\partial_{\underline{u}}) \frac{\langle \underline{x}, \underline{u} \rangle^k}{k!}, \quad P_k(\underline{x}) \in \mathsf{P}(k),$$

where $P_k(\partial_{\underline{u}})$ is the differential operator obtained by replacing in $P_k(\underline{u})$ each variable u_j by ∂_{u_j} . Therefore, in order to characterize $\mathsf{I}(k)$, it suffices to calculate $\mathsf{CK}[\langle \underline{x}, \underline{u} \rangle^k e_A, 0]$ and $\mathsf{CK}[0, \langle \underline{x}, \underline{u} \rangle^{k-1} e_A]$ with $\underline{u} \in \mathbb{R}^m$.

A simple computation shows that

$$\mathsf{CK}\left[\langle \underline{x}, \underline{u} \rangle^k e_A, 0\right](x) = \langle \underline{x}, \underline{u} \rangle^k e_A - \sum_{n=2}^k \binom{k}{n} (-x_0)^n \langle \underline{x}, \underline{u} \rangle^{k-n} \left(\sum_{j=0}^{n-2} \underline{u}^{n-j-1} e_A \underline{u}^{j+1} \right),$$

$$\mathsf{CK}\big[0, \langle \underline{x}, \underline{u} \rangle^{k-1} e_A\big](x) = x_0 \langle \underline{x}, \underline{u} \rangle^{k-1} e_A - \frac{1}{k} \sum_{n=2}^k \binom{k}{n} (-x_0)^n \langle \underline{x}, \underline{u} \rangle^{k-n} \left(\sum_{j=0}^{n-1} \underline{u}^{n-j-1} e_A \underline{u}^j \right).$$

170

References

- S. Bock and K. Gürlebeck, On a spatial generalization of the Kolosov-Muskhelishvili formulae, Math. Methods Appl. Sci. 32 (2009), no. 2, 223–240.
- [2] F. Brackx, R. Delanghe and F. Sommen, *Clifford analysis*, Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA, 1982.
- [3] W. K. Clifford, Applications of Grassmann's Extensive Algebra, Amer. J. Math. 1 (1878), no. 4, 350–358.
- [4] J. Cnops and H. Malonek, An introduction to Clifford analysis, Textos de Matemática, Série B, 7, Universidade de Coimbra, Departamento de Matemática, Coimbra, 1995.
- [5] R. Delanghe, F. Sommen and V. Souček, *Clifford algebra and spinor-valued func*tions, Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992.
- K. Gürlebeck and U. Kähler, On a boundary value problem of the biharmonic equation, Math. Methods Appl. Sci. 20 (1997), no. 10, 867–883.
- [7] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford calculus for physicists and engineers, Wiley and Sons Publ., 1997.
- [8] V. V. Kravchenko, Applied quaternionic analysis, Research and Exposition in Mathematics, 28, Heldermann Verlag, Lemgo, 2003.
- [9] V. V. Kravchenko and M. V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics Series, 351, Longman, Harlow, 1996.
- [10] H. R. Malonek, Selected topics in hypercomplex function theory, Clifford algebras and potential theory, 111–150, Univ. Joensuu Dept. Math. Rep. Ser., 7, Univ. Joensuu, Joensuu, 2004.
- [11] H. R. Malonek, D. Peña Peña and F. Sommen, Fischer decomposition by inframonogenic functions, to appear in CUBO, A Mathematical Journal.
- [12] V. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev. 56 (2003), no. 1, 33–85.
- [13] D. Peña Peña, Cauchy-Kowalevski extensions, Fueter's theorems and boundary values of special systems in Clifford analysis, Ph.D. Thesis, Ghent University, Ghent, 2008 (available at http://hdl.handle.net/1854/11636).
- [14] J. Ryan, Basic Clifford analysis, Cubo Mat. Educ. 2 (2000), 226–256.
- [15] L. Sobrero, Theorie der ebenen Elastizität unter Benutzung eines Systems hyperkomplexer Zahlen, Hamburg. Math. Einzelschriften, Leipzig, 1934.
- [16] F. Sommen, Monogenic functions on surfaces, J. Reine Angew. Math. 361 (1985), 145–161.
- [17] F. Sommen and B. Jancewicz, Explicit solutions of the inhomogeneous Dirac equation, J. Anal. Math. 71 (1997), 59–74.

Helmuth R. Malonek Department of Mathematics Aveiro University 3810-193 Aveiro Portugal

e-mail address: hrmalon@ua.pt

Dixan Peña Peña Department of Mathematics Aveiro University 3810-193 Aveiro Portugal

 $e\text{-mail}\ address:$ dixanpena@ua.pt; dixanpena@gmail.com

FRANK SOMMEN DEPARTMENT OF MATHEMATICAL ANALYSIS GHENT UNIVERSITY 9000 GENT BELGIUM *e-mail address*: fs@cage.ugent.be

(Received May 9, 2009)