ON SELF MAPS OF \mathbb{HP}^n **FOR** n = 4 **AND** 5.

Kazuyoshi Katōgi

ABSTRACT. We determine the cardinality of the set of the homotopy classes of self maps of \mathbb{HP}^4 with degree 0. And we shall determine the nilpotency of \mathbb{HP}^5 .

1. Main results

Let $\mathbb{H}P^n$ be the quaternionic projective space of dimension n. We shall denote by $j_n: S^4 \to \mathbb{H}P^n$ the inclusion. Especially, we put $j = j_{\infty}$.

We shall prove the following theorem:

Theorem 1. The cardinality of $\mathscr{H}_0(\mathbb{HP}^4)$ is 2.

Here, for each integer k, $\mathscr{H}_k(\mathbb{HP}^n)$ is the totalities of the homotopy classes [f] of maps $f:\mathbb{HP}^n\to\mathbb{HP}^n$ such that $f\circ j_n:S^4\to\mathbb{HP}^n$ has degree k.

For n = 2, 3, the cardinalities K(n, k) of $\mathscr{H}_k(\mathbb{HP}^n)$, if it is not 0, are determined in [2] so as to K(2, 2k) = 1, K(2, 2k+1) = 2, K(3, 2k) = 2 and K(3, 2k+1) = 4.

Next, for all based spaces X, we shall denote by $Z_{\infty}(X)$ (c.f., [1]) the totalities of the homotopy classes $\alpha \in [X, X]$ with the property that $\pi_n(\alpha) = 0$: $\pi_n(X) \to \pi_n(X)$ for all integer $n \ge 0$. Clearly, $Z_{\infty}(\mathbb{HP}^n) \subseteq \mathscr{H}_0(\mathbb{HP}^n)$ holds.

In [1], the nilpotency $t_{\infty}(X)$ of a based space X is defined to be the least natural number k such that $x_1 \circ \cdots \circ x_k = 0$ holds for all $x_1, \cdots, x_k \in Z_{\infty}(X)$, if such k exists. If not, we put $t_{\infty}(X) = \infty$. It was proved in [1] that $t_{\infty}(\mathbb{HP}^i) = 1$ for i = 1, 2, 3 and $t_{\infty}(\mathbb{HP}^4) = 2$. We shall prove:

Theorem 2. $t_{\infty}(\mathbb{H}P^5) = 2$

2. Proof of the theorems

We shall consider in the category \mathscr{T}_0 of based topological spaces and based maps. We denote by [f] the homotopy class of each map f in \mathscr{T}_0 . We denote by 0 the homotopy class of any trivial maps. We put $\Sigma^n X = S^n \wedge X$.

By $h_n: S^{4n+3} \to \mathbb{HP}^n$, denotes the Hopf fiber map, and by $q_n: \mathbb{HP}^n \to S^{4n}$ the canonical quotient map. We shall put $r_n = \Sigma^{n-4}(q_1 \circ h_1): S^{n+3} \to S^n$. We shall put, for each m, n, k with $0 < k \leq m \leq n \leq \infty$, $\mathbb{HP}_k^n := \mathbb{HP}^n/\mathbb{HP}^{k-1}, q_k^n: \mathbb{HP}^n \to \mathbb{HP}_k^n$ to be the quotient map and $i_k^{m,n}: \mathbb{HP}_k^m \to \mathbb{HP}_k^n$

Mathematics Subject Classification. 55P15.

 \mathbb{HP}_k^n induced from the inclusion $i^{m,n} : \mathbb{HP}^m \to \mathbb{HP}^n$. Especially, we shall put $i_n := i^{n,n+1}$.

For all spaces $X, Y \in \mathscr{T}_0$, the symbol $\mathbf{F}(X, Y)$ denotes the totalities of the maps $X \to Y$ in \mathscr{T}_0 , endowed with the compact open topology and with the trivial map as its base point. We shall denote by $\mathbf{F}_0(\mathbb{HP}^n, \mathbb{BS}^3)$ the totality of the maps $\mathbb{HP}^n \to \mathbb{BS}^3$ with degree 0 endowed with the relative topology induced from $\mathbf{F}(\mathbb{HP}^n, \mathbb{BS}^3)$.

Proof of the theorem 1. The theorem 1 consists of following two lemmas:

Lemma 1. The cardinality of $Z_{\infty}(\mathbb{HP}^4)$ is 2 and the only non-trivial homotopy class of the set is $[j_4] \circ (\Sigma \nu') \circ \mu_7 \circ [q_4]$.

Lemma 2. $Z_{\infty}(\mathbb{HP}^4) = \mathscr{H}_0(\mathbb{HP}^4)$ holds.

Proof of Lemma 1. Consider the following exact sequence:

$$\pi_{16}(\mathbb{HP}^4) \xrightarrow[q_4^*]{} [\mathbb{HP}^4, \mathbb{HP}^4] \xrightarrow[i_3^*]{} [\mathbb{HP}^3, \mathbb{HP}^4] \xrightarrow[h_3^*]{} \pi_{15}(\mathbb{HP}^4)$$

Let $i_* : [\mathbb{HP}^3, \mathbb{HP}^3] \to [\mathbb{HP}^3, \mathbb{HP}^4]$ be induced from i_3 . From Lemma 5.9 and Theorem 5.10 of [1], the image of $Z_{\infty}(\mathbb{HP}^4)$ by the map $i_*^{-1} \circ i_3^* :$ $[\mathbb{HP}^4, \mathbb{HP}^4] \to [\mathbb{HP}^3, \mathbb{HP}^3]$ is contained in $Z_{\infty}(\mathbb{HP}^3) = \{0\}$. Hence, $Z_{\infty}(\mathbb{HP}^4)$ is contained in the image of the map $q_4^* : \pi_{16}(\mathbb{HP}^4) \to [\mathbb{HP}^4, \mathbb{HP}^4]$.

Conversely, let $\alpha \in \pi_{16}(\mathbb{HP}^4)$. Then, since $\pi_{16}(\mathbb{HP}^4) = \mathbb{Z}_2\{[j_4] \circ (\Sigma\nu') \circ \mu_7\} \oplus \mathbb{Z}_2\{[j_4] \circ (\Sigma\nu') \circ \eta_7 \circ \varepsilon_8\}$ holds by taking adjoint of $\pi_{15}(S^3)$ ([6]), $\alpha \circ [q_4] \circ [h_4] = \alpha \circ (4[r_{16}]) = 0$ holds in the group $\pi_{19}(\mathbb{HP}^4)$, and clearly $\alpha \circ [q_4|_{S^4}] = 0$. Hence, from the Proposition 5.4 of [1], $\alpha \circ [q_4] \in \mathbb{Z}_{\infty}(\mathbb{HP}^4)$. Therefore, $\mathbb{Z}_{\infty}(\mathbb{HP}^4) = q_4^*(\pi_{16}(\mathbb{HP}^4))$.

Next, it is well known by [4] that $[j_4] \circ (\Sigma \nu') \circ \mu_7 \circ [q_4] \neq 0$, in the set $[\mathbb{HP}^4, \mathbb{HP}^4]$. Hence ([1]) card $(Z_{\infty}(\mathbb{HP}^4)) \geq 2$.

We shall express the co-action (c.f., chapter III of [7]) by the element α of $\pi_{16}(\mathbb{HP}^4)$ on the element x of $[\mathbb{HP}^4, \mathbb{HP}^4]$ by the symbol $x + \alpha$. Then, from the Puppe theorem, to prove Lemma 1, we have only to prove the following lemma:

Lemma 3. $[j_4] \circ (\Sigma \nu') \circ \eta_7 \circ \varepsilon_8 \circ [q_4] = 0$ holds in $[\mathbb{HP}^4, \mathbb{HP}^4]$.

Proof. Let $h'_3 = q_3 \circ h_3 : S^{15} \to S^{12}$, and $q' : \mathbb{HP}_3^4 \to S^{16}$ the quotient map. Then, we obtain the following exact sequence:

$$\pi_{13}(\mathbf{B}S^3) \xrightarrow[(\Sigma h'_3)^*]{} \pi_{16}(\mathbf{B}S^3) \xrightarrow[q'^*]{} [\mathbb{H}\mathbf{P}_3^4, \, \mathbf{B}S^3]$$

It is well known that $[h'_3] \equiv \pm 3[r_{12}] \equiv \pm 3\nu_{12} \pmod{\Sigma^9 \nu' (= 2\nu_{12})}$ and from [6], $\pi_{12}(S^3) = \mathbb{Z}_2\{\mu_3\} \oplus \mathbb{Z}_2\{\eta_3 \circ \varepsilon_4\}$ holds. Now, since from [5], $\mu_3 \circ \nu_{12} = \nu' \circ \eta_6 \circ \varepsilon_7$ and $\eta_3 \circ \varepsilon_4 \circ \nu_{12} = \varepsilon_3 \circ \eta_{11} \circ \nu_{12} = \varepsilon_3 \circ (\Sigma^8 \nu') \circ \eta_{14} = \varepsilon_3 \circ (2\nu_{11}) \circ \eta_{14} = 0$

144

holds. Therefore, $(\Sigma h'_3)^*(\pi_{13}(BS^3)) = \{0, [j] \circ (\Sigma \nu') \circ \eta_7 \circ \varepsilon_8\}$ holds, hence $[j] \circ (\Sigma \nu') \circ \eta_7 \circ \varepsilon_8 \circ [q_4] = [j] \circ (\Sigma \nu') \circ \eta_7 \circ \varepsilon_8 \circ [q'] \circ [q_3^4] = 0$ holds in the set $[\mathbb{HP}^4, BS^3].$

Proof of Lemma 2. We shall use the notations in [2]: Let $d_{4,0}: \pi_{12}(BS^3) \rightarrow \pi_{15}(BS^3)$ be the composition of $j_{3,0}: \pi_{12}(BS^3) \rightarrow \pi_0(\mathbf{F}_0(\mathbb{HP}^3, BS^3))$ and the map $\partial_{4,0}: \pi_0(\mathbf{F}_0(\mathbb{HP}^3, BS^3)) \rightarrow \pi_{15}(BS^3)$ induced from h_3 . As in the proof of Proposition 1.3 of [3], $d_{4,0}(l) = \pm 3l \circ [r_{12}]$ holds for $l \in \pi_{12}(BS^3)$. Since $\pi_{12}(BS^3) = \mathbb{Z}_2\{j_*\varepsilon_4\}$ ([6]), $d_{4,0}(j_*\varepsilon_4) = [j] \circ \varepsilon_4 \circ [r_{12}] = [j] \circ \varepsilon_4 \circ \nu_{12} \neq 0$ in the set $\pi_{15}(BS^3)$.

Finally, from Theorem 2 of [2], the cardinality of the set $\mathscr{H}_0(\mathbb{HP}^3) \cong \pi_0(\mathbf{F}_0(\mathbb{HP}^3, \mathbb{B}S^3)))$ is 2. Therefore, $\partial_{4,0}$ is injection, hence $i_3^*(\mathscr{H}_0(\mathbb{HP}^4)) \subseteq \operatorname{Ker}(\partial_{4,0}) = 0$. Hence $\mathscr{H}_0(\mathbb{HP}^4) \subseteq q_4^*(\pi_{16}(\mathbb{HP}^4)) = Z_{\infty}(\mathbb{HP}^4)$. This completes the proof of Lemma 2 so that Theorem 1 holds.

Proof of theorem 2. The non trivial class $\xi := [j_4] \circ (\Sigma \nu') \circ \mu_7 \circ [q_4] \in Z_{\infty}(\mathbb{HP}^4)$ is represented by the restriction of a map $f : \mathbb{HP}^5 \to \mathbb{HP}^5$ which represents a non trivial class $\alpha \in [\mathbb{HP}^5, \mathbb{HP}^5]$, because of $\xi \circ [h_4] = 0$ and of the fact that \mathbb{HP}^5 is the mapping cone of the map $h_4 : S^{19} \to \mathbb{HP}^4$. Let $x + \gamma$ be the co-action on $x \in [\mathbb{HP}^5, \mathbb{HP}^5]$ by $\gamma \in \pi_{20}(\mathbb{HP}^5)$.

Take two elements $x, y \in Z_{\infty}(\mathbb{HP}^5)$. Then x has the form $x = 0 + \gamma = \gamma \circ q_5$ or the form $x = \alpha + \gamma$ for some $\gamma \in \pi_{20}(\mathbb{HP}^5)$. For the former case, it is trivial that $y \circ x = 0$. For the latter case, $y \circ x = y \circ \alpha + y \circ \gamma = y \circ \alpha$. Therefore, it is enough that we can take α so as to be factored through S^{15} (or S^4).

By [5], $[j_5] \circ (\Sigma \nu') \circ \mu_7 = [j_5] \circ (\Sigma \mu') \circ \eta_{15}$, and $\eta_{15} \circ [q_4] \circ [h_4] = \eta_{15} \circ (4\nu_{16}) = 0$. Therefore, there exists $\alpha' : \mathbb{HP}_4^5 \to S^{15}$ such that $\alpha' \circ [i_4^{4,5}] = \eta_{15}$. Hence $[j_5] \circ (\Sigma \mu') \circ \eta_{15} \circ [q_4] = [j_5] \circ (\Sigma \mu') \circ \alpha' \circ [i_4^{4,5}] \circ [q_4] = [j_5] \circ (\Sigma \mu') \circ \alpha' \circ [q_4^5] \circ [i_4]$. We can put $\alpha = [j_5] \circ (\Sigma \mu') \circ \alpha' \circ [q_4^5]$.

References

- [1] M. Arkowitz and J. Strom, Homotopy classes that are trivial mod \mathcal{F} , Algebr. Geom. Topol. 1 (2001), 381-409.
- [2] D.L. Gonçalves and M. Spreafico, Quaternionic line bundles over quaternionic projective spaces, Math. J. Okayama Univ. 48 (2006), 87-101.
- [3] N. Iwase, K. Maruyama and S. Oka, A note on $\mathcal{E}(\mathbb{HP}^n)$ for $n \leq 4$, Math. J. Okayama Univ. **33** (1991), 163-176.
- [4] H. J. Marcum, D. Randall, A note on self-mappings of quaternionic projective spaces, An. Acad. Brasil. Ciênc. 48 (1976), 7-9.
- [5] K. Öguchi, Generators of 2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. Tokyo Sect I, **11** (1964), 65-111.
- [6] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton University Press (1962).

KAZUYOSHI KATŌGI

[7] G.W. Whitehead, *Elements of homotopy theory*, Graduate Texts in Mathematics **61**, Springer Verlag (1978).

KAZUYOSHI KATŌGI POSTAL CODE NUMBER: 311-4334. MAILING ADDRESS: 730-5 MAGONE, SHIROSATO-MACHI, HIGASHIIBARAKI-GUN IBARAKI-KEN, JAPAN *e-mail address*: rational_homotopy@ybb.ne.jp

> (Received July 30, 2008) (Revised October 1, 2008)

146