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SOME PROPERTIES OF EF-EXTENDING RINGS

TRUONG CONG QUYNH and LE VAN THUYET

Abstract. In [16], Thuyet and Wisbauer considered the extending
property for the class of (essentially) finitely generated submodules. A
module M is called ef-extending if every closed submodule which con-
tains essentially a finitely generated submodule is a direct summand of
M . A ring R is called right ef-extending if RR is an ef-extending mod-
ule. We show that a ring R is right ef-extending and the R-dual of every
simple left R-module is simple if and only if R is semiperfect right con-
tinuous with Sl = Sl ≤

e
RR. We also prove that a ring R is a QF-ring

if and only if R is left Kasch and R
(ω)
R

is ef-extending if and only if R is
right AGP-injective satisfying DCC on right (or left) annihilators and
(R ⊕ R)R is ef-extending.

1. Introduction and Definitions

Throughout the paper, R represents an associative ring with identity
1 6= 0 and all modules are unitary R-modules. We write MR (resp., RM) to
indicate that M is a right (resp., left) R-module. We also write J (resp., Zr,
Sr) for the Jacobson radical (resp., the right singular ideal, the right socle
of R) and E(MR) for the injective hull of MR. If X is a subset of R, the
right (resp., left) annihilator of X in R is denoted by rR(X) (resp., lR(X))
or simply r(X) (resp., l(X)) if no confusion appears. If N is a submodule
of M (resp., proper submodule) we denote by N ≤ M (resp., N < M).
Moreover, we write N ≤e M , N ≤⊕ M and N ≤max M to indicate that N
is an essential submodule, a direct summand and a maximal submodule of
M , respectively. A module M is called uniform if M 6= 0 and every non-zero
submodule of M is essential in M . It is called that a module M has finite

uniform dimension if M does not contain an infinite direct sum of non-zero
submodules. Let M, N be R-modules. M is said to be N -injective if, for any
submodule H of N , every R-homomorphism f : H −→ M can be extended
to an R-homomorphism f̄ : N −→ M . Let M be any module. A submodule
K of M is closed (in M), if K ≤e L ≤ M , then K = L. A ring R is called
right AGP-injective if for each 0 6= a ∈ R, there exists n ∈ IN such that
an 6= 0 and lr(an) = Ran ⊕ Xa with Xa ≤ RR (see [17]). A ring R is called
QF if it is right (or left) artinian and right (or left) self-injective. A ring
R is said to be right PF if RR is an injective cogenerator in the category
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of right R-modules. A ring R is called semiregular if R/J is von Neumann
regular and idempotents lift modulo J . A ring R is called right Kasch if
every simple right R-module is embeded in R.

We consider the following conditions on a module MR:

C1: Every submodule of M is essential in a direct summand of M.
C2: Every submodule of M that is isomorphic to a direct summand of

M is itself a direct summand of M.
C3: M1 ⊕ M2 is a direct summand of M for any two direct summand

M1, M2 of M with M1 ∩ M2 = 0.

Module MR is called extending (or CS) (resp., continuous) if it satisfies
C1 (resp., both C1 and C2). R is called right extending (resp., continuous)
if RR is an extending module (resp., continuous). Module MR is called
quasi-continuous if it satisfies C1 and C3. A module M is called uniform-

extending if every uniform submodule is essential in a direct summand of
M .

Recently, the theory of extending modules has been developed. Some
results for extending modules contribute to plentiful theory of ring and
module, particularly decomposition into direct sum of indecomposable (or
uniform) modules and application to theory of QF-rings. In [11], Oshiro
considered a ring R such that every projective R-module is an extending
module (i.e., R is co-H) and in [12] he proved that rings with this prop-

erty are (left) Artinian. Also in [3, 7] it is proved that R(I) is an extending
module for any index set I if and only if every projective R-module is an
extending module.

In [3], Dung, Huynh, Smith and Wisbauer studied QF-rings via extending
modules. In [6], Pardo and Asensio proved that R is right PF if and only
if R is right cogenerator right extending. This result generalizes Osofsky’s
result in [13]. In [18], Yousif proved that R is right PF if and only if R⊕R is
extending as a right R-module and the R-dual of every simple left R-module
is simple.

There are some interesting generalization of extending modules. For ex-
ample, in [15] Smith and Tercan studied weak extending module and C11

module and in [16], Thuyet and Wisbauer considered the extending prop-
erty for the class of (essentially) finitely generated submodules and defined
ef-extending module. A module M is called ef-extending if every closed sub-
module which contains essentially a finitely generated submodule is a direct
summand of M . A ring R is called right ef-extending if RR is an ef-extending
module.

In this paper, we prove that R is QF if and only if R is left Kasch and R
(ω)
R

is ef-extending. Moreover, we prove that R is QF if and only if R is right
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AGP-injective satisfying DCC on right (or left) annihilators and (R ⊕ R)R

is ef-extending.

2. Main Results.

From the definition of ef-extending module and ring, we have:
i) A right extending ring is right ef-extending. But the converse is not

true in general.

Example. Let K be a division ring and KV a left K-vector space with infinite
dimension. Take S = End(KV ), then it right ef-extending but not right
extending.

ii) Every finitely generated submodule of an ef-extending module M is
essential in a direct summand of M .

Lemma 2.1 ([16]). Every direct summand of an ef-extending module is

ef-extending.

It is well-known M is an extending module if and only if every closed
submodule of M is a direct summand (see [3]).

Lemma 2.2. Let M be a module such that Soc(M) is finitely generated and

essential in M . Then M is an extending module if and only if M is an

ef-extending module.

Proof. Assume that M is ef-extending. Let N be a closed submodule of
M . We have Soc(N) ≤ Soc(M), and so Soc(N) is finitely generated by
hypothesis.

On the other hand, Soc(N) = N ∩ Soc(M). For every x ∈ N such that
xR ∩ Soc(N) = 0, xR ∩ (N ∩ Soc(M)) = 0 or xR ∩ Soc(M) = 0. Since
Soc(M) ≤e M , xR = 0. It follows that x = 0. So Soc(N) ≤e N. Hence N is
a closed submodule which contains essentially a finitely generated submod-
ule. Thus N is a direct summand of M . �

Corollary 2.3. Let R be a left perfect ring. Then R is right extending if

and only if R is right ef-extending.

If RM is a left R-module, recall that the R-dual M∗ = HomR(RM, R) of
M is a right R-module via (fr)(m) = f(rm) for all r ∈ R, f ∈ M∗, and
m ∈ M .

Proposition 2.4. The following statements are equivalent for a ring R.

(1) R is right ef-extending and the R-dual of every simple left R-module

is simple.

(2) R is semiperfect right continuous ring with Sr = Sl ≤
e RR.
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Proof. (1) ⇒ (2). By [10, Theorem 4.8], we have R is semiperfect, left Kasch
with Sr = Sl ≤

e RR. Since R is right ef-extending, eiR is ef-extending for
all i = 1, 2, . . . , n. It follows that eiR is uniform (because eiR is indecom-
posable) and so Soc(eiR) is simple and essential in eiR for all i = 1, 2, . . . , n.
Therefore Sr is finitely generated and hence R is right extending by Lemma
2.2. Thus R is right continuous by [10, Theorem 4.10].
(2) ⇒ (1) is clear. �

Theorem 2.5. The following statements are equivalent for a ring R.

(1) R is right PF.

(2) R ⊕ R is ef-extending as a right R-module and the R-dual of every

simple left R-module is simple.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). Assume that R ⊕ R is ef-extending as a right R-module and
the R-dual of every simple left R-module is simple. Then R is semiperfect
right continuous ring with Sr = Sl ≤

e RR by Proposition 2.4. Since R is
semiperfect, right ef-extending and Sr ≤e RR, then Sr is finitely generated.
Hence Soc(R⊕R)R is finitely generated and essential in (R⊕R)R. Therefore
(R ⊕ R)R is extending by Lemma 2.2. We have J = Zr (since R is right
continuous) and R is semiregular (since R is semiperfect), then (R ⊕ R)R

satisfies the C2 by [10, Example 7.18], and so (R⊕R)R is continuous. Thus
R is right self-injective by [10, Theorem 1.35]. �

Corollary 2.6 ([18], Theorem 2). The following statements are equivalent

for a ring R.

(1) R is right PF.

(2) R ⊕ R is extending as a right R-module and the R-dual of every

simple left R-module is simple.

We write R
(ω)
R to indicate a countable direct sum of copies of the right

R-module RR.

Theorem 2.7. The following statements are equivalent for a ring R.

(1) R is QF.

(2) R is left Kasch and R
(ω)
R is ef-extending.

Proof. We prove (2) ⇒ (1). Let T be a maximal left ideal of R. Since R
is left Kasch, r(T ) 6= 0. There exists 0 6= a ∈ r(T ) or T ≤ l(a) which
yields T = l(a) by maximality of T and so r(T ) = rl(a). Since R is right
ef-extending, aR ≤e eR for some e2 = e ∈ R. On the other hand, aR ≤
rl(a) ≤ eR and then rl(a) ≤e eR. Hence r(T ) ≤e eR. It implies that R
is semiperfect by [10, Lemma 4.1]. Thus R = e1R ⊕ · · · ⊕ enR, where
{ei}

n
i=1 is the complete set of orthogonal local idempotents. For every i 6= j
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(i, j ∈ {1, 2, · · · , n}), let f : eiR −→ ejR be a monomorphism. We have
eiR ∼= f(eiR) ≤ ejR. Since R satisfies the right C2 (because R is left
Kasch), then f(eiR) is a direct summand of ejR or f(eiR) = ejR (because
ejR is indecomposable). Hence f is an isomorphism. Since R is right ef-
extending, every uniform right ideal of R is essential in direct summand of
RR. Therefore for every i0 ∈ {1, 2, · · · , n},

⊕

{1,2,··· ,n}\{i0}

eiR is ei0R-injective

by [3, Corollary 8.9]. Since eiR is also ef-extending, indecomposable and so
eiR is quasi-continuous. By [9, Theorem 2.13], R is right quasi-continuous.
Thus R is right continuous.

By Utumi’s Theorem (see [10, Theorem 1.26]), J = Zr. By [10, Example
7.18], (R⊕R)R satisfies the C2 and so (R⊕R)R is continuous. Thus R is right
self-injective by [10, Theorem 1.35]. It implies that eiR is injective for every

i = 1, 2, . . . , n. On the other hand, R
(ω)
R = (e1R ⊕ · · · ⊕ enR)(ω) =

⊕

ω′

εiR

is uniform-extending, for some countable set ω′ and εi ∈ {e1, e2, · · · , en} for

each i ∈ ω′. By [3, Corollary 8.10], R
(ω)
R is injective. By a well-known result

of Faith ([4]), R has ACC on right annihilators and hence R is QF. �

Corollary 2.8 ([18], Theorem 3). The following statements are equivalent

for a ring R.

(1) R is QF.

(2) R is left Kasch and R
(ω)
R is extending.

Corollary 2.9. The following statements are equivalent for a ring R.

(1) R is right PF.

(2) R is left, right Kasch and (R ⊕ R)R is ef-extending.

Proof. (1) ⇒ (2). Assume that R is right PF. Then R is left, right Kasch
and R is right self-injective by [5, Theorem 2.8]. Hence (R⊕R)R is extending
module [10, Theorem 1.35].

(2) ⇒ (1). In the proof of Theorem 2.7, we showed that R is right PF. �

Lemma 2.10. Assume that RR = e1R ⊕ e2R ⊕ · · · ⊕ enR, where each eiR
is uniform for all i = 1, 2, . . . , n. If every monomorphism RR −→ RR is an

epimorphism, then R is semiperfect.

Proof. By [10, Lemma 4.26]. �

A ring R is called I-finite if R contains no infinite sets of orthogonal
idempotents (see [10]).

Proposition 2.11. The following statements are equivalent for a ring R.

(i) R is a semiperfect, right continuous ring.
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(ii) R is a right ef-extending ring, Zr = J , and R has DCC on principal

projective right ideals.

(iii) R is a right ef-extending, right C2 ring, and R has DCC on principal

projective right ideals.

(iv) R is a right ef-extending, right C2 and I-finite ring.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are clear.
(iv) ⇒ (i). Since R is I-finite, write 1 = u1 + · · · + un, where the ui are

orthogonal primitive idempotents. Hence R = u1R⊕ · · · ⊕ unR, where each
ukR is uniform because it is an ef-extending module. On the other hand, R
satisfies C2, every monomorphism RR −→ RR is epimorphism. Thus R is
semiperfect by Lemma 2.10. By a similar proof of Theorem 2.7, R is right
continuous. �

Corollary 2.12. The following statements on a ring R are equivalent:

(1) R is a semiperfect right self-injective ring.

(2) (R ⊕ R)R is ef-extending, Zr = J and R has DCC on principal

projective right ideals.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). By Proposition 2.11, R is semiperfect. Thus by a similar proof

of Theorem 2.7, R is right self-injective. �

Next, we consider properties of a ring which has DCC on right (left)
annihilators such that (R ⊕ R)R is ef-extending.

Theorem 2.13. The following statements are equivalent for a ring R;

(1) R is QF.

(2) R is right AGP-injective satisfying DCC on right annihilators and

(R ⊕ R)R is ef-extending.

(3) R is right AGP-injective satisfying DCC on left annihilators and

(R ⊕ R)R is ef-extending.

Proof. (2) ⇒ (1). Assume that there is monomorphism f : R −→ R which
not epimorphism. Let a = f(1). Then r(an) = 0, ∀n ≥ 1. Assume that
aR 6= R. Since R is right AGP-injective, there exist a positive integer m ≥ 1
and X1 ≤ RR such that am 6= 0 and lr(am) = Ram ⊕ X1. It implies that
R = Ram ⊕ X1 (since r(am) = 0) and so Ram = Re for some e2 = e ∈ R.
Then

0 = r(am) = r(Ram) = r(Re) = r(e) = (1 − e)R,

and hence e = 1 or Ram = R. It implies that R = Ra, i.e., ba = 1
for some b ∈ R. If ab 6= 1, then by [8, Example 21.26], there are some
eij = aibj−ai+1bj+1 ∈ R, i, j ∈ IN such that eijekl = δjkeil for all i, j, k ∈ IN ,
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where δjk are the Kronecker deltas. Notice eij 6= 0 for all i, j ∈ IN , by
construction. Set ei = eii. Then eiej = δijei, ∀i, j ∈ IN . Therefore we have

r(e1) > r({e1, e2}) > · · · ,

this is a contradiction because R has DCC on right annihilators. Hence
ab = 1 and so aR = R. This is a contradiction to our assumption. Thus f
is an epimorphism.

On the other hand, R is I-finite, there exists an orthogonal set of primitive
idempotents {ei}

n
i=1 such that RR = e1R⊕e2R⊕...⊕enR. Since R is right ef-

extending, eiR is ef-extending and so eiR is uniform for every i = 1, 2, . . . , n.
Thus R is semiperfect by Lemma 2.10. But R is right AGP-injective, J = Zr.
Therefore R is right C2 by [10, Example 7.18]. Then R is QF by the later
part of the proof in Theorem 2.7.

(3) ⇒ (1). Assume that there is monomorphism f : R −→ R which
not epimorphism. The same argument of (2) ⇒ (1), there exists a set of
orthogonal idempotents {ei ∈ R|ei 6= 0, i ∈ IN}. Therefore we have

l(e1) > l({e1, e2}) > · · · ,

this is a contradiction because R has DCC on left annihilators. Thus R is
QF by the later part of the proof in (2) ⇒ (1). �

Theorem 2.14. The following statements are equivalent.

(1) R is QF.

(2) (R ⊕ R)R is ef-extending, R is right C2 and satisfies ACC on left

annihilators.

(3) (R ⊕ R)R is ef-extending, R is right C2 and satisfies ACC on right

annihilators.

Proof. (1) ⇒ (2), (3) is clear.
(2) ⇒ (1). Assume that there is monomorphism f : R −→ R which not

epimorphism. Let a = f(1). If aR 6= R, then anR > an+1R for all n ≥ 1
(because r(a) = 0). Moreover, anR ∼= aR ∼= R for all n ≥ 1. Then for every
n ≥ 1, there exists 0 6= e2

n = en ∈ R such that anR = enR because R is right
C2. Hence we have a strict ascending chain

l(e1) < l(e2) < · · · ,

this is a contradiction. Thus aR = R or f is epimorphism. It implies that R
is semiperfect by Lemma 2.10. Then R is QF by the later part of the proof
in Theorem 2.7.

(3) ⇒ (1). By (2) ⇒ (1), for every monomorphism f : R −→ R which is
not epimorphism and for every n ≥ 1, there exists 0 6= e2

n = en ∈ R such
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that anR = enR with a = f(1). Hence we have

e1R > e2R > · · · ,

this is a contradiction by [10, Lemma B.6]. Thus R is QF by the same
argument of (2) ⇒ (1). �

From this theorem, we have the following proposition.

Proposition 2.15. The following statements are equivalent for a ring R.

(1) R is QF.

(2) (R⊕R)R is ef-extending, R satisfies ACC on right annihilators and

Sl ≤
e RR.

Proof. We prove (2) ⇒ (1). By [14, Theorem 2.9 ], R is semiprimary.
Therefore R is left Kasch by [10, Lemma 4.2]. Thus R is QF. �

In [1], the authors proved that R is QF if and only if R is right Artinian,
(R ⊕ R)R or R(R ⊕ R) is extending and Sr ≤ Sl. In this paper, we extend
this result in case (R ⊕ R)R or R(R ⊕ R) is ef-extending.

Theorem 2.16. Assume that R has ACC on right annihilators with Sr ≤e

RR. Then the following statements are equivalent.

(1) R is QF.

(2) (a) (R ⊕ R)R or R(R ⊕ R) is ef-extending.

(b) Sr ≤ Sl.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). Since R has ACC on right annihilators with Sl ≤

e RR, R is
semiprimary by [14, Theorem 2.9]. Hence R is left Kasch by [10, Lemma
4.2]. If (R ⊕ R)R is ef-extending, then R is QF by Proposition 2.15.

If R(R⊕R) is ef-extending, then R is left ef-extending. Therefore Soc(Re)
is simple for every local idempotent e ∈ R. It implies that Sre is simple or
zero. Moreover, Sr is essential in RR and so Soc(eR) 6= 0. It implies that R
is right Kasch by [10, Theorem 3.12]. Therefore R is left C2. Thus R is QF
by Theorem 2.14. �
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