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TRIANGULAR MATRIX REPRESENTATIONS OF SKEW

MONOID RINGS

Liu Zhongkui and Yang Xiaoyan

Abstract. Let R be a ring and S a u.p.-monoid. Assume that there is
a monoid homomorphism α : S −→ Aut(R). Suppose that α is weakly
rigid and lR(Ra) is pure as a left ideal of R for every element a ∈ R.
Then the skew monoid ring R∗S induced by α has the same triangulating
dimension as R. Furthermore, if R is a PWP ring, then so is R ∗ S.

1. Introduction.

All rings considered here are associative with identity and R denotes such
a ring. Recall from [1, 2] an idempotent e ∈ R is left (resp. right) semicentral
in R if ere = re (resp. ere = er), for all r ∈ R. Equivalently, e2 = e ∈ R is
left (resp. right) semicentral if eR (resp. Re) is an ideal of R. We use Sl(R)
and Sr(R) for the sets of all left and all right semicentral idempotents of R,
respectively. From [3], an idempotent e of R is called semicentral reduced
if Sl(eRe) = {0, e}. A ring R is called semicentral reduced [3, 4] if 1 is
semicentral reduced. From [3] a ring R has a generalized triangular matrix
representation if there exists a ring isomorphism

θ : R −→











R1 R12 . . . R1n

0 R2 . . . R2n

...
...

. . .
...

0 0 . . . Rn











,

where each diagonal ring, Ri, is a ring with unity, Rij is a left Ri- right
Rj-bimodule for i < j, and the matrices obey the usual rules for matrix
addition and multiplication. If each Ri is semicentral reduced, then R has
a complete generalized triangular matrix representation with triangulating
dimension n ([3, 5]).

Recall from [1, 3, 5] that a piecewise prime ring (simply, PWP ring) is
a quasi-Baer ring with finite triangulating dimension. In [3, Corollary 4.13]
it was shown that the class of PWP rings properly includes all piecewise
domains which were introduced in [8] (hence all right hereditary rings which
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are semiprimary or right Noetherian). Every PWP ring has a complete gen-
eralized triangular matrix representation with prime diagonal rings, Ri, (see
[3, Theorem 4.4]). It was observed in [8, p.554] that n-by-n matrix rings
and polynomial rings over piecewise domains are again piecewise domains.
In [5], G. F. Birkenmeier and J. K. Park showed that for a PWP ring R
the following ring extensions are PWP rings: R[G], the monoid ring of a
u.p.-monoid G; R[X] and R[[X]], where X is a nonempty set of not nec-
essarily commuting indeterminates; R[x, x−1] and R[[x, x−1]], the Laurent
polynomial ring and Laurent series ring, respectively; R[x;α] and R[[x;α]],
the skew polynomial and skew power series ring, respectively, where α is
a particular type of ring automorphism of R; Tn(R) and Matn(R) the n-
by-n upper triangular and full matrix rings over R, respectively. Also open
problems were raised in [5] to enlarge the class of ring extensions of PWP
rings which are also PWP rings and to enlarge the class of ring extensions of
rings with finite triangulating dimension which also have finite triangulating
dimension. In this paper we will show that for a left p.q.Baer ring R and a
u.p.-monoid S the skew monoid ring R∗S induced by a weakly rigid monoid
homomorphism α : S −→ Aut(R) has the same triangulating dimension as
R. Furthermore, if R is a PWP ring, then so is R ∗S, and hence R ∗S has a
complete generalized triangular matrix representation with prime diagonal
rings.

2. Quasi-Baerness.

Recall that a monoid M is called a u.p.-monoid (unique product monoid)
if for any two nonempty finite subsets A,B ⊆ M there exists an element
g ∈M uniquely presented in the form ab where a ∈ A and b ∈ B. The class
of u.p.-monoids is quite large and important (see [5], [18] and [19]). For
example, this class includes the right or left ordered monoids, submonoids
of a free group, and torsion-free nilpotent groups. Every u.p.-monoid M has
no non-unity element of finite order.

Let R be a ring and S a u.p.momoid. Assume that there is a monoid
homomorphism α : S −→ Aut(R). For any s ∈ S, we denote the image of
s under α by αs. Then we can form a skew monoid ring R ∗ S (induced
by the monoid homomorphism α) by taking its elements to be finite formal
combinations

∑

s∈S ass, with multiplication induced by:

(ass)(btt) = asαs(bt)(st).

In the following, µ will always stand for the identity of a monoid S.
A submodule N of a left R-module M is called a pure submodule if L⊗R

N −→ L⊗R M is a monomorphism for every right R-module L. An ideal I
of R is said to be right s-unital if, for each a ∈ I there exists an x ∈ I such
that ax = a. By [21, Proposition 11.3.13], an ideal I is pure as a left ideal
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of R if and only if R/I is flat as a left R-module if and only if I is right
s-unital.

Lemma 2.1. Let R be a ring such that lR(Ra) is pure as a left ideal of R for
every element a ∈ R and S a u.p.-monoid. Suppose that φ = a1s1 + a2s2 +
· · · + ansn, ψ = b1t1 + b2t2 + · · · + bmtm ∈ R ∗ S are such that φRψ = 0.
Then aiαsi

(rbj) = 0 for any r ∈ R, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

Proof. Suppose that c1, c2, · · · , cn ∈ R are such that ai = αsi
(ci) for i =

1, 2, · · · , n. We proceed by induction on m.
If m = 1, then ψ = b1t1. Thus 0 = (a1s1 + a2s2 + · · · + ansn)r(b1t1) =

a1αs1
(rb1)s1t1 +a2αs2

(rb1)s2t1 + · · · + anαsn(rb1)snt1 for every r ∈ R. By
[5, Lemma 1.1], S is a cancellative monoid. Thus sit1 6= sjt1 for si 6= sj .
Hence aiαsi

(rb1) = 0, i = 1, 2, · · · , n.
Now suppose that m ≥ 2. Since S is a u.p.-monoid, there exist p, q with

1 ≤ p ≤ n and 1 ≤ q ≤ m such that sptq is uniquely presented by considering
two subsets {s1, s2, · · · , sn} and {t1, t2, · · · , tm} of S. Thus from φRψ = 0 it
follows that apαsp(rbq)sptq = 0 and so apαsp(rbq) = 0. Thus αsp(cprbq) = 0,
which implies that cprbq = 0 for every r ∈ R since αsp is an automorphism.
Hence cp ∈ lR(Rbq). Since lR(Rbq) is pure as a left ideal of R, there exists
an element eq ∈ lR(Rbq) such that cp = cpeq. Thus for every r ∈ R, we have

0 = φeqrψ = (a1s1 + a2s2 + · · · + ansn)eqr

·(b1t1 + b2t2 + · · · + bq−1tq−1 + bq+1tq+1 + · · · + bmtm)

+(a1s1 + a2s2 + · · · + ansn)((eqrbq)tq)

= (a1s1 + a2s2 + · · · + ansn)eqr

·(b1t1 + b2t2 + · · · + bq−1tq−1 + bq+1tq+1 + · · · + bmtm)

= (a1αs1
(eq)s1 + a2αs2

(eq)s2 + · · · + anαsn(eq)sn)r

·(b1t1 + b2t2 + · · · + bq−1tq−1 + bq+1tq+1 + · · · + bmtm)

By induction, it follows that aiαsi
(eq)αsi

(rbj) = 0 for any r ∈ R, i =
1, 2, · · · , n, j = 1, 2, · · · , q − 1, q + 1, · · · ,m. Thus αsi

(cieqrbj) = 0, which
implies that cieqrbj = 0. Hence cieq ∈ lR(Rbj) for any i = 1, 2, · · · , n and
j = 1, 2, · · · , q − 1, q + 1, · · · ,m. Therefore

cp = cpeq ∈ ∩m
j=1lR(Rbj).

Now apαsp(Rbj) = αsp(cpRbj) = 0 for any j = 1, 2, · · · ,m. Thus from
φRψ = 0 it follows that

0 = (a1s1 + a2s2 + · · · + ap−1sp−1 + ap+1sp+1 + · · · + ansn)

·r(b1t1 + b2t2 + · · · + bmtm).

By using the previous method, there exists k ∈ {1, 2, · · · , p−1, p+1, · · · , n}
such that ck ∈ ∩m

j=1lR(Rbj). Thus akαsk
(Rbj) = αsk

(ckRbj) = 0 for any
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j = 1, 2, · · · ,m. Hence (a1s1 + a2s2 + · · · + ap−1sp−1 + ap+1sp+1 + · · · +
ak−1sk−1 + ak+1sk+1 + · · · + ansn)r(b1t1 + b2t2 + · · · + bmtm) = 0. Contin-
uing this procedure yields c1, c2, · · · , cn ∈ ∩m

j=1lR(Rbj), which implies that

aiαsi
(Rbj) = 0 for any i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

By induction, the result follows. �

Note that in the proof of [11, Theorem 3.9], it is shown that if lR(Ra) is
pure as a left ideal of R for every element a ∈ R, then (a0 + a1x + · · · +
amx

m)R(b0 + b1x + · · · + bnx
n) = 0 in R[x] with ai, bj ∈ R implies that

aiRbj = 0 for all i, j. Clearly this result follows directly from Lemma 2.1.
Recall that R is Baer if the right annihilator of every nonempty subset of

R is generated, as a right ideal, by an idempotent. Clark in [7] defines a ring
to be quasi-Baer if the left annihilator of every ideal is generated, as a left
ideal, by an idempotent. Moreover, he shows the left-right symmetry of this
condition by proving that R is quasi-Baer if and only if the right annihilator
of every right ideal is generated, as a right ideal, by an idempotent. He
then uses the quasi-Baer concept to characterize when a finite dimensional
algebra with unity over an algebraically closed field is isomorphic to a twisted
matrix units semigroup algebra. Every prime ring is quasi-Baer. In [20]
Pollingher and Zaks show that the class of quasi-Baer rings is closed under
n×n matrix rings and under n×n upper (or lower) triangular matrix rings.
It is proved in [13, Theorem 21] that if σ is an automorphism of a ring R
with σ(e) = e for any e2 = e ∈ R and R is an σ-skew Armendariz ring,
then R is a Baer ring if and only if R[x;σ] is a Baer ring. G.F.Birkenmeier,
J.Y.Kim and J.K.Park show in [2, Theorem 1.8] that R is quasi-Baer if and
only if R[X] is quasi-Baer if and only if R[[X]] is quasi-Baer if and only
if R[x, x−1] is quasi-Baer if and only if R[[x, x−1]] is quasi-Baer, where X
is an arbitrary nonempty set of not necessarily commuting indeterminates.
Also [2, Theorem 1.2] shows that if R is quasi-Baer, then so are R[x;σ],
R[[x;σ]], R[x, x−1;σ] and R[[x, x−1;σ]]. C.Y. Hong, N.K. Kim and T. K.
Kwak show in [12, Corollaries 12 and 22] that if σ is a rigid endomorphism
of R, then R is a quasi-Baer ring if and only if R[x;α, δ] is a quasi-Baer
ring if and only if R[[x;σ]] is a quasi-Baer ring. If R is a ring and (S,≤) a
strictly totally ordered monoid which satisfies the condition that 0 ≤ s for
every s ∈ S, then it is shown in [16] that R is a quasi-Baer ring if and only
if the ring [[RS,≤]] of generalized power series over R is a quasi-Baer ring.
If S is an ordered monoid, then, it is proved in [10, Theorem 1] that R[S] is
quasi-Baer if and only if R is quasi-Baer. This result has been generalized
by G.F.Birkenmeier and J.K.Park in [5, Theorem 1.2(ii)] by showing that if
S is a u.p.-monoid, then R[S] is quasi-Baer if and only if R is quasi-Baer.
For skew monoid ring R ∗ S we have the following result.
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Proposition 2.2. Let S be a u.p.-monoid. If R is quasi-Baer, then the skew
monoid ring R ∗ S induced by any monoid homomorphism α is quasi-Baer.

Proof. Let I be an ideal of R ∗ S and let I0 be the set of all coefficients
in R of elements in I. For every a ∈ I0, there exists a1s1 + a2s2 + · · · +
ansn ∈ I such that a1 = a. Note that αµ = 1. Thus, for every r ∈ R,
ra1s1 + ra2s2 + · · ·+ ransn = (rµ)(a1s1 + a2s2 + · · ·+ ansn) ∈ I. It follows
that ra = ra1 ∈ I0. Let J be the left ideal of R generated by I0. Since
R is quasi-Baer, there exists e2 = e ∈ R such that lR(J) = Re. For any
φ = a1s1 + a2s2 + · · · + ansn ∈ I, eφ = ea1s1 + ea2s2 + · · · + eansn = 0.
Thus (R ∗ S)e ⊆ lR∗S(I). In order to show that lR∗S(I) ⊆ (R ∗ S)e, we
take φ = a1s1 + a2s2 + · · · + ansn ∈ lR∗S(I). Let a ∈ J . Then there exist
w1, w2, · · · , wk ∈ I0 such that a = w1+w2+· · ·+wk. For w1, there exists ψ =
b1t1+b2t2+· · ·+bmtm ∈ I with w1 = b1. Since φ = a1s1+a2s2+· · ·+ansn ∈
lR∗S(I), we have (a1s1+a2s2+· · ·+ansn)R(b1t1+b2t2+· · ·+bmtm) = 0. Since
R is quasi-Baer, lR(Rr) is pure as a left ideal of R for every element r ∈ R.
By Lemma 2.1, it follows that aiαsi

(rbj) = 0 for any r ∈ R, i = 1, 2, · · · , n,
j = 1, 2, · · · ,m. Suppose that c1, c2, · · · , cn ∈ R are such that ai = αsi

(ci)
for i = 1, 2, · · · , n. Then αsi

(cirbj) = aiαsi
(rbj) = 0. Hence cirbj = 0,

and so ci ∈ lR(Rbj). In particular, ci ∈ lR(Rb1). Thus ciw1 = cib1 = 0,
i = 1, 2, · · · , n. Similarly, we can see ciwl = 0, i = 1, 2, · · · , n, l = 1, 2, · · · , k.
Thus cia = 0. This means that ci ∈ lR(J) = Re for any i = 1, 2, · · · , n.
Thus ci = cie and so ai = αsi

(ci) = αsi
(cie) = aiαsi

(e). This means that
a1s1 + a2s2 + · · ·+ ansn = (a1s1 + a2s2 + · · · + ansn)e ∈ (R ∗ S)e. Thus we
have shown that lR∗S(I) = (R ∗ S)e. Hence R ∗ S is quasi-Baer. �

Definition 2.3. Let σ be an automorphism of a ring R. We define σ to be
weakly rigid if ab = 0 implies aσ(b) = σ(a)b = 0 for any a, b ∈ R.

A monoid homomorphism α from a monoid S into the group of automor-
phisms of R, x 7→ αx, is called weakly rigid if αx ∈ Aut(R) is weakly rigid
for every x ∈ S.

Example 2.4. (1). If for every x ∈ S, αx = id, then α is weakly rigid.
(2). Let σ be an endomorphism of R. According to [12] and [15], σ is

called a rigid endomorphism if rσ(r) = 0 implies r = 0 for r ∈ R. A
ring R is said to be σ-rigid if there exists a rigid endomorphism σ of R.
Clearly every rigid endomorphism is a monomorphism and every σ-rigid
ring is reduced. Let σ be a rigid automorphism of R. It was shown in
[12] that if ab = 0 then aσn(b) = σn(a)b = 0 for any positive integer n.
Thus the map α : Z −→ Aut(R) : α(x) = σx is weakly rigid. Let β be

a rigid automorphism of a ring R0 and S =

(

Z Z

0 Z

)

. Set R1 = R0 ⊕ S,

the direct sum of rings R0 and S. Define an endomorphism σ of R1 via
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σ(r, s) = (β(r), s). Then it is easy to see that σ is weakly rigid and, so the
map α : Z −→ Aut(R1) : α(x) = σx is weakly rigid but σ is not rigid.

(3). Let

R =

{(

a p
0 a

)

|a ∈ Z, p ∈ Q

}

,

where Q is the set of all rational numbers. Let σ : R −→ R be an automor-
phism defined by

σ

((

a p
0 a

))

=

(

a p/2
0 a

)

.

Since
(

0 1
0 0

)

σ

((

0 1
0 0

))

= 0, but

(

0 1
0 0

)

6= 0,

σ is not rigid. Suppose that

(

a p
0 a

)(

b q
0 b

)

= 0. Then ab = 0 and aq+pb =

0. Thus aqa = 0 and, so aq/2 = 0. This means that
(

a p
0 a

)

σ

((

b q
0 b

))

= 0.

Similarly,

σ

((

a p
0 a

))(

b q
0 b

)

= 0.

Thus σ is weakly rigid and so the map α : Z −→ Aut(R) : α(x) = σx is
weakly rigid.

(4). Let R be a reduced ring. Consider the ring

T =

{(

a b
0 a

)

|a, b ∈ R

}

.

Let σ : T −→ T be an automorphism defined by

σ

((

a b
0 a

))

=

(

a −b
0 a

)

.

By analogy with the proof of (3), we see σ is not rigid. Suppose that
(

a b
0 a

)(

c d
0 c

)

= 0.

Then ac = 0 and ad + bc = 0. Since R is reduced, ca = 0. Thus ada =
(ad+ bc)a = 0. Hence (ad)2 = 0, which implies that ad = 0 and, so bc = 0.
Therefore

(

a b
0 a

)

σ

((

c d
0 c

))

= 0, σ

((

a b
0 a

)) (

c d
0 c

)

= 0.
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Thus σ is weakly rigid and so the map α : Z −→ Aut(R) : α(x) = σx is
weakly rigid.

Proposition 2.5. Let S be a u.p.-monoid and let α be weakly rigid. Then
the skew monoid ring R ∗ S induced by α is quasi-Baer if and only if R is
quasi-Baer.

Proof. If R is quasi-Baer, then R ∗S is quasi-Baer by Proposition 2.2. Sup-
pose that R ∗ S is quasi-Baer. Let I be an ideal of R. Then there exists an
idempotent f of R ∗ S such that

lR∗S((R ∗ S)I) = (R ∗ S)f.

Write f = e0µ + e1s1 + e2s2 + · · · + ensn. For any a ∈ I, from fa = 0 it
follows that e0aµ + e1αs1

(a)s1 + e2αs2
(a)s2 + · · · + enαsn(a)sn = 0. Thus

e0a = 0. This means that Re0 ⊆ lR(I). Now let b ∈ lR(I). Then for any
φ = b1t1 + b2t2 + · · · + bmtm ∈ R ∗ S and any a ∈ I,

bφa = bb1αt1(a)t1 + bb2αt2(a)t2 + · · · + bbmαtm(a)tm.

Since bbia = 0, it follows bbiαti(a) = 0 by the weak rigidness of α. Thus
bφa = 0. Now it is easy to see that b ∈ lR∗S((R ∗ S)I). Thus b = bf =
be0µ+ be1s1 + be2s2 + · · ·+ bensn, which implies that b = be0 ∈ Re0. Hence
we have shown that lR(I) = Re0. This shows that R is quasi-Baer. �

Lemma 2.6. ([2, Lemma 1.9]) The following are equivalent:
(1) R is an abelian Baer ring.
(2) R is a reduced quasi-Baer ring.

It was proved in [9, Theorem 2] and [5, Corollary 1.3(ii)] that if S is a
u.p.-monoid then the monoid ring R[S] is a reduced Baer ring if and only
if R is a reduced Baer ring. By Lemma 2.6, for skew monoid rings we have
the following result.

Corollary 2.7. Let S be a u.p.-monoid and let α be weakly rigid. Then the
skew monoid ring R ∗ S induced by α is a reduced Baer ring if and only if
R is a reduced Baer ring.

Corollary 2.8. ([5, Theorem 1.2(ii)]) Let S be a u.p.-monoid. Then R[S]
is quasi-Baer if and only if R is quasi-Baer.

Note that from Corollary 2.8 it follows that if S is an ordered monoid,
then R[S] is quasi-Baer if and only if R is quasi-Baer([10, Theorem 1]).

Let σ be a weakly rigid automorphism of a ring R. For S = Z, define
α : S −→ Aut(R) as α(0) = 1, and α(n) = σn. Then α is weakly rigid.

Corollary 2.9. Let σ be a weakly rigid automorphism of a ring R. Then
the following conditions are equivalent:
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(1) R is quasi-Baer.
(2) R[x;σ] is quasi-Baer.
(3) R[x, x−1;σ] is quasi-Baer.

The following example shows that the converse of Proposition 2.2 is not
true in general. Thus the condition “α is weakly rigid”in Proposition 2.5 is
not superfluous.

Example 2.10. ([10, Example 2]) Let S = N ∪ {0}. Then S is a u.p.-
monoid. Let F be a field, let A = F [s, t] be a commutative polynomial ring,
and consider the ring R = A/(st). Let s̄ = s + (st) and t̄ = t + (st) in R.
Define an automorphism σ of R by σ(s̄) = t̄ and σ(t̄) = s̄. Then, by [10,
Example 2], R ∗ S = R[x;σ] is quasi-Baer but R is not quasi-Baer. Clearly
s̄t̄ = 0, but s̄σ(t̄) = s̄s̄ 6= 0.

As a generalization of quasi-Baer rings, G. F. Birkenmeier, J. Y. Kim and
J. K. Park in [1] introduce the concept of principally quasi-Baer rings. A
ring R is called left principally quasi-Baer (or simply left p.q.Baer) if the
left annihilator of a principal left ideal of R is generated by an idempotent.
Similarly, right p.q.Baer rings can be defined. A ring is called p.q.Baer if it
is both right and left p.q.Baer. Observe that every biregular ring and every
quasi-Baer ring is a p.q.Baer ring. For more details and examples of right
p.q.Baer rings, see [1, 6].

It was proved in [6, Theorem 2.1] that a ring R is right p.q.Baer if and
only if R[x] is right p.q.Baer. If R is an α-rigid ring, then it was shown in
[12, Corollary 15] that R is a right p.q.Baer ring if and only if R[x;α, δ] is a
right p.q.Baer ring. Let S be a u.p.-monoid. Then from [5, Theorem 1.2(i)]
it follows that R is left p.q.Baer if and only if R[S] is left p.q.Baer. From
these results and from Propositions 2.2 and 2.5, it is natural to conjecture
that the results of Propositions 2.2 and 2.5 remain valid if the term “quasi-
Baer”is substituted for “left p.q.Baer”. However we have a negative answer
to this situation by the following example.

Example 2.11. ([10, Example 1]) Let S = (Z,+). Then S is a u.p.-monoid.
Let K be a field and A =

∏

i∈Z
Ai with Ai = K for each i. Consider the

automorphism σ of A defined by σ((ai)i∈Z) = (ai+2)i∈Z. Let R = K1 +
(⊕i∈ZAi). Then by [10, Example 1], R is a left p.q.Baer ring but R ∗ S =
[x, x−1;σ] is not left p.q.Baer.

But we have the following affirmative result.

Proposition 2.12. Let S be a monoid and let α be weakly rigid. If the skew
monoid ring R ∗ S induced by α is left p.q.Baer then R is left p.q.Baer.

Proof. It follows from the proof of Proposition 2.5. �
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Note that in Example 2.10, lR(Rs̄) = Rt̄ is not generated by any idempo-
tent of R. Hence R is not left p.q.Baer. This shows that the condition “α
is weakly rigid”in Proposition 2.12 is not superfluous.

3. Triangulating dimensions and PWP-rings.

Lemma 3.1. Let R be a ring such that lR(Ra) is pure as a left ideal of R
for every element a ∈ R and S a u.p.-monoid. Let e ∈ R ∗ S and e0 the
coefficient of µ in e. If e is a left semicentral idempotent of R ∗ S, then e0
is a left semicentral idempotent of R and e(R ∗ S) = e0(R ∗ S).

Proof. Let e = e0µ+e1s1+e2s2+ · · ·+ensn be a left semicentral idempotent
of R ∗ S. Then (e− 1)(R ∗S)e = 0 and hence (e− 1)re = 0 for every r ∈ R.
Thus

((e0 − 1)µ+ e1s1 + e2s2 + · · ·+ ensn)R(e0µ+ e1s1 + e2s2 + · · ·+ ensn) = 0.

By Lemma 2.1, (e0 − 1)Rei = 0 for i = 0, 1, · · · , n, and eiαsi
(e0) = 0 for

i = 1, 2, · · · , n. Thus e0 is a left semicentral idempotent of R, e0e = e
and ee0 = e0µ+ e1αs1

(e0)s1 + e2αs2
(e0)s2 + · · · + enαsn(e0)sn = e0. Hence

e(R ∗ S) = e0(R ∗ S). �

Lemma 3.2. Let α be weakly rigid. Then, for any s ∈ S and any b2 = b ∈ R,
αs(b) = b.

Proof. By analogy with the proof of [17, Lemma 3.2], we can complete the
proof. �

Recall from [3, 5] that an ordered set {b1, · · · , bn} of nonzero distinct
idempotents in a ring R is called a set of left triangulating idempotents of R
if all the following hold:

(i) 1 = b1 + · · · + bn;
(ii) b1 ∈ Sl(R); and
(iii) bk+1 ∈ Sl(akRak), where ak = 1 − (b1 + · · · + bk), for 1 ≤ k ≤ n− 1.
Similarly we can define a set of right triangulating idempotents of R using

(i), b1 ∈ Sr(R), and bk+1 ∈ Sr(akRak).
LetB be a set of left triangulating idempotents ofR and Γ a ring extension

of R. From [5], we say Γ is B-triangularly linked to R if whenever b ∈ B and
0 6= a ∈ Sl(bΓb), then there exists 0 6= a0 ∈ Sl(bRb) such that a0Γ ⊆ aΓ. We
say Γ is B-triangularly compatible with R if B is a set of left triangulating
idempotents of Γ.

Lemma 3.3. Let R be a ring such that lR(Ra) is pure as a left ideal of R
for every element a ∈ R and S a u.p.-monoid. Let α be weakly rigid. If B
is a set of left triangulating idempotents of R, then R ∗ S is B-triangularly
linked to R.
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Proof. Suppose that b ∈ B and 0 6= φ ∈ Sl(b(R ∗ S)b). For every a1s1 +
a2s2 + · · ·+ansn ∈ R∗S, it is easy to see that b(a1s1 +a2s2 + · · ·+ansn)b =
ba1αs1

(b)s1+ba2αs2
(b)s2+· · ·+banαsn(b)sn = ba1bs1+ba2bs2+· · ·+banbsn ∈

(bRb) ∗ S by Lemma 3.2. Conversely if g = c1t1 + c2t2 + · · · + cmtm ∈
(bRb) ∗ S, then clearly g = bc1bt1 + bc2bt2 + · · · + bcmbtm = bc1αt1(b)t1 +
bc2αt2(b)t2 + · · · + bcmαtm(b)tm = b(c1t1 + c2t2 + · · · + cmtm)b ∈ b(R ∗ S)b.
Thus b(R ∗ S)b = (bRb) ∗ S. For every bdb ∈ bRb, consider lbRb((bRb)(bdb)).
If brb ∈ lbRb((bRb)(bdb)), then (brb)(Rbdb) = 0. Thus brb ∈ lR(Rbdb). Since
lR(Rbdb) is pure as a left ideal of R, there exists an x ∈ lR(Rbdb) such
that brbx = brb. Hence brb = (brb)(bxb) and bxb ∈ lbRb((bRb)(bdb)). This
shows that lbRb((bRb)(bdb)) is pure as a left ideal of bRb. For any s ∈ S,
αs induce an automorphism αs|bRb of Aut(bRb) by Lemma 3.2. Clearly
αs|bRb is weakly rigid for every s ∈ S. Now from Lemma 3.1, there exists
0 6= a ∈ Sl(bRb) such that a((bRb) ∗ S) = φ((bRb) ∗ S). Thus a = φa and so
a(R ∗ S) ⊆ φ(R ∗ S). �

Lemma 3.4. Let Γ be a ring extension of R and B = {b1, · · · , bn} be a set
of left triangulating idempotents of R. Assume that Γ is spanned, as a left
R-module, by a set T . If tb = btb for every b ∈ B and for every t ∈ T , then
Γ is B-triangularly compatible with R.

Lemma 3.5. Let S be a u.p.-monoid and let α be weakly rigid. If B =
{b1, b2, · · · , bn} is a set of left triangulating idempotents of R, then R ∗ S is
B-triangularly compatible with R.

Proof. Clearly R ∗S is spanned, as a left R-module, by the set S. For every
s ∈ S and every b ∈ B, by Lemma 3.2, we have

bsb = bαs(b)s = bbs = bs = αs(b)s = sb.

Thus, by Lemma 3.4, R ∗ S is B-triangularly compatible with R. �

A set {b1, · · · , bn} of left (right) triangulating idempotents is said to be
complete if each bi is also semicentral reduced. Note that any complete
set of primitive idempotents determines a complete set of left triangulating
idempotents [3, Proposition 2.18].

Lemma 3.6. ([3, Proposition 1.3]) R has a (respectively, complete) set of
left triangulating idempotents if and only if R has a (respectively, complete)
generalized triangular matrix representation.

From [3] the number of elements in a complete set of left triangulating
idempotents is unique for a given ring R (which has such a set) and this
is also the number of elements in any complete set of right triangulating
idempotents of R. Thus it is natural to see that R has triangulating dimen-
sion n, written Tdim(R) = n, if R has a complete set of left triangulating
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idempotents with exactly n elements. If R has no complete set of left trian-
gulating idempotents, then we say R has infinite triangulating dimension,
denoted Tdim(R) = ∞. Note that R is semicentral reduced if and only if
Tdim(R) = 1.

Lemma 3.7. ([5, Proposition 4.3]) Let Γ be a ring extension of R. If Γ is
B-triangularly linked to R and B-triangularly compatible with R for every
set B of left triangulating idempotents of R, then Tdim(R) =Tdim(Γ).

If S is a u.p.-monoid and R is a right p.q.-Baer ring, or S is a free monoid,
then it was shown in [5, Theorem 4.4] that the ring R[S] has the same
triangulating dimension as R. For skew monoid rings we have the following
result.

Theorem 3.8. Let R be a ring such that lR(Ra) is pure as a left ideal of R
for every element a ∈ R and S a u.p.-monoid. If α is weakly rigid, then the
skew monoid ring R ∗ S induced by α has the same triangulating dimension
as R.

Proof. It follows from Lemmas 3.3, 3.5, 3.7. �

Theorem 3.9. Let R be a PWP ring and S a u.p.-monoid. If α is weakly
rigid, then the skew monoid ring R ∗ S induced by α is a PWP ring.

Proof. It follows from Proposition 2.2 and Theorem 3.8. �

Thus if R is a quasi-Baer ring with a complete set of left triangulat-
ing idempotents B = {b1, b2, · · · , bn}, and S a u.p.-monoid, then the skew
monoid ring R ∗ S induced by a weakly rigid monoid homomorphism α is a
quasi-Baer ring with B determining a complete generalized triangular ma-
trix representation for R ∗ S in which each diagonal ring, Ri, is a prime
ring.

Let R be a quasi-Baer ring with a complete set of left triangulating
idempotents B = {b1, · · · , bn}. It was proved in [5, Theorem 4.8] that if
Γ = R[x, x−1], or Γ = R[x;σ], where σ is a ring automorphism such that
σ(bR) ⊆ bR for all b ∈ B, then Γ is a PWP-ring. Here we have the following
results.

Corollary 3.10. Let σ ∈ Aut(R) be weakly rigid. If lR(Ra) is pure as a
left ideal of R for every element a ∈ R, then the skew Laurent polynomial
ring R[x, x−1;σ] has the same triangulating dimension as R. Furthermore,
if R is a PWP ring, then so is R[x, x−1;σ].

Let S = Zn and σ1, σ2, · · · , σn ∈ Aut(R). Suppose that σiσj = σjσi for

all i, j. Define α : S −→ Aut(R) via α((k1, k2, · · · , kn)) = σk1

1 σ
k2

2 · · ·σkn
n .

Then R ∗ S = R[x1, x2, · · · , xn, x
−1
1 , x−1

2 , · · · , x−1
n ;σ1, σ2, · · · , σn].
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Corollary 3.11. Suppose that σ1, σ2, · · · , σn ∈ Aut(R) are weakly rigid. If
R is a PWP ring, then so is the ring

R[x1, x2, · · · , xn, x
−1
1 , x−1

2 , · · · , x−1
n ;σ1, σ2, · · · , σn].

Proof. Note that S = Zn is a u.p.-monoid. �

Remark 3.12. Let R be the complex field and 0 6= q ∈ R. Let σ be the
R-automorphism on R[x] determined by σ(x) = qx. Define α : N ∪ {0} −→
Aut(R[x]) via α(0) = 1, the identity map of R[x], and α(k) = σk for any
k ∈ N. It is easy to see that α is weakly rigid. Thus the quantum plane
R[x][y;σ] (see [14]) is a PWP ring.

Remark 3.13. Let F be a field. Let σ be the F -automorphism of F [x]
sending x to x − 1. Define α : N ∪ {0} −→ Aut(F [x]) via α(0) = 1, the
identity map of F [x], and α(k) = σk for any k ∈ N. If V is the binary space
Fe1⊕Fe2 with a Lie algebra structure given by the Lie product [e1, e2] = e2,
then the universal enveloping algebra of (V, [, ]) is F [x][y;σ]. Since F is an
Armendariz ring, it is easy to see that α is weakly rigid. Thus F [x][y;σ] is
a PWP ring.
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