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SERIALLY COALESCENT CLASSES OF LIE ALGEBRAS

Masanobu HONDA and Takanori SAKAMOTO

Abstract. We introduce the concept of serially coalescent classes of Lie
algebras corresponding to those of coalescent classes and ascendantly co-
alescent classes. We show that the class of finite-dimensional and nilpo-
tent, the class of finite-dimensional and the class of finite-dimensional
and soluble Lie algebras, are serially coalescent classes for locally finite
Lie algebras over any field of characteristic zero. We also introduce the
concept of locally serially coalescent classes of Lie algebras and find some
locally serially coalescent classes for locally finite Lie algebras.

1. Introduction

Let X be a class of Lie algebras. It is said that X is coalescent (resp.
ascendantly coalescent) if in any Lie algebra L the join of two X-subideals
(resp. ascendant X-subalgebras) of L is always an X-subideal (resp. ascen-
dant X-subalgebra) of L. Several authors proved coalescence and ascendant
coalescence for many well-known classes ( [1, Chapters 3 and 4] etc.). It is
also said that X is locally coalescent (resp. locally ascendantly coalescent)
if for any two X-subideals (resp. ascendant X-subalgebras) H, K of a Lie
algebra L and for any finitely generated subalgebra Y of J = 〈H, K〉 there
exists an X-subideal (resp. an ascendant X-subalgebra) X of L such that
Y ≤ X ≤ J . Some authors proved local coalescence and local ascendant
coalescence for many classes ( [1], [8] and [9] etc.).

In this paper we introduce the concept of serially coalescent (resp. locally
serially coalescent) classes of Lie algebras corresponding to that of ascen-
dantly coalescent (resp. locally ascendantly coalescent) classes and prove
that some important classes are serially coalescent (resp. locally serially
coalescent) for locally finite Lie algebras.

In Section 3 we shall prove that the classes F∩N, F, F∩eA and the classes
Min, Min-si, Min-asc, Min-ser, Min-⊳ ∩ Max-⊳ etc. are serially coalescent
for locally finite Lie algebras over any field of characteristic zero (Theorems
4, 5, 6 and 8). In Section 4 we shall show that lF∩l(ser)X = lF∩j(ser)X for
any locally serially coalescent class X for locally finite Lie algebras (Theorem
11) and that X is locally serially coalescent for locally finite Lie algebras if
and only if Y is locally serially coalescent for locally finite Lie algebras, for
any classes X and Y such that lF ∩ X ≤ lF ∩ Y ≤ lF ∩ l(ser)X (Theorem
13). In Section 5 we shall show that if L is locally finite over any field of
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characteristic zero, then RX-ser(L) ∈ l(ser)X for X = F ∩ N, F ∩ eA or F

(Proposition 14), especially, deduce that if L is locally finite over any field
of characteristic zero, then RF∩N-ser(L) is the set of all elements x of L such
that 〈x〉 ser L (Corollary 15).

2. Notation and terminology

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field k of arbitrary characteristic unless otherwise specified. We mostly
follow [1] for the use of notation and terminology.

Let L be a Lie algebra over k and let H be a subalgebra of L. For a
totally ordered set Σ, a series (resp. a weak series) from H to L of type Σ
is a collection {Λσ, Vσ | σ ∈ Σ} of subalgebras (resp. subspaces) of L such
that

(1) H ⊆ Vσ ⊆ Λσ for all σ ∈ Σ,
(2) Λτ ⊆ Vσ if τ < σ,
(3) L\H = ∪σ∈Σ(Λσ\Vσ),
(4) Vσ ⊳ Λσ (resp. [Λσ, H] ⊆ Vσ) for all σ ∈ Σ.

H is a serial (resp. a weakly serial) subalgebra of L, which we denote by
HserL (resp. HwserL), if there exists a series (resp. a weak series) from H
to L.

For an ordinal σ, H is a σ-step ascendant subalgebra of L, denoted by
H ⊳σ L, if there exists an ascending chain (Hα)α≤σ of subalgebras of L such
that

(1) H0 = H and Hσ = L,
(2) Hα ⊳ Hα+1 for any ordinal α < σ,
(3) Hλ = ∪α<λHα for any limit ordinal λ ≤ σ.

H is an ascendant subalgebra of L, denoted by HascL if H ⊳σ L for some
ordinal σ. When σ is finite, H is a subideal of L and denoted by HsiL. For
an ordinal α, we denote by Lα the α-th term of the transfinite lower central
series of L and by L(α) the α-th term of the transfinite derived series of L.

Let X, Y be classes of Lie algebras and let ∆ be any of the relations ≤, ⊳,
si, asc, ser, wser. XY is the class of Lie algebras L having an ideal I ∈ X

such that L/I ∈ Y. A Lie algebra L is said to lie in l(∆)X if for any finite
subset X of L there exists an X-subalgebra H of L such that X ⊆ H ∆ L
and to lie in j(∆)X if L is generated by ∆-subalgebras belonging to X. In
particular we write lX for l(≤)X. When L ∈ lX (resp. l(ser)X), L is called
a locally (resp. a serially) X-algebra. We write Max-∆ (resp. Min-∆) for
the classes of Lie algebras satisfying the maximal (resp. minimal) condition
for ∆-subalgebras. F, G, A, N and eA are the classes of Lie algebras which
are finite-dimensional, finitely generated, abelian, nilpotent and soluble re-
spectively. The X-residual λX(L) of L is the intersection of the ideals I of
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L such that L/I ∈ X. The Hirsch-Plotkin radical ρ(L) of L is the unique
maximal locally nilpotent ideal of L. For a locally finite Lie algebra L the
locally soluble radical σ(L) of L is the unique maximal locally soluble ideal
of L.

3. Serially coalescent classes

We first begin with the lN-residual λlN(L) and the leA-residual λleA(L)
of a Lie algebra L. The following two lemmas are key lemmas in this paper.

Lemma 1 ([2, Proposition 2.11]). If H is a weakly serial subalgebra of a

locally finite Lie algebra L, then λlN(H) ⊳ L and λleA(H) ⊳ L.

Lemma 2. Let L be a Lie algebra.

(1) If L ∈ G, then λlN(L) = Lω and λleA(L) = L(ω).
(2) If L ∈ Min-si, then λlN(L) = Lω and λleA(L) = L(ω).
(3) If L ∈ Max-⊳, then λlN(L) = Lω.

(4) If L ∈ Min-⊳ ∩ Max-⊳, then λleA(L) = L(ω).

Proof. In general we have λlN(L) ≤ Lω and λleA(L) ≤ L(ω).
(1) Let L ∈ G. For any ideal I of L such that L/I ∈ lN (resp. leA), we

obtain that
L/I ∈ lN ∩ G ≤ N (resp. leA ∩ G ≤ eA).

Therefore Lω ≤ I (resp. L(ω) ≤ I). It follows that

Lω ≤ λlN(L) (resp. L(ω) ≤ λleA(L)).

(2) Let L ∈ Min-si. For any ideal I of L such that L/I ∈ lN (resp. leA),
we use [1, Proposition 8.5.1] (resp. [1, Corollary 8.5.5]) to see that

L/I ∈ lN ∩ Min-si ≤ lN ∩ Min-⊳2= F ∩ N (resp. leA ∩ Min-si = F ∩ eA).

Therefore Lω ≤ I (resp. L(ω) ≤ I). It follows that

Lω ≤ λlN(L) (resp. L(ω) ≤ λleA(L)).

(3) Let L ∈ Max-⊳. For any ideal I of L such that L/I ∈ lN, we use [1,
Theorem 8.6.5] to see that

L/I ∈ lN ∩ Max-⊳ ≤ G ∩ N.

Therefore Lω ≤ I. It follows that Lω ≤ λlN(L).
(4) Let L ∈ Min-⊳ ∩ Max-⊳. For any ideal I of L such that L/I ∈ leA,

we have

L/I ∈ leA ∩ Min-⊳ ∩ Max-⊳.

As L/I ∈ Min-⊳ there is a positive integer d such that (L/I)(ω) = (L/I)(d).
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Set M/I = (L/I)(d). Then we have M/I ⊳ L/I and (M/I)2 = M/I.
Since L/I ∈ leA ∩ Max-⊳ it follows from [1, Lemma 8.6.2] that M/I = 0.

Therefore L(ω) ≤ L(d) ≤ I. It follows that L(ω) ≤ λleA(L). �

We also state the following lemma which is used below.

Lemma 3 ([1, Proposition 13.2.4]). Let L be a locally finite Lie algebra and

I an ideal of L. If H is a serial subalgebra of L, then (H + I)/I is a serial

subalgebra of L/I.

Let X be a class of Lie algebras. We say that X is serially coalescent

if in any Lie algebra L the join of two serial X-subalgebras of L is always
a serial X-subalgebra of L. In order to study serially coalescent classes of
Lie algebras we need to restrict ourselves to locally finite Lie algebras. We
moreover say that X is serially coalescent for locally finite Lie algebras if in
any locally finite Lie algebra L the join of two serial X-subalgebras of L is
always a serial X-subalgebra of L.

It is well known that the classes F ∩ N, F and F ∩ eA are coalescent
and ascendanly coalescent over any field of characteristic zero ([1, Theorems
3.2.4 and 3.2.5]). We shall now prove that the three classes above are serially
coalescent for locally finite Lie algebras in the following three theorems.

Theorem 4. Over any field of characteristic zero the class F∩N is serially

coalescent for locally finite Lie algebras.

Proof. Let L ∈ lF and suppose that H, K ser L and H, K ∈ F ∩ N. Since
H, K ∈ N we have λlN(H) = λlN(K) = 0. It follows from [5, Corol-
lary 6] that H, K ≤ ρ(L), so 〈H, K〉 ≤ ρ(L) ∈ lN. Therefore we have
〈H, K〉 ser ρ(L) ⊳ L by [5, Lemma 3]. Hence 〈H, K〉 ser L. We also obtain
〈H, K〉 ∈ lN ∩ G ≤ F ∩ N owing to H, K ∈ F. �

Theorem 5. Over any field of characteristic zero the class F is serially

coalescent for locally finite Lie algebras.

Proof. Let L ∈ lF and suppose that H, K ser L and H, K ∈ F. By making
use of Lemma 1 and Lemma 2(1), we get

Hω = λlN(H) ⊳ L and Kω = λlN(K) ⊳ L.

Since H, K ∈ F, there are positive integers c, d such that Hω = Hc, Kω =
Kd. Put I = Hc + Kd. Then I ⊳ L. It follows from Lemma 3 that

(H + I)/I ser L/I and (K + I)/I ser L/I.

Here we have (H+I)/I ∼= H/H∩I ∼= (H/Hc)/(H∩I/Hc) ∈ F∩N. Similarly
we have (K + I)/I ∈ F ∩ N. Hence Theorem 4 leads to that

〈(H + I)/I, (K + I)/I〉 ∈ F ∩ N and 〈(H + I)/I, (K + I)/I〉 ser L/I,
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that is to say,

〈H, K〉/I ∈ F ∩ N and 〈H, K〉/I ser L/I.

Thus 〈H, K〉 ser L. Since I = Hc + Kd ∈ F and 〈H, K〉/I ∈ F, we obtain
that 〈H, K〉 ∈ F. �

Theorem 6. Over any field of characteristic zero the class F∩eA is serially

coalescent for locally finite Lie algebras.

Proof. Let L ∈ lF and suppose that H, K ser L and H, K ∈ F∩ eA. Owing
to Theorem 5 we get 〈H, K〉 ser L and 〈H, K〉 ∈ F. By using Lemma 1 and
Lemma 2(1), we get

Hω = λlN(H) ⊳ L and Kω = λlN(K) ⊳ L.

Since H, K ∈ F, there are positive integers c, d such that Hω = Hc, Kω =
Kd. Put I = Hc + Kd. Then I ⊳ L. As in the proof of Theorem 5 we have

〈H, K〉/I ∈ F ∩ N ≤ eA.

On the other hand, since Hc, Kd ∈ eA and Hc, Kd ⊳ L, we have I =
Hc + Kd ∈ eA. Therefore 〈H, K〉 ∈ eeA = eA. �

Remark. Hartley[1, Lemma 3.1.1] constructed a finite-dimensional Lie al-
gebra L over a field of characteristic p > 0, in which there exist x, y ∈ L such
that 〈x〉, 〈y〉 si L, but 〈x, y〉 is not a subideal of L. This example indicates
that the classes F ∩ N, F, F ∩ eA are not serially coalescent over any field
of characteristic p > 0.

The following classes are also coalescent and ascendantly coalescent over
any field of characteristic zero ([1, Theorem 3.2.5]):

Min, Min-⊳σ (σ ≥ 2), Min-si, Min-asc, Min-⊳ ∩ Max-⊳ .

Before we show that the classes above and Min-ser are serially coalescent
for locally finite Lie algebras we need the following lemma, which is a direct
consequence from [1, Theorem 8.1.4 and Corollary 10.2.2], [3, Corollary 1.6
and Theorem 1.7] and [4, Theorem].

Lemma 7. Over any field of characteristic zero, we have

lF ∩ Min-⊳ > lF ∩ Min-⊳2 = lF ∩ Min-si

= lF ∩ Min-asc = lF ∩ Min-ser > lF ∩ Min = F.

Theorem 8. Over any field of characteristic zero, we have

(1) Min is serially coalescent for locally finite Lie algebras,

(2) Min-⊳σ (σ ≥ 2), Min-si, Min-asc and Min-ser are serially coalescent

for locally finite Lie algebras,

(3) Min-⊳ ∩ Max-⊳ is serially coalescent for locally finite Lie algebras.
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Proof. (1) Since lF∩Min = F by Lemma 7, Theorem 5 leads to the assertion.
(2) Let X be one of the classes Min-⊳σ (σ ≥ 2), Min-si, Min-asc and

Min-ser. Since lF ∩ X = lF ∩ Min-si by Lemma 7, it is enough to show the
assertion in the case of X =Min-si. Let L ∈ lF and suppose that H, K ser L
and H, K ∈Min-si. By Lemma 1 and Lemma 2(2), we get

H(ω) = λleA(H) ⊳ L and K(ω) = λleA(K) ⊳ L.

Since H, K ∈Min-si, there are positive integers c, d such that

H(ω) = H(c), K(ω) = K(d).

Put I = H(c) + K(d). Then I ⊳ L and H(c), K(d) ∈Min-si. Hence

I/H(c) = (H(c) + K(d))/H(c) ∼= K(d)/H(c) ∩ K(d) ∈ Min-si.

Therefore I ∈ eMin-si = Min-si. By Lemma 3 (H +I)/I, (K +I)/I ser L/I.
As (H + I)/I ∼= H/H ∩ I ∈ Min-si, it follows from [1, Corollary 8.5.5] that

(H + I)/I ∈ eA ∩ Min-si = F ∩ eA.

Similarly (K + I)/I ∈ F ∩ eA. Therefore by using Theorem 6 we have

〈(H + I)/I, (K + I)/I〉 ∈ F ∩ eA and 〈(H + I)/I, (K + I)/I〉 ser L/I,

that is to say,

〈H, K〉/I ∈ F ∩ eA and 〈H, K〉/I ser L/I.

Thus 〈H, K〉 ser L and 〈H, K〉 ∈ eMin-si = Min-si.
(3) Let L ∈ lF and suppose that H, K ser L and H, K ∈ Min-⊳ ∩ Max-⊳.

By Lemma 1 and Lemma 2 (4), we get

H(ω) = λleA(H) ⊳ L and K(ω) = λleA(K) ⊳ L.

Since H, K ∈ Min-⊳, there are positive integers c, d such that

H(ω) = H(c), K(ω) = K(d).

Put I = H(c) + K(d) and J = 〈H, K〉. Then

I ⊳ L, I ≤ J and (H + I)/I, (K + I)/I ser L/I.

Moreover we have

(H + I)/I ∼= H/H ∩ I ∈ lF ∩ Max-⊳ ∩ eA ≤ lF ∩ eA ∩ G ≤ F ∩ eA

by using [1, Lemma 8.6.1]. Similarly (K + I)/I ∈ F∩eA. Then by Theorem
6 we have

〈(H + I)/I, (K + I)/I〉 ∈ F ∩ eA and 〈(H + I)/I, (K + I)/I〉 ser L/I,

that is to say,

J/I ∈ F ∩ eA and J/I ser L/I.
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Therefore we get J ser L. On the other hand, since H, K ∈ Min-⊳ ∩ Max-⊳,

{S : S ⊳ J, S ≤ H(c)} and {S : S ⊳ J, S ≤ K(d)}

satisfy both the minimal condition and the maximal condition. Since

{T : T ⊳ J, T ≤ I}

satisfies both the minimal condition and the maximal condition by virtue of
[7, Lemma 2.2.7]. Thus we have that {T∩I : T ⊳ J} and {(T+I)/I : T ⊳ J}
satisfy both the minimal condition and the maximal condition by noting
J/I ∈ F. Therefore we conclude that J ∈ Min-⊳ ∩ Max-⊳ by using [1,
Theorem 1.7.3]. �

4. Locally serially coalescent classes

Let X be a class of Lie algebras. We say that X is locally serially coalescent

for locally finite Lie algebras if for any two serial X-subalgebras H, K of a
locally finite Lie algebra L and for any finitely generated subalgebra Y of
J = 〈H, K〉 there exists a serial X-subalgebra X of L such that Y ≤ X ≤ J .

First we obtain the following lemma as [8, Theorem 3.1] and [9, Theorem
4.4].

Lemma 9. Let X and Y be classes of Lie algebras such that

lF ∩ X ≤ lF ∩ Y ≤ lF ∩ j(ser)X.

Then the following statements are equivalent.

(1) Y is locally serially coalescent for locally finite Lie algebras.

(2) For any finite number of serial X-subalgebras H1, . . . , Hn of a locally

finite Lie algebra L and for any finitely generated subalgebra Y of J =
〈H1, . . . , Hn〉 there exists a serial Y-subalgebra X of L such that Y ≤ X ≤ J .

Proof. (1) ⇒ (2) : We show the implication by using induction on n. When
n = 1 the assertion is trivial. Let n > 1 and suppose that the assertion
is true for n − 1. Since Y ∈ G there exist finitely generated subalgebras
Yi of Hi (1 ≤ i ≤ n) such that Y ≤ 〈Y1, . . . , Yn〉. Here 〈Y1, . . . , Yn−1〉 is
a finitely generated subalgebra of 〈H1, . . . , Hn−1〉. By inductive hypothesis
there exists a serial Y-subalgebra Xn−1 of L such that

〈Y1, . . . , Yn−1〉 ≤ Xn−1 ≤ 〈H1, . . . , Hn−1〉.

Hence 〈Y1, . . . , Yn−1, Yn〉 is a finitely generated subalgebra of 〈Xn−1, Hn〉. As
Xn−1 and Hn are serial Y-subalgebras of L, it follows from (1) that there
exists a serial Y-subalgebra Xn of L such that

〈Y1, . . . , Yn〉 ≤ Xn ≤ 〈Xn−1, Hn〉.
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That is to say, there exists a serial Y-subalgebra Xn of L such that Y ≤
Xn ≤ J . Hence the assertion is true for n.

(2) ⇒ (1) : Let L ∈ lF and let H, K be serial Y-subalgebras of L.
Suppose that Y is any finitely generated subalgebra of 〈H, K〉. Since H, K ∈
lF ∩ Y ≤ j(ser)X, we have

H = 〈Hα : α ∈ A〉, K = 〈Kβ : β ∈ B〉,

where Hα (resp. Kβ) is a serial X-subalgebra of H (resp. K) for any α ∈ A
(resp. β ∈ B). As Y is a finitely generated subalgebra of

〈H, K〉 = 〈Hα, Kβ : α ∈ A, β ∈ B〉,

there exist αi ∈ A (1 ≤ i ≤ m) and βj ∈ B (1 ≤ j ≤ n) such that

Y ≤ 〈Hα1
, . . . , Hαm

, Kβ1
, . . . , Kβn

〉.

Since Hαi
(1 ≤ i ≤ m) and Kβj

(1 ≤ j ≤ n) are serial X-subalgebras of L,
it follows from (2) that there exists a serial Y-subalgebra X of L such that

Y ≤ X ≤ 〈Hα1
, . . . , Hαm

, Kβ1
, . . . , Kβn

〉 ≤ 〈H, K〉.

Therefore we get the assertion (1). �

If we put X = Y in Lemma 9, then we obtain the following

Corollary 10. The following statements are equivalent.

(1) X is locally serially coalescent for locally finite Lie algebras.

(2) For any finite number of serial X-subalgebras H1, . . . , Hn of a locally

finite Lie algebra L and for any finitely generated subalgebra Y of J =
〈H1, . . . , Hn〉 there exists a serial X-subalgebra X of L such that Y ≤ X ≤ J .

The following theorem corresponds to [9, Proposition 4.1].

Theorem 11. Let X be a class of Lie algebras. If X is locally serially

coalescent for locally finite Lie algebras, then lF ∩ l(ser)X = lF ∩ j(ser)X.

Proof. It is clear that lF ∩ l(ser)X ≤ lF ∩ j(ser)X. Let L ∈ lF ∩ j(ser)X.
Then we have

L = 〈Hα : α ∈ A〉

where Hα is a serial X-subalgebra of L for any α ∈ A. Now, for any finitely
generated subalgebra Y of L, there are αi ∈ A (1 ≤ i ≤ n) such that
Y ≤ 〈Hα1

, . . . , Hαn
〉. Therefore Corollary 10 indicates that there exists a

serial X-subalgebra X of L such that Y ≤ X ≤ 〈Hα1
, . . . , Hαn

〉. Thus we
get L ∈ l(ser)X and conclude that lF ∩ j(ser)X ≤ lF ∩ l(ser)X. �

For a class X of Lie algebras it is clear that if X is serially coalescent for
locally finite Lie algebras, then X is locally serially coalescent for locally finite
Lie algebras. Therefore Theorems 4, 5, 6 and 8 assert that over any field of
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characteristic zero the following classes are all locally serially coalescent for
locally finite Lie algebras:

F ∩ N, F, F ∩ eA, Min, Min-⊳σ (σ ≥ 2),

Min-si, Min-asc, Min-ser, Min-⊳ ∩ Max-⊳.

Thus Theorem 11 leads to the following corollary which contains some results
in [6, Theorem 2].

Corollary 12. Over any field of characteristic zero we have

l(ser)(F ∩ N) = lF ∩ j(ser)(F ∩ N), l(ser)F = lF ∩ j(ser)F,

l(ser)(F ∩ eA) = lF ∩ j(ser)(F ∩ eA).

Furthermore if X is any of the classes Min, Min-⊳σ (σ ≥ 2), Min-si, Min-asc,
Min-ser and Min-⊳ ∩ Max-⊳, then

lF ∩ l(ser)X = lF ∩ j(ser)X.

The following theorem corresponds to [8, Theorem 3.2] and [9, Theorem
4.2].

Theorem 13. Let X and Y be classes of Lie algebras such that

lF ∩ X ≤ lF ∩ Y ≤ lF ∩ l(ser)X.

Then the following statements are equivalent.

(1) X is locally serially coalescent for locally finite Lie algebras.

(2) Y is locally serially coalescent for locally finite Lie algebras.

Proof. (1) ⇒ (2) : Suppose that X is locally serially coalescent for locally
finite Lie algebras. Let L ∈ lF and let H, K be serial Y-subalgebras of L.
Suppose that Y is any finitely generated subalgebra of J = 〈H, K〉. Then
there exist finitely generated subalgebras A of H and B of K such that
Y ≤ 〈A, B〉. Since

A ≤ H ∈ lF ∩ Y ≤ l(ser)X,

there is a serial X-subalgebra M of H such that A ≤ M . Then M is a serial
X-subalgebra of L. Similarly there is a serial X-subalgebra N of L such that
B ≤ N ≤ K. Since Y ≤ 〈A, B〉 ≤ 〈M, N〉 it follows from the hypothesis
that there exists a serial X-subalgebra X of L such that Y ≤ X ≤ 〈M, N〉.
Here X ∈ lF∩X ≤ Y and Y ≤ X ≤ J . Thus Y is locally serially coalescent
for locally finite Lie algebras.

(2) ⇒ (1) : Suppose that Y is locally serially coalescent for locally
finite Lie algebras. Let L ∈ lF and let H, K be serial X-subalgebras of L.
Suppose that Y is any finitely generated subalgebra of J = 〈H, K〉. Since
H, K ∈ lF ∩ X ≤ Y it follows from the hypothesis that there exists a serial
Y-subalgebra X of L such that Y ≤ X ≤ J . Here X ∈ lF ∩ Y ≤ l(ser)X,
so there is a serial X-subalgebra X1 of X such that Y ≤ X1 ≤ X. Therefore
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X1 is a serial X-subalgebra of L and Y ≤ X1 ≤ J . Thus X is locally serially
coalescent for locally finite Lie algebras. �

5. Radicals

For a class X of Lie algebras and a Lie algebra L we denote by RX-ser(L)
the subalgebra generated by all the serial X-subalgebras of L, and call it the
X-ser radical of L. If X is one of the classes F ∩ N, F ∩ eA and F, then we
have the following proposition about the X-ser radical of a locally finite Lie
algebra L.

Proposition 14. Over any field of characteristic zero, for any locally finite

Lie algebra L we have

(1) RF∩N-ser(L) ∈ l(ser)(F ∩ N) = lN,

(2) RF∩eA-ser(L) ∈ l(ser)(F ∩ eA),
(3) RF-ser(L) ∈ l(ser)F.

Proof. Let X be one of the classes F ∩ N, F ∩ eA and F. By virtue of
Theorems 4, 5 and 6 X is serially coalescent for locally finite Lie algebras.
Let L ∈ lF. For any finitely generated subalgebra Y of RX-ser(L) there
exist a finite number of serial X-subalgebras Hi (1 ≤ i ≤ n) of L such that
Y ≤ 〈H1, H2, . . . , Hn〉. Then we can show that 〈H1, H2, . . . , Hn〉 is a serial
X-subalgebra of L by using induction on n. Therefore 〈H1, H2, . . . , Hn〉 is
a serial X-subalgebra of RX-ser(L) containing Y . Thus RX-ser(L) ∈ l(ser)X.
We also have l(ser)(F ∩ N) = lN by [6, Theorem 4]. �

As a corollary of Proposition 14, we get the following result which corre-
sponds to [1, Theorem 6.2.1].

Corollary 15. Over any field of characteristic zero, for any locally finite

Lie algebra L we have

RF∩N-ser(L) = {x ∈ L : 〈x〉 ser L} = ∪{H : F ∩ N ∋ H ser L}

= ∪{H : N ∋ H ser L} = ∪{H : lN ∋ H ser L}.

Proof. It is trivial that

{x ∈ L : 〈x〉 ser L} ⊂ ∪{H : F ∩ N ∋ H ser L}

⊂ ∪{H : N ∋ H ser L} ⊂ ∪{H : lN ∋ H ser L}.

Let H be a serial lN-subalgebra of L and let x be any element of H. As any
subalgebra is serial in a locally nilpotent Lie algebra, 〈x〉 ser H, therefore
〈x〉 ser L. It follows that H ⊂ {x ∈ L : 〈x〉 ser L}. Thus we get

{x ∈ L : 〈x〉 ser L} = ∪{H : F ∩ N ∋ H ser L}

= ∪{H : N ∋ H ser L} = ∪{H : lN ∋ H ser L}.
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Also it is clear that ∪{H : F ∩ N ∋ H ser L} ⊂ RF∩N-ser(L). Let x ∈
RF∩N-ser(L). As in the proof of Proposition 14 there exists a serial F ∩ N-
subalgabra K of L such that x ∈ K. Thus we have RF∩N-ser(L) ⊂ ∪{H :
F ∩ N ∋ H ser L}. �
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