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ON FUCHSIAN GROUPS WITH THE SAME SET OF

FIXED POINTS OF PARABOLIC ELEMENTS

Tae Maeda

Abstract. There is an open question whether Fuchsian groups having
the same set of the axes of hyperbolic elements are commensurable or
not. In this note, we consider an analogous question where the axes are
replaced with the fixed points of parabolic elements.

1. Introduction

For a compact Riemannian manifold M , the spectrum of the Laplacian of
M is defined to be the set of all eigenvalues of the Laplace-Beltrami operator
on L2(M). Two compact Riemannian manifolds are called isospectral if the
spectra of their Laplacians are the same. It is a classical problem whether
isospectrality implies isometricity or not. Two isometric manifolds are obvi-
ously isospectral but the inverse statement does not necessarily hold. Since
the first example of an isospectral but non-isometric manifold is constructed
by Milnor [9], a lot of examples of such manifolds have been reported (see
[2], [3] and [12]).

Those examples have a common property: isospectral but non-isometric
manifolds are commensurable. Here two compact Riemannian manifolds
are called commensurable if they have a common finite cover. Then there
arises a new problem whether isospectrality implies commensurability. As an
answer to this problem in a special case, Reid [11] proved that, if arithmetic
hyperbolic 2- or 3-manifolds are isospectral, then they are commensurable.

On the other hand, for a compact Riemannian manifold M , the length
spectrum of M is defined to be the set of all lengths of closed geodesics
in M . Two compact Riemannian manifolds are called iso-length-spectral if
their length spectra are the same. Hyperbolic 2-manifolds are isospectral if
and only if they are iso-length-spectral (see [8]). While the length spectrum
extracts only the information on their lengths from the closed geodesics, we
can also consider the distribution of the axes of hyperbolic elements of the
Fuchsian group Γ with H/Γ ∼= M since they correspond to closed geodesics
in M . As before, we expect that, if two Fuchsian groups are iso-axial, then
they should be commensurable. Concerning this problem, the following
theorem has been also proved by Long and Reid [4].
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Theorem 1.1. Let Γ1 and Γ2 be arithmetic Fuchsian groups. If Ax(Γ1) =
Ax(Γ2) then Γ1 and Γ2 are commensurable.

Here ax(γ) ⊂ H denotes the axis of a hyperbolic element γ ∈ PSL(2,R),
and for a subgroup Γ ⊂ PSL(2,R), the set Ax(Γ) is defined to be

Ax(Γ) = {ax(γ) | γ ∈ Γ is hyperbolic}.

For subgroups G1 and G2 in a group G, we call G1 and G2 are commensu-
rable if G1 ∩G2 has a finite index both in G1 and G2.

In this paper, we prove the following analogous theorem.

Theorem 1.2. Let Γ1 and Γ2 be arithmetic Fuchsian groups having para-

bolic elements. If Fxp(Γ1) = Fxp(Γ2) then Γ1 and Γ2 are commensurable.

Here fix(γ) ⊂ H denotes the set of fixed points of an element γ ∈
PSL(2,R), and for a subgroup Γ ⊂ PSL(2,R), the set Fxp(Γ) is defined to
be

Fxp(Γ) = {fix(γ) | γ ∈ Γ is parabolic}.

Actually, the converse of both Theorems 1.1 and 1.2 are also true without
the assumption of arithmeticity. Indeed, if Γ1 and Γ2 in PSL(2,R) are
commensurable, then, for any hyperbolic or parabolic element γ in Γi (i =
1, 2), there exists n ∈ N such that γn is contained in Γ1 ∩ Γ2 and γn 6= id.
Thus we obtain Ax(Γ1) = Ax(Γ1 ∩ Γ2) = Ax(Γ2) and Fxp(Γ1) = Fxp(Γ1 ∩
Γ2) = Fxp(Γ2).

On the other hand, for the fixed point set

Fxe(Γ) = {fix(γ) | γ ∈ Γ is elliptic},

we have already proved the following theorem in our previous paper [7]. It
should be noted that we do not have to assume the arithmeticity of Fuchsian
groups in this theorem. However the converse does not necessarily hold
differently from the previous theorems.

Theorem 1.3. Let Γ1 and Γ2 be cofinite Fuchsian groups having elliptic

elements. If Fxe(Γ1) = Fxe(Γ2) then Γ1 and Γ2 are commensurable.

We have not known yet if Theorem 1.1 can be extended to cofinite Fuch-
sian groups. However, Theorem 1.2 cannot be extended to cofinite Fuchsian
groups, as Long and Reid [5] proved that there exist non-arithmetic, cofi-
nite Fuchsian groups Γ1 and Γ2 that are not commensurable but satisfies
Fxp(Γ1) = Fxp(Γ2).

The proof of Theorem 1.2 basically traces that of Theorem 1.1 given
in [4], but a new contribution can be found in the proof of the following
theorem, which also has the corresponding result in [4]. Let Comm(Γ) be
the commensurator of Γ, a group of the elements γ ∈ PSL(2,R) for which
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γΓγ−1 is commensurable with Γ, and Σp(Γ) the set of all γ ∈ PSL(2,R)
that preserve Fxp(Γ).

Theorem 1.4. Let Γ be an arithmetic Fuchsian group. Then Comm(Γ) =
Σp(Γ).

We will prove Theorem 1.4 in Sections 3 and 4, and Theorem 1.2 in Section
5.

2. Preliminaries

In this section we define arithmetic Fuchsian groups.

2.1. Quaternion algebras. First we define quaternion algebras. Let k be
a field. Let A be an algebra over k whose dimension as a vector space over
k is four. If A has a basis {1, i, j, l} that satisfies the following conditions,
then we call A a quaternion algebra.

(1) 1 is a multiplicative identity element of A.
(2) There exists a, b ∈ k such that i2 = a1 and j2 = b1.
(3) ij = −ji = l.

In this case, we write A = (a,b
k

). This notation is called the Hilbert symbol.
It should be noted that a quaternion algebra does not uniquely determine
the Hilbert symbol.

Let A be a quaternion algebra over a field k. Let {1, i, j, l} be a basis that
satisfies conditions (1), (2) and (3). For an element x = x0+x1i+x2j+x3l ∈
A, the reduced norm nA(x) is defined by x2

0 − ax2
1 − bx2

2 + abx2
3. It is known

that this definition is independent of a choice of the basis (see [6] p.80).
A trivial example of a quaternion algebra is Hamilton’s quaternion field

H. We can write H = (−1,−1
R

). Another example is M(2,R) = (1,1
R

), for
which {(

1 0
0 1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)}

is a basis that satisfies (1), (2) and (3). We obtain that nM(2,R)(x) = detx
for x ∈M(2,R) by computation.

It is a well-known fact that a quaternion algebra is a simple central al-
gebra (see [6] p.78). Then the Skolem-Noether Theorem tells us that an
automorphism of any quaternion algebra is an inner automorphism (see [6]
p.107).

2.2. Definition of arithmetic Fuchsian groups. Here we define arith-
metic Fuchsian groups. First we define an order of a quaternion algebra.
Let k be a number field and A be a quaternion algebra over k. Let Rk be
the set of all algebraic integers in k. We can regard A as an Rk-module. If
a subset O of A satisfies the following conditions, then we call O an order.
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(1) O is a finitely generated Rk-module.
(2) O is a subring containing 1.
(3) O ⊗Rk

k ∼= A.

Let k be a totally real number field, that is to say, if α is an algebraic
number such that k = Q(α) then, for all roots α1 = α, α2, α3, . . . , αn of the
minimal polynomial of α, Q(αi) (i = 1, 2, . . . , n) is contained in R. Let σi
be the isomorphism of k into Q(αi) such that σi(α) = αi (σ1 = id). Let

A be a quaternion algebra over k that has the Hilbert symbol (a,b
k

) whose
scalar a and b satisfy the following conditions.

(1) There exists a basis {1, i, j, l} of M(2,R) with
• 1 is a multiplicative identity element of M(2,R);
• i2 = σ1(a) = a;
• j2 = σ1(b) = b;
• ij = −ji = l.

(2) For each m = 2, 3, . . . , n, there exists a basis {1, im, jm, lm} of H
with

• 1 is a multiplicative identity element of H;
• i2m = σm(a);
• j2m = σm(b);
• imjm = −jmim = lm.

From (1), we know that A⊗k R ∼= M(2,R).
Let O be an order of A and define O1 to be

O1 = {x ∈ O | nA(x) = 1}.

Let ρ be a k-embedding of A into M(2,R). Let p be the canonical projection
from SL(2,R) to PSL(2,R). Then it is known that ρ(O1) is discrete in
SL(2,R) and pρ(O1) is a cofinite Fuchsian group (see [6] p.259). A Fuchsian
group Γ is called arithmetic if Γ is commensurable with some such pρ(O1).

2.3. Invariant quaternion algebras. We provide useful tools for consid-
ering arithmetic Fuchsian groups and state certain propositions. For a non-
elementary subgroup Γ of PSL(2,R), we define Γ(2), kΓ and AΓ to be

Γ(2) = 〈 γ2 | γ ∈ Γ 〉;

kΓ = Q (tr γ | γ ∈ p−1(Γ(2)));

AΓ = {
∑

finite

aiγi | ai ∈ kΓ, γi ∈ p−1(Γ(2))}.

By definition, AΓ is a kΓ-algebra contained in M(2,R). In fact, it is a
kΓ-quaternion algebra (see [6] p.114). It is known that the pair (kΓ, AΓ)
is an invariant for a commensurability class of Γ, and thus AΓ is called an
invariant quaternion algebra.
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For arithmetic Fuchsian groups, the following three propositions are
known (see [6] p.268, p.265 and p.270 respectively).

Proposition 2.1. Let Γ1 and Γ2 be arithmetic Fuchsian groups. Then Γ1

and Γ2 are commensurable if and only if (kΓ1, AΓ1) = (kΓ2, AΓ2).

Proposition 2.2. Let Γ be an arithmetic Fuchsian group that is commen-

surable with pρ(O1), where O is an order of a quaternion algebra A over

a field k and ρ is a k-embedding of A into M(2,R). Then k = kΓ and

ρ(A) = AΓ.

Thus, if Γ is arithmetic, then there exists an order OAΓ of AΓ such that
Γ is commensurable with p(O1

AΓ).
If subgroups Γ1 and Γ2 of PSL(2,R) are commensurable, then we write

Γ1 ∼ Γ2. Note that ∼ is an equivalence relation. We define the commensu-
rator of Γ as

Comm(Γ) = {γ ∈ PSL(2,R) | γΓγ−1 ∼ Γ}.

Let P be the canonical projection of GL+(2,R) onto PGL+(2,R) with
the correspondence x 7→ [x]. Let ψ be a homomorphism of GL+(2,R) onto
SL(2,R) defined by ψ(x) = x√

det x
for x ∈ GL+(2,R), and ϕ an isomorphism

of PGL+(2,R) onto PSL(2,R) sending [x] to [ x√
det x

]. Then p, P , ϕ and ψ

satisfy the following commutative diagram.

GL+(2,R)
P

−−−−→ PGL+(2,R)

ψ

y
yϕ

SL(2,R)
p

−−−−→ PSL(2,R)

Proposition 2.3. If Γ is an arithmetic Fuchsian group, then Comm(Γ) =
ϕP (AΓ+), where

AΓ+ = {x ∈ AΓ | nAΓ(x) = detx > 0}.

3. Proof of Theorem 1.4

In this section we prove Theorem 1.4 modulo a certain claim which will
be shown in the next section. We define

Σp(Γ) = {γ ∈ PSL(2,R) | γ(Fxp(Γ)) = Fxp(Γ)}.

Theorem 1.4. Let Γ be an arithmetic Fuchsian group. Then Comm(Γ) =
Σp(Γ).
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Proof. First we show the inclusion Comm(Γ) ⊂ Σp(Γ), which is easier than
the other direction. In fact, this inclusion holds even for a non-arithmetic
Fuchsian group Γ. Let γ be an element of Comm(Γ) and g a parabolic
element of Γ. Because γΓγ−1 is commensurable with Γ, we obtain Fxp(Γ) =
Fxp(γΓγ

−1). Thus

γ(fix(g)) = fix(γgγ−1) ∈ Fxp(γΓγ
−1) = Fxp(Γ).

It follows that Comm(Γ) ⊂ Σp(Γ).
Next we prove the inclusion Comm(Γ) ⊃ Σp(Γ). Let v be an element of

Σp(Γ) and V an element of SL(2,R) such that p(V ) = v. We will show that
there exist r ∈ R and W ∈ AΓ+ such that V = rW . Then we obtain that

v = p(V ) = pψ(V ) = ϕP (rW ) = ϕP (W ) ∈ ϕP (AΓ+),

from which Σp(Γ) ⊂ ϕP (AΓ+) = Comm(Γ) follows.
Let Φ : AΓ →M(2,R) be the conjugation by V , that is, Φ(X) = V XV −1

for any element X ∈ AΓ. Then we will see Φ(AΓ) ⊂ AΓ, which means that
Φ is an automorphism of AΓ. This is the essential step in our arguments
and the proof for this fact will be given in the next section. As noted
in Section 2.1, Φ is actually an inner automorphism. Then there exists
W ∈ AΓ∗ = {x ∈ AΓ | detx 6= 0} that satisfies V XV −1 = WXW−1 for
every element X ∈ AΓ.

Thus W−1V is commutable with every element of AΓ. Although AΓ is
central, this does not necessarily imply that W−1V is contained in (kΓ)I.
However, there exists a quaternion algebra A over a number field k such
that A⊗k R ∼= M(2,R) because Γ is arithmetic. Since k = kΓ and A ∼= AΓ
by Proposition 2.2, we know that AΓ ⊗kΓ R ∼= M(2,R). Then W−1V is
commutable with every element of M(2,R). Thus there exists r ∈ R such
that W−1V = rI, which shows that V = rW . From this we know that
detW = 1

r2
> 0 hence W ∈ AΓ+. This complete the proof. �

4. Φ preserves AΓ

To complete the proof of Theorem 1.4, we prove Φ(AΓ) ⊂ AΓ. We will
show that there exists a basis {X1, X2, X3, X4} of AΓ such that Φ(Xi) =
V XiV

−1 (i = 1, 2, 3, 4) is contained in AΓ. To this end, we prepare the
following two lemmas.

Lemma 4.1. Let Γ be a non-elementary subgroup of PSL(2,R). If X,Y ∈
AΓ+ satisfy tr(ψ(XYX−1Y −1)) 6= 2, then {I,X, Y,XY } is a basis of AΓ
over kΓ.

Proof. Because AΓ is four dimensional over kΓ, it suffices to show that
{I,X, Y,XY } are linearly independent over R. This is equivalent to saying
that {I, ψ(X), ψ(Y ), ψ(XY )} are linearly independent over R.
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For any elements A =

(
a1 a2

a3 a4

)
and B =

(
b1 b2
b3 b4

)
in SL(2,R), set

C =

(
c1 c2
c3 c4

)
to be C = AB. Then we have

det




1 a1 b1 c1
0 a2 b2 c2
0 a3 b3 c3
1 a4 b4 c4


 = 2 − trABA−1B−1.

Thus {I, A,B,AB} are linearly independent over R if and only if

trABA−1B−1 6= 2.

This shows that if tr(ψ(XYX−1Y −1)) 6= 2, then {I, ψ(X), ψ(Y ), ψ(XY )}
are linearly independent over R. �

Lemma 4.2. Let A,B,A′ and B′ be elements of SL(2,R) and define a, b, a′

and b′ to be a = p(A), b = p(B), a′ = p(A′) and b′ = p(B′) respectively. If

a, b, a′ and b′ are parabolic elements of PSL(2,R) and satisfy

fix(a) = fix(a′); fix(b) = fix(b′),

then there exists r ∈ R such that AB −BA = r(A′B′ −B′A′).

Proof. Set z = fix(a) and w = fix(b), which are in R ∪ {∞}. Because a and
b are parabolic, it is known that (see [10] p.4), if z 6= ∞ and w 6= ∞, there
exist r and s in R− {0} such that

A =

(
1 + rz −rz2

r 1 − rz

)
; B =

(
1 + sw −sw2

s 1 − sw

)
.

Similarly, if z = ∞ and w = ∞, there exist t and u in R− {0} such that

A =

(
1 t
0 1

)
; B =

(
1 u
0 1

)
.

Thus, if z 6= ∞ and w 6= ∞, then

AB −BA = rs

(
w2 − z2 2z2w − 2zw2

2w − 2z −w2 + z2

)
;

if z 6= ∞ and w = ∞, then

AB −BA = st

(
1 −2w
0 −1

)
;

and if z = ∞ and w = ∞, then

AB −BA =

(
0 0
0 0

)
.
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The same results holds for a′ and b′ because fix(a) = fix(a′) and fix(b) =
fix(b′). This shows the assertion. �

We begin the proof of the existence of a basis {X1, X2, X3, X4} of AΓ
such that Φ(Xi) ∈ AΓ. Let O be an order of AΓ such that p(O1) ∼ Γ (we

have mentioned the existence of such O in Section 2.3). Let Ĩ denote the
set of all pairs (A,B) ∈ O1 × O1 such that p(A) and p(B) are parabolic
elements of Γ ∩ p(O1) having disjoint fixed point sets:

Ĩ = {(A,B) ∈ O1 ×O1 |

parabolic p(A), p(B) ∈ Γ ∩ p(O1), fix(p(A)) ∩ fix(p(B)) = ∅},

and set

I = {AB −BA | (A,B) ∈ Ĩ , det(AB −BA) > 0}.

Note that I is contained in AΓ+. Let 〈I 〉 be the subgroup of GL+(2,R)
generated by I . We will show that there exists a basis {X1, X2, X3, X4} of
AΓ in 〈I 〉 such that Φ(Xi) = V XiV

−1 (i = 1, 2, 3, 4) is contained in AΓ.
First we prove that ϕP (〈I 〉) is a normal subgroup of ϕP (AΓ+) and obtain

that it is non-elementary because it is a normal subgroup of non-elementary
ϕP (AΓ+) = Comm(Γ) (⊃ Γ). Let X be an element of AΓ+ and AB−BA an
element of I . Define x, a and b to be x = ϕP (X), a = ϕP (A) = p(A) and
b = ϕP (B) = p(B). Note that a and b are parabolic elements of Γ. Because
x is an element of ϕP (AΓ+) = Comm(Γ) ⊂ Σp(Γ), there exist parabolic
elements a′ and b′ in Γ such that

x(fix(a)) = fix(xax−1) = fix(a′); x(fix(b)) = fix(xbx−1) = fix(b′).

Here a′ and b′ can be taken from Γ ∩ p(O1) because Γ ∩ p(O1) has a finite

index in Γ. In other words, there exists (A′, B′) ∈ Ĩ such that p(A′) = a′

and p(B′) = b′. By Lemma 4.2, we have

XAX−1XBX−1 −XBX−1XAX−1 = r(A′B′ −B′A′)

for some r ∈ R. From this equation, we know that det(A′B′ − B′A′) =
1
r2

det(AB −BA) > 0. Then we obtain that

ϕP (X)ϕP (AB −BA)ϕP (X)−1

= ϕP (XAX−1XBX−1 −XBX−1XAX−1)

= ϕP (r(A′B′ −B′A′))

= ϕP (A′B′ −B′A′) ∈ ϕP (〈I 〉).

This shows that ϕP (〈I 〉) is a normal subgroup of ϕP (AΓ+).
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Next we will show that there exist a basis of AΓ in 〈I 〉. By Lemma
4.1, we have only to show that there exist X and Y in 〈I 〉 that satisfy
tr(ψ(XYX−1Y −1)) 6= 2. Suppose that X and Y in 〈I 〉 satisfy

tr(ψ(XYX−1Y −1)) = 2.

Then pψ(XYX−1Y −1) is parabolic and there exist Z in 〈I 〉 such that

fix(pψ(Z)) ∩ fix(pψ(XYX−1Y −1)) = ∅

because ϕP (〈I 〉) = pψ(〈I 〉) is non-elementary. Thus X ′ := XYX−1Y −1

and Y ′ := Z(XYX−1Y −1)Z−1 in 〈I 〉 satisfy fix(pψ(X ′))∩ fix(pψ(Y ′)) = ∅
and pψ(X ′) is parabolic. Hence we obtain that tr(ψ(X ′Y ′X ′−1Y ′−1)) 6= 2
because if A and B in SL(2,R) satisfy fix(p(A))∩fix(p(B)) = ∅ and p(A) is
parabolic, then tr(ABA−1B−1) 6= 2 (see [1] p.185). This shows the assertion.

Now we have obtained X and Y in 〈I 〉 such that {I,X, Y,XY } is a basis
of AΓ. Then we will show that Φ(X) = V XV −1 and Φ(Y ) = V Y V −1

are contained in AΓ. Since X and Y are elements of 〈I 〉, there exist

(A1, B1), . . . , (An, Bn) and (C1, D1), . . . , (Cm, Dm) in Ĩ such that

X =

n∏

i=1

(AiBi −BiAi); Y =

m∏

j=1

(CjDj −DjCj).

Then we have only to show that V (AiBi − BiAi)V
−1 is contained in AΓ.

Because v is an element of Σp(Γ), there exists (A′
i, B

′
i) ∈ Ĩ such that

v(fix(p(Ai))) = fix(p(V AiV
−1)) = fix(p(A′

i))

and

v(fix(p(Bi))) = fix(p(V BiV
−1)) = fix(p(B′

i)).

By Lemma 4.2, there exists r ∈ R such that

V (AiBi −BiAi)V
−1 = r(A′

iB
′
i −B′

iA
′
i).

This shows that

r =
tr(AiBi −BiAi)

tr(A′
iB

′
i −B′

iA
′
i)

is contained in kΓ because tr(AΓ) ⊂ kΓ. Thus V (AiBi − BiAi)V
−1 is

contained in AΓ, and hence Φ(AΓ) ⊂ AΓ. This completes the proof.

5. Proof of the main theorem

Finally we prove Theorem 1.2.

Theorem 1.2. Let Γ1 and Γ2 be arithmetic Fuchsian groups. If Fxp(Γ1) =
Fxp(Γ2) then Γ1 and Γ2 are commensurable.
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Proof. It is clear from definition that Γ1 ⊂ Σp(Γ1). On the other hand, it
follows that Σp(Γ1) = Σp(Γ2) because Fxp(Γ1) = Fxp(Γ2). Then we obtain
that

Γ1 ⊂ Σp(Γ2) = Comm(Γ2) = ϕP ((AΓ2)+)

by Theorem 1.4 and Proposition 2.3. This shows that any element x ∈ Γ1

can be written as x = ϕP (X) for some X ∈ (AΓ2)+. We have

x2 = ϕP (X2) = pψ(X2) = p

(
X2

detX

)

and hence p−1(x2) = { X2

detX ,
−X2

detX }. This implies that tr(p−1(x2)) ⊂ kΓ2

because detX = nAΓ2
(X) is contained in kΓ2.

From the above facts, we have kΓ1 = Q(tr(p−1(Γ
(2)
1 )) ⊂ kΓ2 as well as

AΓ1 = {
∑

finite

aiγi | ai ∈ kΓ1, γi ∈ p−1(Γ
(2)
1 )} ⊂ AΓ2.

Exchanging the roles of Γ1 and Γ2, we have kΓ1 = kΓ2 and AΓ1 = AΓ2.
Thus, by Proposition 2.1, we see that Γ1 is commensurable with Γ2. �

Remark. Generalizing arithmetic Fuchsian groups, we consider arithmetic
Kleinian groups (see [6]). We can also extend Theorem 1.2 (and Theorem 1.1
as is mentioned in [4]) in the same way and obtain that, if Fxp(Γ1) = Fxp(Γ2)
for arithmetic Kleinian groups Γ1 and Γ2, then Γ1 and Γ2 are commensu-
rable.
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