THE SPACE L_q OF DOUBLE SEQUENCES

Feyzi Başar and Yurdal Sever

Abstract. The spaces BS, $BS(t)$, CS_p, CS_{bp}, CS_r and BV of double sequences have recently been studied by Altay and Başar [J. Math. Anal. Appl. 309(1)(2005), 70–90]. In this work, following Altay and Başar [1], we introduce the Banach space L_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examine some properties of the space L_q. Furthermore, we determine the $\beta(\upsilon)$-dual of the space and establish that the α- and γ-duals of the space L_q coincide with the $\beta(\upsilon)$-dual; where $1 \leq q < \infty$ and $\upsilon \in \{p, bp, r\}$.

1. Introduction

By w and Ω, we denote the set of all real valued single and double sequences which are the vector spaces with coordinatewise addition and scalar multiplication. Any vector subspaces of w and Ω are called as the single and double sequence spaces, respectively. The space M_u of all bounded double sequences is defined by

$$M_u := \left\{ x = (x_{mn}) \in \Omega : \|x\|_\infty = \sup_{m,n \in \mathbb{N}} |x_{mn}| < \infty \right\},$$

which is a Banach space with the norm $\| \cdot \|_\infty$; where \mathbb{N} denotes the set of all positive integers. Consider a sequence $x = (x_{mn}) \in \Omega$. If for every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ and $l \in \mathbb{R}$ such that

$$|x_{mn} - l| < \varepsilon$$

for all $m, n > n_0$ then we call that the double sequence x is convergent in the Pringsheim’s sense to the limit l and write $p - \lim x_{mn} = l$; where \mathbb{R} denotes the real field. By C_p we denote the space of all convergent double sequences in the Pringsheim’s sense. It is well-known that there are such sequences in the space C_p but not in the space M_u. So, we can consider the space C_{bp} of the double sequences which are both convergent in the Pringsheim’s sense and bounded, i.e., $C_{bp} = C_p \cap M_u$. A sequence in the space C_p is said to be regularly convergent if it is a single convergent sequence with respect to each index and the set of all such sequences denoted by C_r. Also by C_{bp0} and C_{r0}, we denote the spaces of all double sequences converging to 0 contained

Mathematics Subject Classification. Primary: 46A45; Secondary: 40C05.

Key words and phrases. Double sequence space, paranormed sequence space, α-, β-, γ-duals of a double sequence space.
in the sequence spaces C_{bp} and C_r, respectively. Móricz [7] proved that C_{bp},
C_{bp0}, C_r and C_{r0} are Banach spaces with the norm $\| \cdot \|_{\infty}$.

Let us consider the isomorphism T which plays an essential role for the
present study, defined by Zeltser [11, p. 36] as

$$T : \Omega \rightarrow w \quad x \mapsto z = (z_i) := (x_{\psi^{-1}(i)}),$$

(1.1)

where $\psi : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is a bijection defined by

$$
\begin{align*}
\psi[(1, 1)] &= 1, \\
\psi[(1, 2)] &= 2, \quad \psi[(2, 2)] = 3, \quad \psi[(2, 1)] = 4, \\
\vdots \quad \psi[(1, n)] &= (n - 1)^2 + 1, \quad \psi[(2, n)] = (n - 1)^2 + 2, \quad \ldots, \\
\psi[(n, n)] &= (n - 1)^2 + n, \quad \psi[(n, n - 1)] = n^2 - n + 2, \quad \ldots, \quad \psi[(n, 1)] = n^2, \\
& \quad \vdots
\end{align*}
$$

Let us consider a double sequence $x = (x_{mn})$ and define the sequence
$s = (s_{mn})$ via x by

(1.2)

$$s_{mn} := \sum_{i,j=1}^{m,n} x_{ij} ; \quad (m, n \in \mathbb{N}),$$

which will be used throughout. For the sake of brevity, here and in what
follows, we abbreviate the summations $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}$, $\sum_{i=1}^{m} \sum_{j=1}^{n}$ and
$\sum_{i=1}^{n} \sum_{j=1}^{n}$ by $\sum_{i,j}$, $\sum_{i,j}^{m,n}$ and $\sum_{i,j}^{n}$, respectively. Then the pair (x, s)
and the sequence $s = (s_{mn})$ are called as a double series and the sequence
of partial sums of the double series, respectively. Let λ be the space of
double sequences, converging with respect to some linear convergence rule
$v - \lim : \lambda \rightarrow \mathbb{R}$. The sum of a double series $\sum_{i,j} x_{ij}$ with respect to this
rule is defined by $v - \sum_{i,j} x_{ij} := v - \lim s_{mn}$.

Let us define the following sets of double sequences:

$$
\begin{align*}
M_u(t) := \left\{ (x_{mn}) \in \Omega : \sup_{m,n \in \mathbb{N}} |x_{mn}|^{t_{mn}} < \infty \right\}, \\
C_p(t) := \left\{ (x_{mn}) \in \Omega : p - \lim_{m,n \rightarrow \infty} |x_{mn} - l|^{t_{mn}} = 0 \quad \text{for some} \ l \in \mathbb{C} \right\}, \\
C_{0p}(t) := \left\{ (x_{mn}) \in \Omega : p - \lim_{m,n \rightarrow \infty} |x_{mn}|^{t_{mn}} = 0 \right\}, \\
L_u(t) := \left\{ (x_{mn}) \in \Omega : \sum_{m,n} |x_{mn}|^{t_{mn}} < \infty \right\},
\end{align*}
$$
\[C_{bp}(t) := C_p(t) \cap M_u(t) \quad \text{and} \quad C_{0bp}(t) := C_{0p}(t) \cap M_u(t); \]

where \(t = (t_{mn}) \) is the sequence of strictly positive reals \(t_{mn} \) for all \(m, n \in \mathbb{N} \). In the case \(t_{mn} = 1 \) for all \(m, n \in \mathbb{N} \), \(M_u(t) \), \(C_p(t) \), \(C_{0p}(t) \), \(L_u(t) \), \(C_{bp}(t) \) and \(C_{0bp}(t) \) reduce to the sets \(M_u \), \(C_p \), \(C_{0p} \), \(L_u \), \(C_{bp} \) and \(C_{0bp} \), respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Çolak [4, 5] have proved that \(M_u(t) \) and \(C_p(t) \), \(C_{bp}(t) \) are complete paranormed spaces of double sequences and gave the \(\alpha \)-, \(\beta \)-, \(\gamma \)-duals of the spaces \(M_u(t) \) and \(C_{bp}(t) \). Quite recently, in her PhD thesis, Zeltser [11] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [8] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [9] and Mursaleen and Edely [10] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the \(M \)-core for double sequences and determined those four dimensional matrices transforming every bounded double sequence \(x = (x_{jk}) \) into one whose core is a subset of the \(M \)-core of \(x \). More recently, Altay and Başar [1] have defined the spaces \(BS, BS(t), CS_p, CS_{bp}, CS_r \) and \(BV \) of double sequences consisting of all double series whose sequence of partial sums are in the spaces \(M_u, M_u(t), C_p, C_{bp}, C_r \) and \(L_u \), respectively, and also examined some properties of those sequence spaces and determined the \(\alpha \)-duals of the spaces \(BS, BV, CS_{bp} \) and the \(\beta(\vartheta) \)-duals of the spaces \(CS_{bp} \) and \(CS_r \) of double series.

In the present paper, we introduce the space \(\mathcal{L}_q \)

\[
\mathcal{L}_q := \left\{ (x_{ij}) \in \Omega : \sum_{i,j} |x_{ij}|^q < \infty \right\}, \quad (1 \leq q < \infty)
\]

of double sequences corresponding to the space \(\ell_q \) of single sequences and examine some properties of the space.

2. The Double Sequence Space \(\mathcal{L}_q \)

In this section, we give the theorem which states that \(\mathcal{L}_q \) is a sequence space and is a Banach space with the norm \(\| \cdot \|_q \), firstly. Subsequent to giving some inclusion relations concerning the space \(\mathcal{L}_q \), we establish that the \(\alpha \)- and \(\gamma \)-duals of a space of double sequences are identical whenever it is solid, and \(\mathcal{L}_q \) is said if \(q > 1 \) and determine the \(\beta(\vartheta) \)-dual of the space \(\mathcal{L}_q \) for \(\vartheta \in \{ p, bp, r \} \) which coincides with the \(\alpha \)- and \(\gamma \)-duals of the space \(\mathcal{L}_q \).
Theorem 2.1. The set \(L_q \) becomes a linear space with the coordinatewise addition and scalar multiplication and \(L_q \) is a Banach space with the norm

\[
\|x\|_q = \left(\sum_{i,j} |x_{ij}|^q \right)^{1/q},
\]

where \(1 \leq q < \infty \).

Proof. The proof of the first part of the theorem is a routine verification and so we omit the detail.

Furthermore, the statement "a sequence space \(\nu \) is a Banach space with the norm \(\| \cdot \|_\nu \) if and only if the sequence space \(T^{-1}(\nu) = \lambda \) is a Banach space with the norm \(\| \cdot \|_\lambda \)" holds by Boos [3, Corollary 6.3.41]. Therefore, the restriction of the transformation defined by (1.1) to the space \(L_q \) which is norm preserving isomorphism yields the fact that \(L_q = T^{-1}(\ell_q) \) is also a Banach space with the norm \(\| \cdot \|_q \) defined by (2.1) because of \(\ell_q \) is a Banach space.

This step concludes the proof. \(\square \)

Theorem 2.2. Let \(1 \leq q < s < \infty \). Then, the inclusions \(L_q \subset L_s \subset C_{r0} \subset \mathcal{M}_u \) hold.

Proof. Let us take any \(x = (x_{ij}) \in L_q \). Then, \(\sum_{\max\{i,j\} > n_0} |x_{ij}|^q < \varepsilon < 1 \) for sufficiently large \(n_0 \in \mathbb{N} \). Since \(q < s \), it is obvious that \(|x_{ij}|^q \geq |x_{ij}|^s \) for all \(i, j \in \mathbb{N} \) such that \(\max\{i, j\} > n_0 \). Thus,

\[
\sum_{i,j} |x_{ij}|^s = \sum_{i,j=1}^{n_0} |x_{ij}|^s + \sum_{\max\{i,j\} > n_0} |x_{ij}|^s \\
\leq A + \sum_{\max\{i,j\} > n_0} |x_{ij}|^q \\
\leq A + \varepsilon,
\]

which leads us to the fact that \(x \in L_s \), where \(A = \sum_{i,j=1}^{n_0} |x_{ij}|^s \). Hence, \(L_q \subset L_s \).

Besides one can easily deduce, by means of the suitable restrictions of the isomorphism \(T \) defined by (1.1) and taking into account the fact that the space \(C_{r0} \) consists of all sequences \(x = (x_{mn}) \) such that \(\lim_{\max\{m,n\} \to \infty} x_{mn} = 0 \), from the known inclusions \(\ell_s \subset c_0 \subset \ell_\infty \) for \(1 \leq s < \infty \) that

\[
T^{-1}(\ell_s) = L_s \subset C_{r0} = T^{-1}(c_0) \subset T^{-1}(\ell_\infty) = \mathcal{M}_u.
\]

This step completes the proof. \(\square \)
The α-dual λ^α, $\beta(v)$-dual $\lambda^{\beta(v)}$ with respect to the v-convergence for $v \in \{p, bp, r\}$ and the γ-dual λ^γ of a double sequence space λ are respectively defined by

$$
\lambda^\alpha := \left\{ (a_{ij}) \in \Omega : \sum_{i,j} |a_{ij}x_{ij}| < \infty \text{ for all } (x_{ij}) \in \lambda \right\},
$$

$$
\lambda^{\beta(v)} := \left\{ (a_{ij}) \in \Omega : v - \sum_{i,j} a_{ij}x_{ij} \text{ exists for all } (x_{ij}) \in \lambda \right\}
$$

and

$$
\lambda^\gamma := \left\{ (a_{ij}) \in \Omega : \sup_{k,l \in \mathbb{N}} \left| \sum_{i,j=1}^{k,l} a_{ij}x_{ij} \right| < \infty \text{ for all } (x_{ij}) \in \lambda \right\}.
$$

It is easy to see for any two spaces λ, μ of double sequences that $\mu^\alpha \subset \lambda^\alpha$ whenever $\lambda \subset \mu$ and $\lambda^\alpha \subset \lambda^\gamma$. Additionally, it is known that the inclusion $\lambda^\alpha \subset \lambda^{\beta(v)}$ holds while the inclusion $\lambda^{\beta(v)} \subset \lambda^\gamma$ does not hold, since the v-convergence of the sequence of partial sums of a double series does not imply its boundedness.

The space λ of double sequences is said to be solid if and only if

$$
\tilde{\lambda} = \{(u_{kl}) \in \Omega : \exists (x_{kl}) \in \lambda \text{ such that } |u_{kl}| \leq |x_{kl}| \text{ for all } k, l \in \mathbb{N} \}
$$

is a bounded set of real numbers.

The space λ of double sequences is also said to be monotone if and only if $m_0\lambda \subset \lambda$, where m_0 is the span of the set of all sequences of zeros and ones and $m_0\lambda = \{ax = (a_{ij}x_{ij}) : a \in m_0, x \in \lambda\}$. If λ is monotone, then $\lambda^\alpha = \lambda^{\beta(v)}$ (cf. Zeltser [11, p. 36]) and λ is monotone whenever λ is solid.

Prior to giving the theorem which asserts that the α- and γ-duals of a solid space of double sequences are identical, we quote two lemmas which are needed in proving the theorem.

Lemma 2.3. [6, Theorem 2, p. 279] A positive term double series converges to its l.u.b. (that is the l.u.b. of its partial sums) if it is bounded above. Otherwise it diverges to $+\infty$.

Lemma 2.4. [2, p. 382] A double series is absolutely convergent if and only if the set

$$
\left\{ \sum_{i,j=1}^{m,n} |x_{ij}| : m, n \in \mathbb{N} \right\}
$$

is a bounded set of real numbers.

Now, we may give the theorem
Theorem 2.5. If a given double sequence space λ is solid, then the equality $\lambda^\alpha = \lambda^\gamma$ holds.

Proof. To prove the theorem, it is enough to show that the inclusion $\lambda^\gamma \subset \lambda^\alpha$ holds. Suppose that the sequence space λ is solid and take any $y = (y_{kl}) \in \lambda^\gamma$. Then,

$$\sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=1}^{m,n} x_{kl} y_{kl} \right| < \infty$$

for any $x = (x_{kl}) \in \lambda$. Now, define the sequence $z = (z_{kl})$ via the sequence $x = (x_{kl}) \in \lambda$ by $z_{kl} := x_{kl} \text{sgn}(x_{kl} y_{kl})$ for all $k, l \in \mathbb{N}$. Then, $z = (z_{kl}) \in \lambda$ since λ is solid and $|z_{kl}| \leq |x_{kl}|$ for all $k, l \in \mathbb{N}$. Therefore,

$$\sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=1}^{m,n} x_{kl} y_{kl} \text{sgn}(x_{kl} y_{kl}) \right| = \sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=1}^{m,n} y_{kl} z_{kl} \right| < \infty.$$

This shows that the positive term double series $\sum_{k,l} |x_{kl} y_{kl}|$ is bounded which is convergent by Lemma 2.3. Therefore, one can see by Lemma 2.4 that $(x_{kl} y_{kl})_{k,l \in \mathbb{N}} \in L_1$. Since $x \in \lambda$ is arbitrary, y must be in λ^α, i.e., the inclusion $\lambda^\gamma \subset \lambda^\alpha$ holds.

This step terminates the proof. ∎

As an easy consequence of Theorem 2.5, we have

Corollary 2.6. If λ is solid then $\lambda^\alpha = \lambda^{\beta(\nu)} = \lambda^\gamma$.

One can easily observe that the double sequence space L_q is solid, if $q > 1$. This yields to us that the double sequence space L_q is monotone which implies the fact that the α- and the $\beta(\nu)$-duals of the space L_q are identical.

Now, we may give the theorem on the $\beta(\nu)$-dual of the space L_q.

Theorem 2.7. The $\beta(\nu)$-dual of the space L_q is the space $L_{q'}$, where $q > 1$ and $q^{-1} + q'^{-1} = 1$.

Proof. Let $q > 1$ and $q^{-1} + q'^{-1} = 1$. Let us take any $x \in L_{q'}$ and $y \in L_q$. Consider the inequalities

$$|x_{mn} y_{mn}| \leq \frac{|x_{mn}| q'}{q} + \frac{|y_{mn}| q}{q} \leq |x_{mn}| q' + |y_{mn}| q.$$
satisfied for all \(m, n \in \mathbb{N} \). Therefore, we derive that

\[
\sum_{m,n} |x_{mn}y_{mn}| \leq \sum_{m,n} |x_{mn}|^{q'} + \sum_{m,n} |y_{mn}|q < \infty,
\]

which leads us to the fact that \(x \in L_q^\alpha \), i.e., the inclusions

(2.2) \(L_q' \subset L_q^\alpha \subset L_q^{\beta(v)} \)

hold.

Conversely, take any \(y = (y_{mn}) \in L_q^{\beta(v)} \). For establishing the inclusion \(L_q^{\beta(v)} \subset L_q' \), we use the analogous idea employing by Boos [3, p. 344, Theorem 7.1.11.c] for single sequences. Let us consider the linear functional \(f_n \) and the double sequence \(y^{[n]} \) defined by

\[
f_n : L_q \longrightarrow \mathbb{R} \quad x = (x_{kl}) \longmapsto f_n(x) := \sum_{k,l=1}^n x_{kl}y_{kl}
\]

and

\[
y^{[n]} = \begin{bmatrix}
y_{11} & y_{12} & y_{13} & \cdots & y_{1n} & 0 & \cdots \\
y_{21} & y_{22} & y_{23} & \cdots & y_{2n} & 0 & \cdots \\
y_{31} & y_{32} & y_{33} & \cdots & y_{3n} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
y_{n1} & y_{n2} & y_{n3} & \cdots & y_{nn} & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

for every \(n \in \mathbb{N} \). Then, since \(y^{[n]} \in L_q' \), we obtain by Hölder’s inequality that

\[
|f_n(x)| \leq \sum_{k,l=1}^n |x_{kl}y_{kl}| = \sum_{k,l} |x_{kl}y_{kl}^{[n]}| \leq \|x\|_q \left\|y^{[n]}\right\|_{q'}
\]

for each \(x = (x_{kl}) \in L_q \) which yields the continuity of the linear functionals \(f_n \). Therefore, we have

(2.3) \(\|f_n\| \leq \left\|y^{[n]}\right\|_{q'} \) for each \(n \in \mathbb{N} \).

Let us consider the sequence \(x^{(n)} = \{x_{kl}^{(n)}\}_{k,l \in \mathbb{N}} \) to prove the reverse inequality, defined by

\[
x_{kl}^{(n)} := \begin{cases}
\frac{|y_{kl}|^{q'}}{y_{kl}}, & \text{if } y_{kl} \neq 0, \text{ and } k, l \leq n, \\
0, & \text{otherwise}.
\end{cases}
\]
Then, it is clear that \(x^{(n)} \in L_q \) and one can see that

\[
\left\| x^{(n)} \right\|_q = \left(\sum_{k,l=1}^{n} |y_{kl}|^{(q'-1)q} \right)^{1/q} = \left(\sum_{k,l=1}^{n} |y_{kl}|^{q'} \right)^{1/q} = \left(\left\| y^{[n]} \right\|_{q'}^{q'/q} \right).
\]

This leads us to the consequence for all \(n \in \mathbb{N} \) that

\[
\frac{|f_n(x^{(n)})|}{\| x^{(n)} \|_q} = \frac{\sum_{k,l=1}^{n} |y_{kl}|^{q'}}{\| x^{(n)} \|_q} = \left\| y^{[n]} \right\|_{q'}.
\]

Hence,

\[
\left\| y^{[n]} \right\|_{q'} \leq \| f_n \| \quad \text{for all} \quad n \in \mathbb{N}.
\]

Therefore, we have by (2.3) and (2.4) that

\[
\| f_n \| = \left\| y^{[n]} \right\|_{q'} \quad \text{for all} \quad n \in \mathbb{N}.
\]

By applying the Banach-Steinhauss Theorem, one can observe by our hypothesis that the sequence \((f_n)\) of linear functionals converges pointwise. Since \((L_q, \| \cdot \|_q)\) and \((C, | \cdot |)\) are the Banach spaces, the linear functional defined by

\[
f_y : L_q \to \mathbb{R}, \quad x = (x_{kl}) \mapsto f_y(x) := \lim_{n \to \infty} f_n(x) = \sum_{k,l} x_{kl} y_{kl}
\]

is continuous, and

\[
\| f_y \| \leq \sup_{n \in \mathbb{N}} \| f_n \| = \sup_{n \in \mathbb{N}} \left\| y^{[n]} \right\|_{q'} < \infty
\]

holds. Thus, we have \(y \in L_{q'} \), because of

\[
\| f_y \| \leq \left(\sum_{k,l=1}^{n} |y_{kl}|^{q'} \right)^{1/q'} = \left(\sum_{k,l} |y_{kl}|^{q'} \right)^{1/q'} < \infty.
\]

That is to say that the inclusion

\[
L_{q}^{\beta(v)} \subset L_{q'}
\]

holds.

By combining the inclusions (2.2) and (2.5), the desired result immediately follows.

This completes the proof. \(\square \)

As a direct consequence of Theorem 2.7, we have

Corollary 2.8. The \(\alpha-, \beta(v)- \) and \(\gamma-\)duals of the space \(L_q \) are the space \(L_{q'} \), where \(q > 1 \) and \(q^{-1} + q'^{-1} = 1 \).
Acknowledgements

We have benefited a lot from discussions with Professor Bilal Altay, Matematik Egitimi Bölümü, İnönü Üniversitesi, Malatya-44280/Türkiye, about this work. We would like to express our gratitude for his valuable helps. Finally, we thank to the reviewer for his/her careful reading and making a useful comment which improved the presentation and the readability of the paper.

References

Feyzi Başar
Fatih Üniversitesi,
Fen- Edebiyat Fakültesi,
Matematik Bölümü,
Büyükçekmece Kampüsü,
34500-İstanbul, Türkiye

E-mail address: fbasar@fatih.edu.tr, feyzibasar@gmail.com

Yurdal Sever
Fen Lisesi Matematik Öğretmeni,
Karakavak, 44110-Malatya, Türkiye

E-mail address: ysever@hotmail.com

(Received May 22, 2007)
(Revised June 19, 2007)