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ON THE JORDAN DECOMPOSITION OF TENSORED

MATRICES OF JORDAN CANONICAL FORMS

Kei-ichiro IIMA and Ryo IWAMATSU

Abstract. Let k be an algebraically closed field of characteristic p ≥ 0.
We shall consider the problem of finding out a Jordan canonical form of
J(α, s)⊗kJ(β, t), where J(α, s) means the Jordan block with eigenvalue
α ∈ k and size s.

1. Introduction

To construct graded local Frobenius algebras over an algebraically closed
field k, it is important to find out a Jordan canonical form (simply, JCF) of
tensor product of square matrices. In fact, it is known that any graded local
Frobenius algebra is of the form of Λ(ϕ, γ) = T (V )/R(ϕ, γ), where V is a
finite dimensional k-vector space, γ an element of GL(V ), and ϕ : V ⊗n → k
a k-linear map satisfying several conditions. Further, if we decompose as
(V, γ) =

⊕

i(Vi, γi), then the conditions of ϕ can be described in terms
of each ϕi1...ir : Vi1 ⊗ · · · ⊗ Vir → k. Then, we have to consider a JCF of
γi1 ⊗ · · · ⊗ γir as an element in GL(Vi1 ⊗ · · · ⊗ Vir). (For detail, refer to T.
Wakamatsu [9]).

Let k be an algebraically closed field of characteristic p ≥ 0, and
J(α, s), J(β, t) Jordan blocks over k. We shall consider the problem of
finding out a JCF of J(α, s) ⊗ J(β, t), where ⊗ means ⊗k (s ≤ t).

Over an algebraically closed base field of characteristic zero, this problem
has been solved by many authors including T. Harima and J. Watanabe [4],
and A. Martsinkovsky and A. Vlassov [7] etc. M. Herschend [5] solve it for

extended Dynkin quivers of type Ãn, with arbitrary orientation and any n.
In this note we solve it for any characteristic p ≥ 0. That is, we obtain
two ways to determine the Jordan decomposition of the tensored matrix
J(α, s) ⊗ J(β, t).

In the case of αβ = 0, the tensored matrix J(α, s)⊗ J(β, t) has the same
direct sum decomposition as in Theorem 2.0.1 independently of character-
istic of the base field k in Proposition 2.1.2. In the case of αβ 6= 0, our
problem is reduced to the problem of finding the indecomposable decompo-
sition of R as a k[θ]-module, where R means the quotient ring k[x, y]/(xs, yt),
θ = x + y and k[x, y] be a polynomial ring over k . In the section 2.1, we
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regard finding the indecomposable decomposition of R as calculating the
partition c = (c1, c2, . . . , cr) of st in Lemma 2.1.1. Then, we are able to de-
termine the Jordan decomposition of tensored matrix J(α, s)⊗J(β, t). In the
section 2.2, we show another algorithm. The idea is finding out elements
that determine the indecomposable decomposition of R as a k[θ]-module.
In Theorem 2.2.2, we show that we can find out s homogeneous elements
ω0, ω1, . . . , ωs−1 of R such that R =

⊕s−1
i=0 k[θ]ωi, where the degree of ωi is i

for each 0 ≤ i ≤ s − 1. And applying this result, we show an algorithm for
computing a JCF of J(α, s) ⊗ J(β, t) in Theorem 2.2.9.

2. Main results

Throughout this section, let k be an algebraically closed field. For an
integer s ≥ 1 and an element α ∈ k, let

J(α, s) =








α 1
. . .

. . .

α 1
α








denote the Jordan block of size s × s with an eigenvalue α.

Theorem 2.0.1. [7, Theorem 2] Suppose that k has characteristic zero.

Then the following holds for integers s ≤ t and α, β ∈ k:

J(α, s) ⊗ J(β, t) =







J(0, s)⊕t−s+1 ⊕
⊕2s−2

i=1 J(0, s − ⌈ i
2⌉) if α = 0 = β

J(0, s)⊕t if α = 0 6= β

J(0, t)⊕s if α 6= 0 = β
⊕s

i=1 J(αβ, s + t + 1 − 2i) if α 6= 0 6= β

.

Remark 1. If one of the eigenvalues α and β equals zero, then the tensored
matrix J(α, s) ⊗ J(β, t) has the same direct sum decomposition as in The-
orem 2.0.1 independently of characteristic of the base field k (Proposition
2.1.2).

Theorem 2.0.2. There is an algorithm to determine the Jordan decom-

position of the tensored matrix J(α, s) ⊗ J(β, t), which has an independent

description of the characteristic of the base field k.

Remark 2. (1)The matrix J(α, s) represents the action of X on k[X]/(X −
α)s as a k[X]-module.

(2)The tensored matrix J(α, s)⊗J(β, t) is triangular. Therefore its eigen-
value is αβ.

(3)One has an isomorphism

k[X]/(X − α)s ⊗ k[Y ]/(Y − β)t ∼= k[X,Y ]/((X − α)s, (Y − β)t)
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of k-algebras.

Tensored matrix J(α, s) ⊗ J(β, t) represents the action of XY on
k[X,Y ]/((X − α)s, (Y − β)t) as a k[XY ]-module.

2.1. The method for calculating numerical values of tensored ma-

trices.

Lemma 2.1.1. Put R = k[X,Y ]/((X − α)s, (Y − β)t), which we regard as

a k[Z]-module through the map k[Z] → R given by Z 7→ XY . Then there is

a sequence of integers such that c1 ≥ c2 ≥ · · · ≥ cr ≥ 1

R ∼=

r⊕

i=1

k[Z]/(Z − αβ)ci

of k[Z]-modules.

This means that J(α, s) ⊗ J(β, t) =
⊕r

i=1 J(αβ, ci). We can regard c =
(c1, c2, . . . , cr) as a partition of st in obvious manner. The main problem
is to determine the partition c. For this purpose let b = (b1, b2, . . . , br′) be
the partition conjugate to c. Put z = Z − αβ. Note that bi = #{j|cj ≥
i} = dimk(z

i−1R/ziR). Setting ai = dimk(R/ziR), we have bi = ai − ai−1.
Therefore, it is sufficient that we calculate the value of ai for each case.

If one of the eigenvalues α and β equals zero, then the result is independent
of the characteristic of k as we show in the next proposition.

Proposition 2.1.2. We have the following equalities;

ai =







(s + t)i − i2 (1 ≤ i ≤ s) if α = 0 = β

ti (1 ≤ i ≤ s) if α = 0 6= β

si (1 ≤ i ≤ t) if α 6= 0 = β

.

Therefore we get

J(α, s) ⊗ J(β, t) =







J(0, s)⊕t−s+1 ⊕
⊕2s−2

i=1 J(0, s − ⌈ i
2⌉) if α = 0 = β

J(0, s)⊕t if α = 0 6= β

J(0, t)⊕s if α 6= 0 = β

.

Proof. Put x = X − α and y = Y − β.
(1) The case α = 0 = β:

Since R/ziR = k[x, y]/(xs, yt, (xy)i), we have ai = (s + t)i − i2.
(2) The case α = 0 6= β:

Since R/ziR = k[x, y]/(xs, yt, xi), we have ai = ti.
(3) The case α 6= 0 = β:

Since R/ziR = k[x, y]/(xs, yt, yi), we have ai = si. �



136 KEI-ICHIRO IIMA AND RYO IWAMATSU

In the case of α 6= 0 6= β, then we have the following isomorphism of
k-algebras, given by X 7→ x + α, Y 7→ −αβ

y−α
:

k[X,Y ]/((X − α)s, (Y − β)t, (XY − αβ)u) ∼= k[x, y]/(xs, yt, (x + y)u).

Using this isomorphism together with [3, Proposition 4.4][4, Proposition 8],
we have the following proposition in the case of characteristic zero.

Proposition 2.1.3. Suppose that α 6= 0 6= β and that k has characteristic

zero. Then we have

b = (s, s, . . . , s
︸ ︷︷ ︸

t−s+1

, s − 1, s − 1, s − 2, s − 2, . . . , 1, 1).

Therefore we get J(α, s) ⊗ J(β, t) =
⊕s

i=1 J(αβ, s + t + 1 − 2i).

Proof. Since the linear element x + y ∈ k[x, y]/(xs, yt) is a strong Lefschetz
element [4]. Namely, the multiplication map ×(x + y)u : k[x, y]/(xs, yt)i →
k[x, y]/(xs, yt)i+u is either injective or surjective, for each 0 ≤ i ≤ s + t− 2.
Then, we can easily compute dimk(k[x, y]/(xs, yt, (x + y)u)) for each 1 ≤
u ≤ s + t − 1. The assertion follows from this. �

We consider in the rest the case where α 6= 0 6= β and that k is of
positive characteristic p. Put S = k[x, y], R = k[x, y]/(xs, yt) and A(u) =

R/(x+y)uR. To determine au = dimk(A
(u)), we may assume that s ≤ t ≤ u

without loss of generality. For each integer u satisfying s ≤ t ≤ u ≤ s+t−1,
we describe

(x+y)u
≡

“ u

s − 1

”

x
s−1

y
u−s+1 +

“ u

s − 2

”

x
s−2

y
u−s+2 + · · ·+

“ u

u − t + 1

”

x
u−t+1

y
t−1 (mod (xs

, y
t)).

We set q1 =
(

u
s−1

)
, q2 =

(
u

s−2

)
,· · · , qr =

(
u

u−t+1

)
and r = s + t − 1 − u.

We obtain the representation matrix of R
(x+y)u

−→ R with respect to the
natural base {1, x, y, x2, xy, y2, . . . , xs−1yt−1} as follows;















H0

H1

H2

. . .

Hr−2

Hr−1















,
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where

Hi =








qi+1 qi · · · q1

qi+2 qi+1 · · · q2
...

...
. . .

...
qr qr−1 · · · qr−i








.

For each 0 ≤ i ≤ r − 1 the matrix Hi is an (r − i)× (i + 1) matrix whose
entries are integers. We denote by Ii+1(Hi) the ideal of Z generated by (i+1)-
minors of Hi for 0 ≤ i ≤ r−1. Obviously there exists an integer δi ≥ 0 such
that Ii+1(Hi) = δiZ. From the argument in the case of characteristic zero
in [3, Proposition 4.4], we have Ii+1(Hi) ⊗Z Q 6= 0, particularly δi 6= 0, for
any 0 ≤ i ≤ ⌊(r − 1)/2⌋.

Proposition 2.1.4. Under the same notation as above, for each u satisfying
1 ≤ s ≤ t ≤ u ≤ s + t − 1, and for each i satisfying 0 ≤ i ≤ ⌊(r − 1)/2⌋(r =
s + t − 1 − u), the following equalities hold;

δi = gcd{Sλj (1, 1, . . . , 1
︸ ︷︷ ︸

u

)|j = (j1, j2, . . . , ji+1), 1 ≤ j1 < j2 < . . . < ji+1 ≤ r − i},

where λj is the partition conjugate to µj = (s−j1, s−j2−1, . . . , s−ji+1−i),
and Sλj is the Schur polynomial.

Proof. Computation using Jacobi-Trudi formula [2] ,[6]. �

Let

0 → S(−a) ⊕ S(−b) → S(−s) ⊕ S(−t) ⊕ S(−u)
(xs,yt,(x+y)u)

−→ S → A(u) → 0

be a minimal graded S-free resolution of A(u), where 1 ≤ s ≤ t ≤ u ≤ a ≤ b.
The Hilbert-Burch theorem implies that a + b = s + t + u, and the Hilbert
series of A(u) is given as

HA(u)(w) =
1 − ws − wt − wu + wa + wb

(1 − w)2
.

It follows from this that dimk(A
(u)) = st + su + tu − ab. Letting i0 =

min{i|δi ≡ 0 (mod p)}, we get a = u + i0 and b = s + t − i0, since a is the
least value of degrees of relations of (xs, yt, (x+y)u). Thus, we can calculate

the dimension of the k-vector space A(u), and hence the indecomposable
decomposition of J(α, s) ⊗ J(β, t).

Theorem 2.1.5. We are able to compute a Jordan canonical form of

J(α, s) ⊗ J(β, t) by taking the following steps:

(1) Every δ• is determined.

(2) For each 1 ≤ u ≤ s + t − 1, au is determined.

(3) The partition b is determined.
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(4) The partition c is determined.

(5) The Jordan decomposition of tensored matrix J(α, s) ⊗ J(β, t) is

determined.

From the discussion in Theorem 2.1.5, one immediately obtains the fol-
lowing.

Theorem 2.1.6. The tensored matrix J(α, s) ⊗ J(β, t) has the same direct

sum decomposition as in Theorem 2.0.1 if either char(k) ≥ s + t − 1 or

Ii+1(Hi) ⊗Z k 6= 0 for any 0 ≤ i ≤ ⌊ r−1
2 ⌋.

2.2. The method for finding out elements that determine the in-

decomposable decomposition.

In this subsection, we show another algorithm for computing a JCF of
J(α, s) ⊗ J(β, t) via finding the indecomposable decomposition. We have
already got the answer of our problem for case of αβ = 0 by Proposition
2.1.2, so we discuss only for case of αβ 6= 0.

We consider the indecomposable decomposition of k[X,Y ]/((X −
α)s, (Y − β)t) as a k[XY ]-module. As we stated in 2.1, we have an
isomorphism k[X,Y ]/((X − α)s, (Y − β)t) ∼= k[x, y]/(xs, yt). Put R =
k[x, y]/(xs, yt), and θ = x + y. Thus, our problem is reduced to that of
finding the indecomposable decomposition of R as a k[θ]-module.

It is clear that R is a finite dimensional graded Artinian k-algebra. So we
write R =

⊕s+t−2
i=0 Ri. And we immediately know that dimk(Ri) are written

as (1, 2, . . . , s − 1, s, . . . , s
︸ ︷︷ ︸

t−s+1

, s − 1, . . . , 1) for 0 ≤ i ≤ s + t − 2. We often use

a figure for R (Figure 1).
The subalgebra k[θ] of R is uniserial, which means that k[θ] has the only

composition series as a k[θ]-module. We denote by n the nilpotency of θ (i.e.
θn 6= 0 and θn+1 = 0). And then, we can choose 〈1, θ, · · · , θn〉 as a k-basis
of k[θ]. By easy calculation, we have the following inequality on n:

Lemma 2.2.1. We have t − 1 ≤ n ≤ s + t− 2. In particular, n = s + t− 2
if p = 0.

We describe the subalgebra k[θ] of R in the figure for R by drawing a
polygonal line (Figure 2).

Since the algebra k[θ] is uniserial, any indecomposable summand M of R
as a k[θ]-module can be written as k[θ]ω for some element ω in R. Hence
we can write the indecomposable decomposition of R as a k[θ]-module such
as:

(∗) R =
r⊕

i=1

k[θ]ωi (ωi ∈ R).
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R0

R1

R2

Rs−1

Rt−1

Rs+t−2

Figure 1. An illustration of a basis of R. A bullet • stands
for a base of R.

•

• •

• • •

• •

• •

•

•

R0

R1

R2

Rs−1

Rt−1

Rs+t−2

Rn

Figure 2. An illustration of the subalgebra k[θ] of R. We
consider the bullets on the polygonal line as 〈1, θ, · · · , θn〉.

We shall call each element ωi a generator (for an indecomposable sum-
mand of R), and the set {ω1, . . . , ωr}, which consists of the generators in
(∗), a generating set (for the indecomposable decomposition of R). A gener-
ating set is not unique. However, we can prove the number of generators and
that there exists the generating set which consists of homogeneous elements.
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Theorem 2.2.2. There exists a generating set {ω0, ω1, . . . , ωs−1} whose

generator ωi is an i-th degree homogeneous element. Hence,

R =
s−1⊕

i=0

k[θ]ωi (ωi ∈ Ri).

In order to prove this theorem, we have to prepare some lemmas and
notations.

For a uniserial k[θ]-submodule M of R generated by some homogeneous
elements of R, we denote by σ(M) the socle degree of M as a k[θ]-module.
In short, σ(M) = d if sock[θ](M) ⊆ Rd. For example, σ(k[θ]) = n. And if
θnx 6= 0, then σ(k[θ]x) = n + 1. The following lemma is checked easily:

Lemma 2.2.3. Let ζ, η be homogeneous elements of R. If σ(k[θ]ζ) 6=
σ(k[θ]η), then k[θ]ζ ∩k[θ]η = {0} holds. Hence k[θ]ζ +k[θ]η = k[θ]ζ ⊕k[θ]η.

Lemma 2.2.4. Let κ be a homogeneous element of R, and put d = σ(k[θ]κ).
If t − 1 ≤ d < s + t − 2, then,

s+t−2−d∑

i=0

k[θ]κxi =
s+t−2−d⊕

i=0

k[θ]κxi.

Proof. Put d′ = s + t − 2 − d. And let the degree of κ be m. We now
check θd−mκxd′ 6= 0. Since θd−mκ is an element of Rd, whose dimension as
a k-vector space is d′ + 1, we can write

θd−mκ =
d′∑

i=0

cix
s−1−iyt−1−d′+i (ci ∈ k).

Then we have ci + ci+1 = 0 for each i, because θ × θd−mκ = 0 holds. Hence
we find that all ci are non-zero. Therefore θd−mκ × xd′ = cd′x

s−1yt−1 6= 0.
Applying Lemma 2.2.3, we finish the proof of this lemma. �

The multiplication map ×θj : Ri → Ri+j is a k-linear map. We de-
note by K(i, i + j) the kernel of this map, and by M(i, i + j) the matrix
representation with respect to the canonical bases.

Lemma 2.2.5. For each 0 ≤ i ≤ s − 1, we have the following:

(1) The map ×θt−1−i : Ri → Rt−1 is injective.

(2) The map ×θs+t−1−2i : Ri → Rs+t−1−i is not injective.

Hence, any non-zero element κi ∈ K(i, s + t − 1 − i) ⊆ Ri satisfies both

θs+t−1−2iκi = 0 and θt−1−iκi 6= 0.
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Proof. (1): The map ×θt−1−i : Ri → Rt−1 is represented by the s × (i + 1)
matrix:

M(i, t − 1) =



















(
t−1−i
t−s

) (
t−1−i
t−s−1

)
· · · · · ·

(
t−1−i
t−s−i

)

(
t−1−i
t−s+1

) (
t−1−i
t−s

)
· · · · · ·

(
t−1−i

t−s+1−i

)

...
...

...
(
t−1−i
t−1−i

) (
t−1−i
t−2−i

)
· · · · · ·

(
t−1−i
t−1−2i

)

0
(
t−1−i
t−1−i

)
· · · · · ·

(
t−1−i
t−2i

)

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · 0
(
t−1−i
t−1−i

)



















.

Hence the map is injective since the rank of M(i, t − 1) is i + 1.
(2): It is clear; because i + 1 = dimk Ri > dimk Rs+t−1−i = i. �

We now prove Theorem 2.2.2.

Proof of Theorem 2.2.2. We put n0 = n and m0 = s+ t−2−n0. If m0 > 0,
then we have

m0∑

i0=0

k[θ]xi0 =

m0⊕

i0=0

k[θ]xi0 ⊆ R

by Lemma 2.2.4. If this direct sum coincides with R, then we finish the proof.
Suppose not. By Lemma 2.2.5, we can take an element κ(1) ∈ K(m0+1, n0),
and then we have t− 1 ≤ σ(k[θ]κ(1)) ≤ n0 − 1. We put n1 = σ(k[θ]κ(1)) and
m1 = (n0 − 1) − n1. If m1 > 0, then we have

(

m0⊕

i0=0

k[θ]xi0) + (

m1∑

i1=0

k[θ]κ(1)x
i1) =

m0⊕

i0=0

k[θ]xi0 ⊕

m1⊕

i1=0

k[θ]κ(1)x
i1 ⊆ R

from Lemma 2.2.4. Thus, we can construct the direct sum of k[θ]-
submodules of R. However, since R is finite dimensional, this construction
will be over in finite steps. And it is clear that this construction finishes
just when s-th direct summand is constructed. By the Krull-Remak-Schmidt

theorem, this decomposition is the indecomposable decomposition of R as a
k[θ]-module. And this argument does work if some mi is zero. �
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•

•

•
•

•

Rn0

Rn0−1

Rn1

Rs+t−2

1 = ω0
x = ω1

x
m0 = ωm0

κ(1) = ωm0+1

κ(1)x = ωm0+2

Figure 3. Construction of k[θ]ωi. Each polygonal line
stands for k[θ]ωi.

Remark 3. (1) This proof gives concretely the indecomposable summands
of R such as:

k[θ], k[θ]x, . . . , k[θ]xm0 ,

k[θ]κ(1), k[θ]κ(1)x, . . . , k[θ]κ(1)x
m1 ,

· · · · · ·

k[θ]κ(r−1), k[θ]κ(r−1)x, . . . , k[θ]κ(r−1)x
mr−1 ,

where κ(i) means some element in K(
∑i−1

j=0(mj +1), ni−1) and mi = (ni−1−

1) − ni, ni = σ(k[θ]κ(i)). Thus, these κ(i), mi, ni are determined by the
following order:

(n =)n0 → m0 → κ(1) → n1 → m1 → κ(2) → · · · → ni−1 → mi−1 → κ(i) → · · · .

(Then we define n−1 = s + t− 1, m−1 = 0, and κ(0) = 1R for convenience).
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(2) We have to discuss on whether the value of ni = σ(k[θ]κ(i)) depends

on the choice of an element κ(i) ∈ K(
∑i−1

j=0(mj + 1), ni−1). However, we

immediately find that the numbers (n0, n1, . . . , nr−1) have to be unique
by the uniqueness of the indecomposable decomposition. Therefore we can
choose κ(i) free.

(3) Theorem 2.2.2 declares the number of Jordan blocks of J(α, s) ⊗
J(β, t) is s.

Definition 1. Thus, the particular indecomposable summands

(k[θ] =) k[θ]κ(0), k[θ]κ(1), . . . , k[θ]κ(r−1)

of R characterize the indecomposable decomposition of R. So, we shall
call each k[θ]κ(i) a leading module (of R). And we call the number of the
indecomposable summands of R whose lengths are equal to that of k[θ]κ(i)

the leading degree of k[θ]κ(i).

By this result, if there are r leading modules k[θ]κ(0), k[θ]κ(1), . . . ,
k[θ]κ(r−1), then we have

J(α, s) ⊗ J(β, t) =
r−1⊕

i=0

J(αβ, ℓi)
⊕di ,

where ℓi and di mean the length and leading degree of k[θ]κ(i) respectively.
Next, we show a good way to compute a JCF of J(α, s) ⊗ J(β, t). To

compute it, we find the lengths and the leading degrees of the leading mod-
ules.

For each 0 ≤ i ≤ s − 1, we define a function such as

Dp(i) =

{
0 (if the map ×θs+t−2−2i : Ri → Rs+t−2−i is bijective)
1 (if the map ×θs+t−2−2i : Ri → Rs+t−2−i is not bijective)

.

And we put

∆p = (Dp(0), Dp(1), . . . , Dp(s − 1)).

Remark 4. By Lemma 2.2.5 (1), we have known the map ×θt−s : Rs−1 →
Rt−1 is always injective (hence, bijective) independently of the value of char-
acteristic p. So Dp(s − 1) = 0 holds.

By Theorem 2.2.2, we can assume that R is of the form of
⊕s−1

i=0 k[θ]ωi,
i.e. any base of R is that of θjωi. Then the following lemmas hold:

Lemma 2.2.6. If an indecomposable summand k[θ]ωi is a leading module

and Dp(i) = 0. Then we have the following:

(1) σ(k[θ]ωi) = s + t− 2− i. Hence the length and the leading degree of

k[θ]ωi are s + t − 1 − 2i and one respectively.
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•
•

• Rs+t−2−i

ωi
ωi+1

Figure 4. The result of Lemma 2.2.6.

(2) The next indecomposable summand k[θ]ωi+1 is a leading module.

Proof. (1): The map ×θs+t−2−2i : Ri → Rs+t−2−i is bijective by assumption.
This procedures θs+t−2−2iωi 6= 0 for the generator ωi. Hence σ(k[θ]ωi) is
s + t − 2 − i, and the other statements hold clearly.

(2): It is trivial since the leading degree of k[θ]ωi is one.
�

Lemma 2.2.7. If an indecomposable summand k[θ]ωi is a leading module,

Dp(i) = Dp(i + 1) = · · · = Dp(i + f − 1) = 1 (f > 0), and Dp(i + f) = 0.
Then we have the following:

(1) σ(k[θ]ωi) = s+ t−2− i−f . Hence the length and the leading degree

of k[θ]ωi are s + t − 1 − 2i − f and f + 1 respectively.

(2) The indecomposable summand k[θ]ωi+f+1 is a leading module.

Proof. (1): Put ν = σ(k[θ]ωi). Since Dp(i+f) = 0, we have θs+t−2−2(i+f) ×

θfωi = θs+t−2−2i−fωi 6= 0. So s + t − 2 − i − f ≤ ν ≤ s + t − 2 − i holds.
Put µ = ν − (s + t − 2 − i − f) and suppose µ > 0. Then

〈θs+t−2−(i+f−µ)ω0, . . . , θ
s+t−2−2(i+f−µ)ωi+f−µ〉

is a basis of Rν because the socle of the leading module K[θ]ωi is in
Rν . Now 〈θi+f−µω0, . . . , ωi+f−µ〉 is a basis of Ri+f−µ. Hence it is shown
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•
• Rs+t−2−i−f

Rs+t−2−i

ωi
ωi+1

ωi+f
ωi+f+1

Figure 5. The result of Lemma 2.2.7.

that ×θs+t−2−2(i+f−µ) : Ri+f−µ → Rs+t−2−(i+f−µ) is bijective. However,
this contradicts Dp(i + f −µ) = 1. Therefore ν = s + t− 2− i− f . And the
other statements hold clearly.

(2): It is trivial from (1). �

Since the indecomposable summand k[θ]ω0 is a leading module, we can
apply Lemma 2.2.6 and 2.2.7 to the components of ∆p inductively. Thus,
via the sequence ∆p, we can compute the lengths and the leading degrees of
the leading modules concretely:

Theorem 2.2.8. We can compute a JCF of J(α, s) ⊗ J(β, t) by using the

sequence ∆p.

And we can easily compute the determinant D(i) of the linear map
×θs+t−2−2i : Ri → Rs+t−2−i. In fact, the matrix representation M(i, s+ t−
2 − i) is of the form of











(
s+t−2−2i

t−1−i

) (
s+t−2−2i

t−2−i

)
· · · · · ·

(
s+t−2−2i
t−1−2i

)

(
s+t−2−2i

t−i

) (
s+t−2−2i

t−1−i

)
· · · · · ·

(
s+t−2−2i

t−2i

)

...
...

. . .
...

...
...

. . .
...

(
s+t−2−2i

t−1

) (
s+t−2−2i

t−2

)
· · · · · ·

(
s+t−2−2i

t−1−i

)











.
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If p = 0, it is shown by P. C. Roberts [8] that the determinant of the matrix
of this form is computed as follows:

D(i) =
i∏

j=0

(
s+t−2−2i+j

t−1−i

)

(
t−1−i+j
t−1−i

) .

And this is true if p > 0, because D(i) is an integer.
Thus, we get an algorithm for computing a JCF of J(α, s) ⊗ J(β, t):

Theorem 2.2.9. We are able to compute a JCF of J(α, s) ⊗ J(β, t) by

taking the following steps:

(1) Computing D(i) for each 0 ≤ i ≤ s − 1.
(2) Computing the sequence ∆p. Dp(i) = 0 iff D(i) 6≡ 0 (mod p ).
(3) Applying Theorem 2.2.8.

Example 2.2.10. Let us compute a JCF of J(α, 4) ⊗ J(β, 5) (αβ 6= 0).
The determinants D(i) are

D(0) =

(7
4

)

(4
4

) = 5·7, D(1) =

(5
3

)(6
3

)

(3
3

)(4
3

) = 2·52, D(2) =

(3
2

)(4
2

)(5
2

)

(2
2

)(3
2

)(4
2

) = 2·5, D(3) = 1.

So the sequence ∆p is

∆p = (0, 0, 0, 0) (p 6= 2, 5, 7),
∆2 = (0, 1, 1, 0),
∆5 = (1, 1, 1, 0),
∆7 = (1, 0, 0, 0).

Therefore

J(α, 4) ⊗ J(β, 5) =

8

>

>

<

>

>

:

J(αβ, 8) ⊕ J(αβ, 6) ⊕ J(αβ, 4) ⊕ J(αβ, 2) (p 6= 2, 5, 7)
J(αβ, 8) ⊕ J(αβ, 4)⊕3 (p = 2)
J(αβ, 5)⊕4 (p = 5)
J(αβ, 7)⊕2 ⊕ J(αβ, 4) ⊕ J(αβ, 2) (p = 7)

.

If p = 0 or p ≥ s + t − 1, then the determinants D(i) are clearly all
non-zero. Hence:

Corollary 2.2.11. If p = 0 or p ≥ s + t − 1, then

J(α, s) ⊗ J(β, t) =

s−1⊕

i=0

J(αβ, s + t − 1 − 2i).
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