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SOME IDENTITIES RELATING MOCK THETA

FUNCTIONS WHICH ARE DERIVED FROM

DENOMINATOR IDENTITY

Yukari SANADA

Abstract. We show that there exists a new connection between iden-
tities satisfied by mock theta functions and special case of denominator
identities for affine Lie superalgebras.

1. Introduction

In 1920, S. Ramanujan listed 17 mock theta functions of order 3, 5 and 7
together with identities satisfied by them in his last letter to G. H. Hardy. In
the letter, he did not describe a formal definition of “order” nor prove these
identities. However, for 3rd and 5th order, we can see that each identity
consists of mock theta functions with the same order [2], [16]. Ramanujan’s
assertion about 7th order mock theta functions is that they are not related
to each other. Some identities for order 6 , 8 and 10, which also consists of
mock theta functions with the same order, were proved by G. E. Andrews,
D. Hickerson, B. Gordon, R. J. McIntosh and Y.-S. Choi [3], [5], [6], [9]. In
[13], mock theta functions 3rd order χ(q) and 6th order γ(q) are related to
each other. Recently, K. Bringmann and K. Ono use the theories of modular
forms to understand mock theta functions[4].

In this paper, we give a new view of some typical identities satisfied by
mock theta functions. It is shown that these identities are obtained by
specializing the denominator identities for affine Lie superalgebras in the

case Â(1, 0) and B̂(1, 1).
We introduce the standard notation and some mock theta functions which
will be used in this paper.

Definition 1. Let q be a complex number such that |q| < 1. We define the
q-shifted factorial for all integers n by

(a)∞ = (a; q)∞ :=
∞∏

i=0

(1 − aqi) and (a)n = (a; q)n :=
(a; q)∞

(aqn; q)∞
.

For brevity, we employ the usual notation

(x1, . . . , xr)∞ = (x1, . . . , xr; q)∞ := (x1)∞ · · · (xr)∞.
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Moreover, we define

j(x, q) := (x, q/x, q)∞ = (x)∞(q/x)∞(q)∞

for all x ∈ C
∗.

By Jacobi’s triple product identity[1], [8], we have

j(x, q) =

∞∑

n=−∞

(−1)nq
n(n−1)

2 xn.

Definition 2. (mock theta functions of order 3)

f(q) :=

∞∑

n=0

qn2

(−q)2n
,

χ(q) := 1 +

∞∑

n=1

qn2

∏n
m=1(1 − qm + q2m)

,

ω(q) :=
∞∑

n=0

q2n(n+1)

(q; q2)2n+1

,

ρ(q) :=

∞∑

n=0

q2n(n+1)

∏n
m=0(1 + q2m+1 + q4m+2)

.

The following mock theta functions of order 8 are found by B. Gordon
and R. J. McIntosh[9].

Definition 3. (mock theta functions of order 8)

U0(q) :=

∞∑

n=0

qn2
(−q; q2)n

(−q4; q4)n
,

U1(q) :=

∞∑

n=0

q(n+1)2(−q; q2)n
(−q2; q4)n+1

,

V1(q) :=
∞∑

n=0

q(n+1)2(−q; q2)n
(q; q2)n+1

=
∞∑

n=0

q2n2+2n+1(−q4; q4)n
(q; q2)2n+2

.

In Section 1, we shall prove a following new identity for 3rd order mock
theta functions in Theorem 1.1 and then we shall show that the identity is

equal to the special case of type B̂(1, 1).

Theorem 1.1. For 3rd order mock theta functions ρ(q) and ω(q), the fol-

lowing relation holds.
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(q2; q2)∞

(
(ρ(q) + ρ(−q)) +

1

2
(ω(q) + ω(−q))

)

=
3 (q12; q12)∞(−q12; q24)∞(−q12; q24)∞(q24; q24)∞

(q6; q12)∞
.

In Section 2, we shall see that the identity

(q)∞ (4χ(q) − f(q)) = 3
(q3; q3)2

∞

(−q3; q3)2
∞

(1.1)

is equal to the case of type Â(1, 0). This identity (1.1) is found in Ramanu-
jan’s last letter. We also see that some identities for mock theta functions
are derived from a specialization of the denominator identity.

We give generalized Lambert series for mock theta functions in order to
prove these identities satisfied by mock theta functions. By expressing mock
theta functions with the generalized Lambert series, we can handle the mock
theta functions more easily. The following generalized Lambert series for 3rd
order mock theta functions are obtained by G. N. Watson[16].

(q)∞ f(q) = 1 + 4
∞∑

n=1

(−1)nqn(3n+1)/2

1 + qn
,(1.2)

(q)∞ χ(q) = 1 +

∞∑

n=1

(−1)n(1 + qn)qn(3n+1)/2

1 − qn + q2n
,(1.3)

(q2; q2)∞ ω(q) =
∞∑

n=0

(−1)n(1 + q2n+1)q3n(n+1)

1 − q2n+1
,(1.4)

(q2; q2)∞ ρ(q) =

∞∑

n=0

(−1)n(1 − q4n+2)q3n(n+1)

1 + q2n+1 + q4n+2
.(1.5)

The following generalized Lambert series for 8th order mock theta functions
are obtained by B. Gordon and R. J. McIntosh[9].

U0(q) = 2
(−q; q2)∞
(q2; q2)∞

∞∑

n=−∞

(−1)nqn(2n+1)

1 + q4n
,(1.6)

U1(q) =
(−q; q2)∞
(q2; q2)∞

∞∑

n=−∞

(−1)nq(n+1)(2n+1)

1 + q4n+2
,(1.7)

V1(q) =
(−q4; q4)∞
(q4; q4)∞

∞∑

n=−∞

(−1)nq(2n+1)2

1 − q4n+1
.(1.8)
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We close this section by preparation of two identities as a special case of
denominator identity for affine Lie superalgebras. We quote the denominator
identity for affine Lie superalgebras which was discovered by V. G. Kac and
M. Wakimoto [10], [15]. The identity is written in the following form
∏

α∈∆+
even

(1 − e−α)mult(α)

∏
α∈∆+

odd
(1 + e−α)mult(α)

= e−ρ
∑

w∈W

ε(w) w

(
eρ

∏k
i=1(1 + e−βi)

)

.

In this formula, ∆+
even (resp. ∆+

odd) is the set of all even (resp. odd) and
positive roots of the affine Lie superalgebra ĝ and mult(α) is the dimension
of the root space ĝα and W is the Weyl group of ĝ and ε(w) is the signature
of w ∈ W and ρ is the Weyl vector of ĝ and {β1, · · · , βk} is a maximal set
of simple odd roots satisfying the inner product (βi|βj) = 0 for all i, j =
1, · · · , k (see [10], [11], [14], [15] for complete explanation and details).

In [15] , we can find that the denominator identity for Â(1, 0) is

eρR =
∑

w∈W

ε(w)w

(
eρ

1 + e−α2

)
,

where

R =

∞∏

n=1

(1 − e−nδ)2(1 − e−(n−1)δ−α1)(1 − e−nδ+α1)

(1 + e−(n−1)δ−α2)(1 + e−nδ+α2)(1 + e−(n−1)δ−α1−α2)(1 + e−nδ+α1+α2)
,

α1 is an even simple root, α2 is an odd simple root and δ is a primitive
imaginary root. The identity is rewritten as follows:

eρ
∞∏

n=1

(1 − e−nδ)2(1 − e−(n−1)δ−α1)

(1 + e−(n−1)δ−α2)(1 + e−nδ+α2)
(1.9)

×
(1 − e−nδ+α1)

(1 + e−(n−1)δ−α1−α2)(1 + e−nδ+α1+α2)

= eρ

(
∞∑

n=−∞

e−δn(n+1)enα1

1 + e−α2e−nδ
−

∞∑

n=−∞

e−δn(n+1)e−α1(−n+1)

1 + e−α1e−α2e−nδ

)
.

By putting q := e−δ , x := e−α1 and y := e−α2 , (1.9) is calculated as follows:

∞∑

n=−∞

x−nqn(n+1)

1 + yqn
−

∞∑

n=−∞

xn+1qn(n+1)

1 + xyqn
(1.10)

=
(q, q, x, q/x)∞

(−y,−q/y,−xy,−q/xy)∞
.
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By replacing q by q2 and substituting x = q and y = z in (1.10), we have

A(z; q) :=
∞∑

n=−∞

(−1)nqn(n+1)/2

1 + zqn
=

(q, q)∞
(−z,−z−1q)∞

,(1.11)

where z 6= −qn (n ∈ Z).

In [15], we can also find that the denominator identity for B̂(1, 1) is

eρR =
∑

w∈W

ε(w)w

(
eρ

1 + e−α1

)
,

where

R =

∞∏

n=1

(1 − e−nδ)2(1 − e−(n−1)δ−α2)(1 − e−nδ+α2)

(1 + e−(n−1)δ−α1)(1 + e−nδ+α1)(1 + e−(n−1)δ−α1−α2)

×
(1 − e−(n−1)δ−2α1−2α2)(1 − e−nδ+2α1+2α2)

(1 + e−nδ+(α1+α2))(1 + e−(n−1)δ−α1−2α2)(1 + e−nδ+α1+2α2)
,

α1 is an odd simple root and α2 is an even simple root. The identity is
rewritten as follows:

eρ
∞∏

n=1

(1 − e−nδ)2(1 − e−(n−1)δ−α2)(1 − e−nδ+α2)

(1 + e−(n−1)δ−α1)(1 + e−nδ+α1)(1 + e−(n−1)δ−α1−α2)
(1.12)

×
(1 − e−(n−1)δ−2α1−2α2)(1 − e−nδ+2α1+2α2)

(1 + e−(n−1)δ−α1−2α2)(1 + e−nδ+α1+2α2)(1 + e−nδ+(α1+α2))

= eρ

(
∞∑

n=−∞

e−δ( 1
2
n2+ 1

2
n)e−n(α1+α2)

1 + e−α1e−nδ
−

∞∑

n=−∞

e−δ( 1
2
n2+ 1

2
n)e−n(α1+α2)e−α2

1 + e−α1e−2α2e−nδ

)
.

By putting q := e−δ, x := e−α1 and y := e−α2 , (1.12) is calculated as follows:

∞∑

n=−∞

q
1
2
n2+ 1

2
n(xy)n

1 + xqn
−

∞∑

n=−∞

q
1
2
n2+ 1

2
n(xy)−n−1

1 + x−1y−2qn
(1.13)

=
(q, q, y, q/y, x2y2, q/x2y2)∞

(−x,−q/x,−xy,−q/xy,−xy2,−q/xy2)∞
.

By replacing q by q2 and substituting x = zq1/2 and y = z−1q−1 in (1.13),
we have

B(z; q) :=
∞∑

n=−∞

(−1)nqn(n+1)/4

1 + zqn+ 1
2

(1.14)

=
(q

1
2 , q)∞(q2, zq, z−1q; q2)∞

(−zq
1
2 ,−z−1q

1
2 )∞

,
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where z 6= −qn+ 1
2 (n ∈ Z).

2. The proof of Theorem 1.1

Proof. We need the following two identities.

(q2; q2)∞ (ω(q) + ω(−q)) = 2

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q4n+2
,(2.1)

(q2; q2)∞ (ρ(q) + ρ(−q)) = 2

∞∑

n=−∞

(−1)nq3n(n+1)

1 + q4n+2 + q8n+4
.(2.2)

The identity (2.1) follows from (1.4) :

(q2; q2)∞ (ω(q) + ω(−q)) =
∞∑

n=0

(−1)nq3n(n+1)

(
1 + q2n+1

1 − q2n+1
+

1 − q2n+1

1 + q2n+1

)

=

∞∑

n=0

(−1)nq3n(n+1)

(
2(1 + q4n+2)

1 − q4n+2

)

= 2

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q4n+2
.

Similarly, the identity (2.2) follows from (1.5). Two identities (2.1) and (2.2)
are rewritten as follows:

(q2; q2)∞

(
ω(q) + ω(−q)

2

)

=

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q4n+2
×

1 + q4n+2 + q8n+4

1 + q4n+2 + q8n+4

=
∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
+

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

+
∞∑

n=−∞

(−1)nq3n(n+1)+8n+4

1 − q12n+6

=
∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
+

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

+
∞∑

n=−∞

(−1)−nq3(−n)(−n+1)+8(−n)+4

1 − q12(−n)+6
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=
∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
+

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

+
∞∑

n=−∞

(−1)−nq3(−n)(−n+1)+8(−n)+4

−q−12n+6(1 − q12n−6)

=
∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
+

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

−

∞∑

n=−∞

(−1)nq3n(n−1)+4n−2

1 − q12n−6

=

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
+

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

−

∞∑

n=−∞

(−1)n+1q3(n+1)n+4(n+1)−2

1 − q12(n+1)−6

=

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
+ 2

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

and

(q2; q2)∞ (ρ(q) + ρ(−q))

= 2

(
∞∑

n=−∞

(−1)nq3n(n+1)

1 + q4n+2 + q8n+4
×

1 − q4n+2

1 − q4n+2

)

= 2

(
∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6
−

∞∑

n=−∞

(−1)nq3n(n+1)+4n+2

1 − q12n+6

)
,

respectively. From these identities, the left hand side of Theorem 1.1 sim-
plifies to

(q2; q2)∞

(
(ρ(q) + ρ(−q)) +

(
ω(q) + ω(−q)

2

))
(2.3)

= 3

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q12n+6

= 3B(−1; q12).

Replacing q by q12 and substituting z = −1 in (1.14), we have

B(−1; q12) =
(q12; q12)∞(−q12, −q12, q24; q24)∞

(q6; q12)∞
.(2.4)
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By (2.3) and (2.4), the proof completes. �

This proof implies that the relation in Theorem 1.1 equals to the spe-
cial case of the denominator identity for affine Lie superalgebra in the case

B̂(1, 1).

3. Some identities

We will prove some identities relating mock theta functions by using the
denominator identity. First we see that the identity (1.1):

(q)∞ (4χ(q) − f(q)) = 3
(q3; q3)2

∞

(−q3; q3)2
∞

is derived from the denominator identity for Â(1, 0). From (1.2) and (1.3),
we have

(q)∞ (4χ(q) − f(q)) = 6
∞∑

n=−∞

(−1)nq3n(n+1)/2

1 + q3n
= 6A(1; q3).(3.1)

Replacing q by q3 and substituting z = 1 in (1.11), we have

A(1; q3) =
(q3; q3)2

∞

2 (−q3; q3)2
∞

.(3.2)

Hence, from (3.1) and (3.2), we can see that the identity (1.1) is a special

case of the denominator identity for Â(1, 0).
Next, we prove

(q2; q2)∞

(
ρ(q) +

1

2
ω(q)

)
=

3

2

(q6; q6)2
∞

(q3; q6)2
∞

,(3.3)

which is obtained by G. N. Watson in [16]. From (1.4) and (1.5), we have

(q2; q2)∞

(
ρ(q) +

1

2
ω(q)

)
=

3

2

∞∑

n=−∞

(−1)nq3n(n+1)

1 − q6n+3
=

3

2
A(−q3; q6).

Replacing q by q6 and substituting z = −q3 in (1.11) which is type Â(1, 0),
we have

A(−q3; q6) =
(q6; q6)2

∞

(q3; q6)2
∞

.

Hence we can prove (3.3).
Finally, we prove two identities relating mock theta functions of order 8 in
[9]:

U0(q) + 2U1(q) = (−q; q2)3
∞

(q2; q2)∞(q2; q4)∞,(3.4)
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V1(q) − V1(−q) = 2q(−q2; q2)∞(−q4; q4)2
∞

(q8; q8)∞.(3.5)

From (1.6) and (1.7), we have

U0(−q) + 2U1(−q) = 2
(q; q2)∞
(q2; q2)∞

∞∑

n=−∞

(−1)nq
n(n+1)

2

1 + q2n
(3.6)

= 2
(q; q2)∞
(q2; q2)∞

B(q−1; q2).

Replacing q by q2 and substituting z = q−1 in (1.14), we have

B(q−1; q2) =
1

2

(q)2
∞

(−q2; q2)∞
.(3.7)

From (3.6) and (3.7), we prove (3.4) by replacing q by −q. Similarly, from
(1.8), we have

V1(q) − V1(−q) = 2q
(−q4; q4)∞
(q4; q4)∞

∞∑

n=−∞

(−1)nq4n(n+1)

1 − q8n+2

= 2q
(−q4; q4)∞
(q4; q4)∞

A(−q2; q8).

Replacing q by q8 and substituting z = −q2 in (1.11), we have

A(−q2; q8) =
(q8; q8)2

∞

(q2; q8)∞(q6; q8)∞
=

(q8; q8)2
∞

(q2; q4)∞
.

Hence, we prove (3.5).

Remark. The denominator identities for affine Lie superalgebras in the case

Â(1, 0) and B̂(1, 1) are related to Ramanujan’s summation formula 1ψ1 series
and Bailey’s summation formula of a very-well-poised-balanced 6ψ6 series,
respectively.

4. Appendix

Here is an additional remark. We shall show that the identity in Theorem
1.1 can be seen as a relation between theta constants. From (3.3), the
identity in Theorem 1.1 becomes

j(−q3, q12)2 + j(q3, q12)2 = 2 j(−q6, q24) j(−q12, q24).(4.1)

Now, let v be a complex number and τ be a complex number whose
imaginary part is positive. Theta functions are defined by

ϑ3(v|τ) = ϑ00(v, τ) :=
∞∑

n=−∞

e

(
1

2
n2τ + nv

)
,
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ϑ4(v|τ) = ϑ01(v, τ) :=
∞∑

n=−∞

e

(
1

2
n2τ + n

(
v +

1

2

))
,

where e(x) := e2πix [12]. Putting z = evπi and q = eτπi, theta functions can
be rewritten as product formulas:

ϑ00(v, τ) = j(−z2q, q2), ϑ01(v, τ) = j(z2q, q2).

In the following relation[7, §13.23.(Transformations of the second order)]

ϑ00(v, τ)
2 + ϑ01(v, τ)

2 = 2 ϑ00(0, 2τ) ϑ00(2v, 2τ),(4.2)

replacing τ by 6τ and v by 3
2τ and using j(x, q) = j(q/x, q) yields (4.1).

Hence, we can see that the identity in Theorem 1.1 is also the special case
of (4.2).

5. Conclusion

In [15, p195], M. Wakimoto states that “The denominator identities for
the simplest affine Lie superalgebras are Ramanujan’s mock theta functions.
In this sense, denominator identities of affine Lie superalgebras provide a
general class of mock theta functions.” However, the specific instance for
3rd or 8th order mock theta functions is not given there. We have found
that some identities satisfied by mock theta functions are special cases of
the denominator identity. It is plausible that these connections will assist
in giving the true meaning of mock theta functions.
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