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IMAGINARY QUADRATIC FIELDS WHOSE EXPONENTS

ARE LESS THAN OR EQUAL TO TWO

Kenichi SHIMIZU

Abstract. We give a necessary condition for an imaginary quadratic
field to have exponent less than or equal to two. Further we discuss
relations of this condition with other necessary conditions studied by
Möller and Mollin, and conjecture that these conditions are equivalent.

1. Introduction

The purpose of this paper is to study relations of arithmetic invariants of
imaginary quadratic fields whose exponents are less than or equal to two.

Given a square-free integer d > 0, we define D by

D :=

{

4d if d ≡ 1, 2 (mod 4)
d if d ≡ 3 (mod 4),

and call −D the discriminant of the imaginary quadratic field KD = Q(
√
−D).

We denote by hD the class number of KD, and denote by eD the exponent
of the class group of KD that is the least positive integer n such that an ∼ 1
for all ideals a of KD. We call a rational prime q a split prime of KD if
(

−D

q

)

= 1, where

(

·
q

)

is the Kronecker symbol. Let qD denote the least

split prime.
We define fD(x) by

fD(x) :=

{

x2 + d if d ≡ 1, 2 (mod 4)
x2 + x + (1 + d)/4 if d ≡ 3 (mod 4).

Further for every divisor e <
√

d of d, we define q′D(e) by

q′D(e) :=



















e + d/e if d ≡ 2 (mod 4)
e + d/e

2
if d ≡ 1 (mod 4)

e + d/e

4
if d ≡ 3 (mod 4),

and denote q′D := q′D(e) if e is the largest divisor of d less than
√

d.

The main ingredient of this paper is to consider the condition fD(x) = q2

for a split prime q. We shall prove the following theorems.
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Theorem 3.3 If d ≡ 2 (mod 4) and q is any split prime, then there are
no integers x such that fD(x) = q2.

Theorem 4.4 If d ≡ 1, 3 (mod 4) and q is any split prime, then the
following conditions are equivalent.
(1) q = q′D(e) for a divisor e <

√
d of d.

(2) fD(x) = q2 for an integer x.

Furthermore for the least split prime qD, we show:

Theorem 4.5 If d ≡ 1, 3 (mod 4), then the following conditions are
equivalent.
(1) qD = q′D.
(2) fD(x) = q2

D for an integer x.

Corollary 4.9 If d 6= 1, 3 and d ≡ 1, 3 (mod 4), then eD 5 2 implies
fD(x) = q2

D for an integer x.

In the case that KD has a split prime q <
√

D/3, we obtain the equivalent
conditions for eD = 2 as follows:

Theorem 5.2 If d ≡ 1, 3 (mod 4) and KD has a split prime q <
√

D/3,
then the following conditions are equivalent.
(1) eD = 2.

(2) For every split prime q <
√

D/3, there exists a divisor e <
√

d of d such
that q = q′D(e).

(3) For every split prime q <
√

D/3, there exists an integer x such that
fD(x) = q2.

Now let us introduce several other invariants of KD, which should be
closely related to the condition eD 5 2.

For every prime divisor p of d, we define fD,p(x) and xD,p by

fD,p(x) :=







ax2 + p if d ≡ 2 (mod 4)
2ax2 + 2ax + (a + p)/2 if d ≡ 1 (mod 4)
ax2 + ax + (a + p)/4 if d ≡ 3 (mod 4),

and

xD,p :=







p − 1 if d ≡ 2 (mod 4)
p/2 − 1 if d ≡ 1 (mod 4)
p/4 − 1/2 − p/2d if d ≡ 3 (mod 4),

where we set a := d/p. Writing ν(n) for the number of (not necessarily
different) prime factors of an integer n, Ono’s number pD is the maximum
of ν(fD(x)) for integers x in the interval 0 5 x 5 D/4 − 1 if d 6= 1, 3, and
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pD = 1 if d = 1, 3. Let tD be the number of different prime factors of D,
and RD be

RD :=

{
√

D if d ≡ 2 (mod 4)
√

D/4 if d ≡ 1, 3 (mod 4).

For these invariants, we pose the following conjecture:

Conjecture 1.1. If d 6= 1, 3, then the following conditions are equivalent.

(i) eD 5 2.
(ii) pD = tD.

(iii) For every prime divisor p of d, fD,p(x) takes only prime values for

integers x in the interval 0 5 x 5 xD,p.

(iv) qD = q′D.

(v) qD > RD.

Furthermore when d ≡ 1, 3 (mod 4), the following condition is equivalent

to the above five conditions.

(vi) fD(x) = q2
D for an integer x.

We here note that some relations have been known between those con-
ditions of Conjecture 1.1. In fact, H.Möller proved (i) ⇒ (iv) and (iv) ⇒
(v) (see Theorem 2.5 and 2.6). R.A.Mollin essentially obtained results that
imply (i) ⇒ (ii) and (ii) ⇒ (iii) (see Theorem 2.2 and 2.3). In this paper, we
shall prove that (iv) is equivalent to (vi)(Theorem 4.5), and consequently
that (i) implies (vi) and that (vi) implies (v) (Corollary 4.9 and 4.10).

In summary, we obtain the following relations:
(i) =⇒ (ii) =⇒ (iii)
(i) =⇒ (iv) ⇐⇒ (vi) =⇒ (v)

At the moment of writing this paper, we cannot prove the other relations.
Especially we have not established any sufficient conditions for eD 5 2. But
when d ≡ 2 (mod 4), we can show the equivalence of conditions (i), (iv)
and (v) (Theorem 3.4) by using the non-existence of split primes less than
√

D/3.

The organization of subsequent sections is as follows. In Section 2, we
state the results about prime producing polynomials that was studied by
Rabinowitsch, Frobenius and Mollin. Furthermore we also state Möller’s
result that eD 5 2 implies qD = q′D. The case of d ≡ 2 (mod 4) is considered
in Section 3. We show the equivalence of conditions (i), (iv) and (v) in
Conjecture 1.1. Section 4 is devoted to studying the condition fD(x) = q2

in the case of d ≡ 1, 3 (mod 4). We give relations between the condition
fD(x) = q2 and other invariants of KD. In Section 5, we consider split

primes q less than
√

D/3 and prove that fD(x) = q2 holds for every split
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prime q if and only if eD = 2 holds. Finally in Section 6, we show the
properties related to the condition qD > RD. In particular under certain
conjecture, we prove that qD > RD implies eD 5 2 if d ≡ 1, 3 (mod 4).

2. Quick review of related studies

In 1772, L.Euler discovered that the quadratic polynomial x2+x+41 takes
only prime values for integers x in the interval 0 5 x 5 39. Euler also noted
that the quadratic polynomial x2+x+A takes only prime values for integers
x in the interval 0 5 x 5 A − 2 in the cases of A = 2, 3, 5, 11, 17, 41.

In 1912, F.G.Frobenius and G.Rabinowitsch independently showed that
the above fact is related to the class number of imaginary quadratic field
Q(

√
1 − 4A) as follows.

Theorem 2.1. (Frobenius [3] and Rabinowitsch [13]) The following condi-

tions are equivalent.

(1) The quadratic polynomial x2 + x + A (A = 2) takes only prime values

for integers x in the interval 0 5 x 5 A − 2.
(2) The imaginary quadratic field Q(

√
1 − 4A) has class number one.

Further Frobenius considered about prime producing polynomials related
to imaginary quadratic fields of class number two. In 1974, M.D.Hendy [4]
gave a necessary and sufficient condition for prime producing polynomials
related to imaginary quadratic fields of class number two. These results
have been generalized by R.A.Mollin [6]-[11] to imaginary quadratic fields
whose class numbers are 2tD−1, which is equivalent to eD 5 2. We give here
the following two results.

Theorem 2.2. (cf. [11], p.110) If eD 5 2, then pD = tD.

Theorem 2.3. (cf. [11], p.114) If eD 5 2, then for every prime divisor p
of d, the quadratic polynomial fD,p(x) takes only prime values for integers

x in the interval 0 5 x 5 xD,p.

Remark. Mollin defined the qth Euler-Rabinowitsch polynomial:
FD,q(x) = qx2 + (αD − 1)qx + ((αD − 1)q2 − D)/(4q),

where q = 1 is a square-free divisor of D, αD = 1 if 4q divides D and αD = 2
otherwise. The polynomial FD,q(x) is a generalization of fD,p(x).

Examples of Theorem 2.3.

(1) When d = 190 = 2 · 5 · 19 ≡ 2 (mod 4), we have hD = 4 and tD = 3.
If p = 2, then a = d/p = 95, xD,p = p − 1 = 1 and fD,p(x) = 95x2 + 2 takes
only prime values 2 and 97 in the interval 0 5 x 5 1. If p = 5, then a = 38,
xD,p = 4 and fD,p(x) = 38x2 + 5 takes only prime values 5, 43, 157, 347
and 613 in the interval 0 5 x 5 4. If p = 19, then a = 10, xD,p = 18 and
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fD,p(x) = 10x2+19 takes only prime values in the interval 0 5 x 5 18; 10x2+
19 =19, 29, 59, 109, 179, 269, 379, 509, 659, 829, 1019, 1229, 1459, 1709, 1979,
2269, 2579, 2909 and 3259.

(2) When d = 177 = 3 · 59 ≡ 1 (mod 4), we have hD = 4 and tD = 3. If
p = 3, then a = d/p = 59, xD,p = p/2−1 = 0.5 and fD,p(x) = 118x2+118x+
31 takes prime value 31 at x = 0. If p = 59, then a = 3, xD,p = 28.5 and
fD,p(x) = 6x2 + 6x + 31 takes only prime values in the interval 0 5 x 5 28;
6x2+6x+31 =31, 43, 67, 103, 151, 211, 283, 367, 463, 571, 691, 823, 967, 1123,
1291, 1471, 1663, 1867, 2083, 2311, 2551, 2803, 3067, 3343, 3631, 3931, 4243,
4567 and 4903.

(3) When d = 267 = 3 · 89 ≡ 3 (mod 4), we have hD = 2 and tD = 2. If
p = 3, then a = d/p = 89, xD,p = p/4− 1/2− p/2d = 0.24 · · · and fD,p(x) =
89x2 +89x+23 takes prime value 23 at x = 0. If p = 89, then a = 3, xD,p =
21.58 · · · and fD,p(x) = 3x2 +3x+23 takes only prime values in the interval
0 5 x 5 21; 3x2+3x+23 =23, 29, 41, 59, 83, 113, 149, 191, 239, 293, 353, 419,
491, 569, 653, 743, 839, 941, 1049, 1163, 1283 and 1409.

Theorem 2.1 means that hD = 1 is equivalent to pD = 1. R.Sasaki [16]
showed that hD = 2 is equivalent to pD = 2. But hD = 3 is not equivalent
to pD = 3. In fact if D = 4 · 21, then hD = 4 and pD = 3. Sasaki also
proved that pD 5 hD. Hence we get that hD = 3 implies pD = 3. J.Cohen
and J.Sonn [2] conjectured that hD = 3 is equivalent to that pD = 3 and
D ≡ 3 (mod 4) is a prime. Further F.Sairaiji and Shimizu [15] showed that
hD = pD holds only finitely many D.

We have another result related to imaginary quadratic fields of class num-
ber one.

Theorem 2.4. (cf. S. Chowla, J. Cowles and M. Cowles [1]) Assume that

d > 3 is a prime and d ≡ 3 (mod 8). Then qD = (1 + d)/4 is equivalent to

hD = 1.

In 1976, Möller generalized Theorem 2.4 to imaginary quadratic fields
with the exponents eD 5 2 as follows.

Theorem 2.5. (Möller [5]) If d 6= 1, 3 and eD 5 2, then qD = q′D.

Further Möller showed the following theorem.

Theorem 2.6. (Möller [5]) If d 6= 1, 3 and qD = q′D, then qD > RD.
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3. Properties in the case of d ≡ 2 (mod 4)

In this section we consider the case, d ≡ 2 (mod 4). In this case, we can
obtain some equivalent conditions for eD 5 2.

Mollin showed the following result.

Theorem 3.1. (Mollin [11], p.122) If eD 5 2 and d ≡ 2 (mod 4), then

there are no split primes less than
√

D/3.

Further we show results about split primes.

Theorem 3.2. If d ≡ 2 (mod 4) and q is any split prime less than
√

D/3,

then there are no divisors e <
√

d of d such that q = q′D(e).

Proof. If q = q′D(e) for a divisor e <
√

d of d, then q = e+d/e = 2
√

d =√
D >

√

D/3. This is a contradiction. �

Theorem 3.3. If d ≡ 2 (mod 4) and q is any split prime, then there are

no integers x such that fD(x) = q2.

Proof. If fD(x) = q2 for an integer x, then x2 + d = q2. Hence
d = q2 − x2 = (q + x)(q − x). Set e = q − x, then q + x = d/e and

q =
e + d/e

2
, which is impossible since e + d/e is odd. Hence fD(x) 6= q2 for

any integer x. �

Theorem 3.4. If d ≡ 2 (mod 4), then the following conditions are equiv-

alent.

(1) eD 5 2.
(2) qD = q′D.

(3) qD > RD.

Proof. Theorem 2.5 means that (1) implies (2), and Theorem 2.6 means

that (2) implies (3). Furthermore if qD > RD =
√

D, then qD >
√

D/3.

Hence all split primes are more than
√

D/3, so we have eD 5 2. Thus (3)
implies (1). �

4. Properties related to the condition fD(x) = q2

in the case of d ≡ 1, 3 (mod 4)

First we show the following proposition.

Proposition 4.1. Suppose that d ≡ 1, 3 (mod 4) and q is any split prime.

If fD(x) = q2, then the integer x is in the interval 0 5 x < q.
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Proof. We may assume x = 0. Since d > 0, we have fD(x) > x2. Hence
we get x2 < q2, so 0 5 x < q. �

Further we give two lemmas.

Lemma 4.2. Suppose d 6= 1. Let e <
√

d be any divisor of d.

(1) If d ≡ 1 (mod 4) and x =
d/e − e

2
, then fD(x) = q′D(e)2.

(2) If d ≡ 3 (mod 4) and x =
d/e − e − 2

4
, then fD(x) = q′D(e)2.

Proof. (1) If x =
d/e − e

2
, then fD(x) =

(

d/e − e

2

)2

+d =

(

e + d/e

2

)2

=

q′D(e)2.

(2) If x =
d/e − e − 2

4
, then fD(x) = x2 + x +

1 + d

4
=

(2x + 1)2 + d

4
=

(

d/e−e
2

)2

+ d

4
=

(

e + d/e

4

)2

= q′D(e)2. �

Lemma 4.3. Let q be any split prime.

(1) If d ≡ 1 (mod 4) and fD(x) = q2, then x =
d/e − e

2
and q =

e + d/e

2
=

q′D(e) for a divisor e <
√

d of d.

(2) If d ≡ 3 (mod 4) and fD(x) = q2, then x =
d/e − e − 2

4
and q =

e + d/e

4
= q′D(e) for a divisor e <

√
d of d.

Proof. (1) We may assume x > 0. If fD(x) = x2 + d = q2, then
d = q2 −x2 = (q +x)(q −x). Set e = q−x, then e is a divisor of d less than
√

d and q + x = d/e. Thus we get x =
d/e − e

2
and q =

e + d/e

2
= q′D(e).

(2) We may assume x = 0. If fD(x) =
(2x + 1)2 + d

4
= q2, then d =

4q2 − (2x+1)2 = (2q +2x+1)(2q− 2x− 1). Set e = 2q− 2x− 1, then e is a

divisor of d less than
√

d and 2q+2x+1 = d/e. Thus we get x =
d/e − e − 2

4

and q =
e + d/e

4
= q′D(e). �

Using Lemmas 4.2 and 4.3, we obtain the following theorem.

Theorem 4.4. If d ≡ 1, 3 (mod 4) and q is any split prime, then the

following conditions are equivalent.
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(1) q = q′D(e) for a divisor e <
√

d of d.
(2) fD(x) = q2 for an integer x.

Proof. Suppose q = q′D(e). If d ≡ 1 (mod 4) and x =
d/e − e

2
, then

fD(x) = q′D(e)2 = q2 by Lemma 4.2. If d ≡ 3 (mod 4) and x =
d/e − e − 2

4
,

then fD(x) = q′D(e)2 = q2 by Lemma 4.2.
Conversely by Lemma 4.3, we immediately get that (2) implies (1). �

By Theorem 4.4, we obtain that (iv) is equivalent to (vi) in Conjecture
1.1 as follows:

Theorem 4.5. If d ≡ 1, 3 (mod 4), then the following conditions are

equivalent.

(1) qD = q′D.

(2) fD(x) = q2
D for an integer x.

For the proof of Theorem 4.5 we state the following lemmas.

Lemma 4.6. (Möller [5]) Suppose d 6= 1, 3. If e <
√

d is any divisor of d,
then q′D(e) is a split prime or a product of split primes.

Lemma 4.7. Let e1 and e2 be any divisors of d less than
√

d. Then e1 < e2

is equivalent to q′D(e1) > q′D(e2).

Proof. We show that e1 < e2 implies q′D(e1) − q′D(e2) > 0. In fact,

q′D(e1)− q′D(e2) =
e1 + d/e1

m
− e2 + d/e2

m
=

(e2 − e1)(d − e1e2)

e1e2m
, where m =

1, 2, 4 as d ≡ 2, 1, 3 (mod 4) respectively. Since e1 < e2 <
√

d, we get
q′D(e1) − q′D(e2) > 0. The inverse is proved similarly. �

Lemma 4.8. The number q′D is the minimum of q′D(e) for all divisors

e <
√

d of d.

Proof. Since q′D = q′D(e) as e is the largest divisor of d less than
√

d, by
Lemma 4.7, q′D is the minimum of q′D(e). �

Proof of Theorem 4.5. Since qD is a split prime, by Theorem 4.4, the
condition qD = q′D(e) for a divisor e <

√
d of d is equivalent to the condition

fD(x) = q2
D for an integer x. Furthermore since qD is the least split prime,

using Lemmas 4.6 and 4.8, we get qD = q′D(e) = q′D. �

By Theorems 2.5 and 4.5, we immediately show that (i) implies (vi) in
Conjecture 1.1 as follows.
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Corollary 4.9. If d 6= 1, 3 and d ≡ 1, 3 (mod 4), then eD 5 2 implies

fD(x) = q2
D for an integer x.

Further by Theorems 2.6 and 4.5, we have following corollary, which
means that (vi) implies (v) in Conjecture 1.1.

Corollary 4.10. If d 6= 1, 3 and d ≡ 1, 3 (mod 4), then fD(x) = q2
D

implies qD > RD.

Furthermore we can strengthen Corollary 4.10 as follows:

Proposition 4.11. (1) If d ≡ 1 (mod 4) and fD(x) = q2
D for an integer

x, then qD =
√

4 + d.

(2) If d ≡ 3 (mod 4) and fD(x) = q2
D for an integer x, then qD =

√

1 + d

4
.

Proof. (1) Suppose d ≡ 1 (mod 4). By Lemma 4.3, if fD(x) = q2
D,

then x =
d/e − e

2
for a divisor e <

√
d of d. Since d ≡ 1 (mod 4), d/e ≡ e

(mod 4). Hence d/e − e = 4, so x =
d/e − e

2
= 2. Thus fD(x) = fD(2) =

4 + d. Therefore qD =
√

4 + d.
(2) Suppose d ≡ 3 (mod 4). By Lemma 4.3, if fD(x) = q2

D, then x =
d/e − e − 2

4
for a divisor e <

√
d of d. Since d/e − e = 2, we have x =

d/e − e − 2

4
= 0, hence fD(x) = fD(0) =

1 + d

4
. Therefore qD =

√

1 + d

4
.

�

In 1944, P.Papkovi [12] mentioned that if d ≡ 3 (mod 4), then eD 5 2 is

equivalent to qD =

√

1 + d

4
. However he did not give any proof in his paper.

In Section 6, we state that qD > RD implies eD 5 2 under certain con-
jecture.

5. Properties related to split primes q <
√

D/3

In this section we consider imaginary quadratic fields KD which have a
split prime q less than

√

D/3. We may discuss only when eD = 2 by the
following result.

Proposition 5.1. (Mollin [11], p.122) If hD = 1, then qD >
√

D/3.

In Conjecture 1.1, we can not prove now that each of the conditions
(ii)-(vi) is a sufficient condition for eD 5 2. However we get the following

equivalent conditions for eD = 2 in KD which has a split prime q <
√

D/3.
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Theorem 5.2. If d ≡ 1, 3 (mod 4) and KD has a split prime q <
√

D/3,
then the following conditions are equivalent.

(1) eD = 2.

(2) For every split prime q <
√

D/3, there exists a divisor e <
√

d of d such

that q = q′D(e).

(3) For every split prime q <
√

D/3, there exists an integer x such that

fD(x) = q2.

We give three lemmas for the proof of Theorem 5.2.

Lemma 5.3. Suppose d ≡ 1, 3 (mod 4). Let q be a split prime and q = qq′

the factorization of q to prime ideals. If fD(x) = q2 for an integer x, then

q and q′ are ambiguous.

Proof. We may assume that q = [q, x + ωD], where ωD is defined by
ωD :=

√
−d, (1 +

√
−d)/2 if D ≡ 0, 3 (mod 4) respectively. Then q is an

ambiguous prime ideal since fD(x) = q2. By q = qq′, we have q2 = q2q′
2.

Thus we get q′
2 ∼ 1, so q′ is ambiguous. �

We have the following lemma by R.Sasaki.

Lemma 5.4. (Sasaki [16]) Let fD(x) = p1p2 · · · pr (0 5 x 5 D/4 − 1) the

factorization of fD(x) to prime numbers and pi = pip
′

i the factorization of pi

to prime ideals. Then ideal classes [p1], [p1p2], [p1p2p3], · · · , [p1p2 · · · pr] = 1
are mutually distinct.

Further we have the following lemma.

Lemma 5.5. (cf. e.g. Shimizu and Goto [17]) If q is any split prime less

than
√

D/3, then there exist at least one integers x with 0 5 x 5 D/4 − 1
such that fD(x) ≡ 0 (mod q2).

Proof of Theorem 5.2. Möller [5] proved that (1) implies (2) at first,
and Mollin [11] proved that (1) is equivalent to (2). In this paper we give
another proof.

The equivalence of (2) and (3) is already stated as Theorem 4.4 without

the condition q <
√

D/3.
First we show that (1) implies (3). Since q is a split prime less than

√

D/3, by Lemma 5.5, we may put fD(x) = q2c for an integer x with

0 5 x 5 D/4 − 1 and an integer c = 1. If c > 1, then q2
� 1 or q′

2
� 1

by Lemma 5.4, which is contradict to eD = 2. Therefore eD = 2 implies
fD(x) = q2 for an integer x.

Secondly we show that (3) implies (1). If there exists an integer x such
that fD(x) = q2, then by Lemma 5.3, q and q′ are ambiguous for any split
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prime q <
√

D/3, hence we get eD 5 2. Furthermore by Proposition 5.1,

we have eD 6= 1 since q <
√

D/3. Hence we get eD = 2. �

6. Properties related to the condition qD > RD

In Section 1, we mentioned the following relations between conditions of
Conjecture 1.1.

(i) =⇒ (ii) =⇒ (iii)
(i) =⇒ (iv) ⇐⇒ (vi) =⇒ (v)

In this section we consider the condition about qD > RD, namely (v) of
Conjecture 1.1.

By the definition of pD, we have tD 5 pD. We want to prove that qD > RD

implies pD = tD, that is, (v) implies (ii) in Conjecture 1.1.
If d ≡ 2 (mod 4), then as we stated in Theorem 3.4, qD > RD is equivalent

to eD 5 2. Hence in this case we have that qD > RD implies pD = tD.
If d ≡ 1, 3 (mod 4), then we can not prove it now, but we have a weaker

result.

Theorem 6.1. If d 6= 1, 3 and d ≡ 1, 3 (mod 4) and qD > RD, then

pD 5 tD + 2.

For the proof of Theorem 6.1 we show the following lemmas.

Lemma 6.2. If d 6= 1, 3 and qD > RD, then the number of split primes

which divide fD(x) with 0 5 x 5 D/4 − 1 is at most three.

Proof. First, we show fD(x) < (D/4)2 for any integer x with 0 5 x 5

D/4− 1. If d 6= 1 and d ≡ 1, 2 (mod 4), then fD(D/4− 1) = (d− 1)2 + d =
d2 − (d − 1) < d2 = (D/4)2. If d 6= 3 and d ≡ 3 (mod 4), then the interval
0 5 x 5 D/4 − 1 corresponds to 0 5 x 5 (d − 7)/4 since x is an integer.

Thus fD(
d − 7

4
) =

(

d − 7

4

)2

+
d − 7

4
+

1 + d

4
=

(

d

4

)2

−
(

3

8
d − 25

16

)

. Since

d = 7, we have
3

8
d − 25

16
> 0. Hence fD(

d − 7

4
) <

(

d

4

)2

=

(

D

4

)2

.

Assume the number of split prime factors of fD(x) is more than three for
0 5 x 5 D/4 − 1. Then fD(x) = q4

D. If d ≡ 2 (mod 4), then fD(x) = q4
D >

R4
D = D2. This is contradict to fD(x) < (D/4)2. If d ≡ 1, 3 (mod 4), then

fD(x) = q4
D > R4

D = (D/4)2. This is contradict to fD(x) < (D/4)2. Hence
the proof completes. �

Lemma 6.3. If p is any prime divisor of D, then p2 does not divide fD(x)
for any integer x.
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Proof. Assume that p2 divides fD(x) for an integer x. If d ≡ 1, 2
(mod 4), then p divides both d and fD(x) = x2 + d. Therefore we get that
p divides x2, and so x. Thus p2 divides x2. Hence p2 divides d, which is a

contradiction. If d ≡ 3 (mod 4), then fD(x) =
(2x + 1)2 + d

4
. Similarly we

get that p2 divides (2x + 1)2. Hence p2 divides d, which is a contradiction.
Therefore p2 does not divide fD(x) for any integer x. �

Proof of Theorem 6.1. Suppose d 6= 1 and d ≡ 1 (mod 4). Then
fD(x) = x2 + d, so ν(fD(0)) = ν(d) = tD − 1. Since fD(0) = d, fD(x)
is not divided by d for 0 < x 5 D/4 − 1 = d − 1. Let fD(x) = ap1 · · · pr

for 0 < x 5 D/4 − 1, where a is a product of prime factors of D = 4d and
pi (1 5 i 5 r) is a split prime. By Lemma 6.3, a is square-free. Hence we get
ν(a) 5 tD − 1. Since r 5 3 by Lemma 6.2, we get ν(fD(x)) 5 tD − 1 + 3 =
tD + 2 for 0 < x 5 D/4 − 1. Therefore we get pD 5 tD + 2.

Suppose d 6= 3 and d ≡ 3 (mod 4). Since fD(x) = x2 + x +
1 + d

4
and

fD(
d − 1

2
) = d · 1 + d

4
, fD(x) is not divided by d for 0 5 x 5 D/4 − 1. Let

fD(x) = ap1 · · · pr as above. By Lemma 6.3, we get ν(a) 5 tD − 1. Since
r 5 3, we get ν(fD(x)) 5 tD − 1 + 3 = tD + 2. Therefore pD 5 tD + 2. �

Under the condition qD > RD, we have the following results about q ′D(e).

Proposition 6.4. (1) If d 6= 1, d ≡ 1, 2 (mod 4) and qD > RD, then

q′D(e) is a prime for any divisor e <
√

d of d.
(2) If d 6= 3, d ≡ 3 (mod 4) and qD > RD, then q′D(e) is a prime or

q′D(e) = q2
D = (1 + d)/4 for any divisor e <

√
d of d.

Proof. Assume d 6= 1, 3 and q′D(e) is not a prime. Then by Lemma 4.6,
q′D(e) has at least two split prime factors. Hence we get q ′D(e) = q2

D.
(1) If d ≡ 2 (mod 4), then by Lemma 4.7, we have q ′D(e) 5 1 + d and

q′D(e) = q2
D > R2

D = 4d. Hence 4d < q′D(e) 5 1 + d, so 4d < 1 + d, which is
a contradiction. Therefore q′D(e) is a prime.

If d ≡ 1 (mod 4), then by Lemma 4.7, we have q ′D(e) 5 (1 + d)/2 and
q′D(e) = q2

D > R2
D = d. Hence d < q′D(e) 5 (1 + d)/2, which is a contradic-

tion. Therefore q′D(e) is a prime.
(2) If d ≡ 3 (mod 4), then by Lemma 4.7, we have q ′D(e) 5 (1+d)/4 and

q′D(e) = q2
D > R2

D = d/4. Hence d/4 < q′D(e) 5 (1 + d)/4, which is possible
only when q′D(e) = (1 + d)/4. Then since d/4 < q2

D 5 q′D(e) = (1 + d)/4, we

obtain q′D(e) = q2
D = (1 + d)/4, and otherwise q′D(e) is a prime. �

As we stated in Lemma 5.5, there is an integer x in the interval 0 5

x 5 D/4 − 1 such that fD(x) ≡ 0 (mod q2) for any split prime q <
√

D/3.
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Replacing the interval 0 5 x 5 D/4 − 1 with 0 5 x < q, we have the
following conjecture:

Conjecture 6.5. Suppose that d ≡ 1, 3 (mod 4) and KD has a split prime

q <
√

D/3. If qD > RD and q <
√

D/3 is any split prime, then fD(x) ≡ 0
(mod q2) for an integer x with 0 5 x < q.

Assuming Conjecture 6.5, we show the following theorem.

Theorem 6.6. Suppose that d ≡ 1, 3 (mod 4) and KD has a split prime

q <
√

D/3. If Conjecture 6.5 is true, then the following conditions are

equivalent.

(1) qD > RD.

(2) For every split prime q <
√

D/3, there is an integer x such that fD(x) =
q2.

Proof. First we prove that (2) implies (1), without Conjecture 6.5. Since

we assume fD(x) = q2 for every split prime q <
√

D/3, we have fD(x) = q2
D

for an integer x. Hence by Corollary 4.10, we get qD > RD.
Conversely we assume qD > RD.
(i) Suppose d ≡ 1 (mod 4). Since qD > RD, we get q = qD >

√

D/4 =√
d. By Conjecture 6.5, set fD(x) = q2c for an integer x with 0 5 x < q

and an integer c. If c > 1, then fD(x) = q2c = 2q2. Furthermore since

0 5 x < q, fD(x) = x2 + d < q2 + d. Hence 2q2 < q2 + d, so q <
√

d, which
is a contradiction. Therefore we have c = 1, hence fD(x) = q2 for an integer
x.

(ii) Suppose d ≡ 3 (mod 8). Since qD > RD, then qD >
√

D/4 =
√

d/4.
By Conjecture 6.5, set fD(x) = q2c for an integer x with 0 5 x < q and an
integer c. In this case fD(x) is odd, so if c > 1, then c = 3 and fD(x) = q2c =

3q2. Since 0 5 x < q, fD(x) = x2+x+
1 + d

4
< q2+q+

1 + d

4
= q2+q+

1

4
+

d

4
.

Since q = qD >
√

d/4, q2 + q +
1

4
+

d

4
< q2 + q +

1

4
+ q2 = 2q2 + q +

1

4
.

Hence 3q2 < 2q2 + q +
1

4
, so q2 < q +

1

4
, which is impossible.

(iii) Suppose d ≡ 7 (mod 8). We can prove without Conjecture 6.5. In

this case we have qD = 2 and RD =
√

d/4. Thus qD > RD implies d = 7 or

d = 15. If d = 7, then there are no split primes less than
√

D/3. If d = 15,

then there is only one split prime q <
√

D/3, namely q = qD = 2. Thus
fD(0) = 22 = q2.

Therefore we prove that (1) implies (2). �

Corollary 6.7. Under Conjecture 6.5, if d ≡ 1, 3 (mod 4), then qD > RD

is equivalent to eD 5 2.
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Proof. It is sufficient that we prove that qD > RD implies eD 5 2. If KD

has a split prime q <
√

D/3, then by Theorems 6.6 and 5.2 we get eD = 2.

If KD has no split primes less than
√

D/3, then eD 5 2. �

If Conjecture 6.5 is true, then by Theorem 2.5, 2.6, 4.5 and Corollary 6.7,
we get the equivalence of some conditions in Conjecture 1.1.

Corollary 6.8. Under Conjecture 6.5, if d 6= 1, 3 and d ≡ 1, 3 (mod 4),
then the following conditions are equivalent.

(1) eD 5 2.
(2) qD = q′D.

(3) qD > RD.

(4) fD(x) = q2
D for an integer x.
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