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A CHARACTERIZATION OF δ-QUASI-BAER RINGS

Ebrahim HASHEMI

Abstract. Let δ be a derivation on R. A ring R is called δ-quasi-Baer

(resp. quasi-Baer) if the right annihilator of every δ-ideal (resp. ideal)
of R is generated by an idempotent of R. In this note first we give a
positive answer to the question posed in Han et al. [7], then we show
that R is δ-quasi-Baer iff the differential polynomial ring S = R[x; δ] is

quasi-Baer iff S is δ-quasi-Baer for every extended derivation δ on S of
δ. This results is a generalization of Han et al. [7], to the case where R

is not assumed to be δ-semiprime.

Throughout this note R denotes an associative ring with unity, δ : R → R

is derivation of R, that is, δ is an additive map such that δ(ab) = δ(a)b +
aδ(b), for all a, b ∈ R. We denote R[x; δ] the skew polynomial ring whose
elements are the polynomials Σn

i=0rix
i ∈ R, ri ∈ R, where the addition is

defined as usual and the multiplication by xb = bx + δ(b) for any b ∈ R.
For a nonempty subset X of a ring R, we write rR(X) = {c ∈ R|dc =
0 for any d ∈ X} which is called the right annihilator of X in R.

Recall from [9] that R is a Baer ring if the right annihilator of every
nonempty subset of R is generated by an idempotent. In [9] Kaplansky
introduced Baer rings to abstract various properties of von Neumann alge-
bras and complete ∗-regular rings. The class of Baer rings includes the von
Neumann algebras. In [6] Clark defines a ring to be quasi-Baer if the right
annihilator of every ideal is generated, as a right ideal, by an idempotent.
Moreover, he shows the left-right symmetry of this condition by proving
that R is quasi-Baer if and only if the left annihilator of every left ideal is
generated, as a left ideal, by an idempotent. He then uses the quasi-Baer
concept to characterize when a finite-dimensional algebra with unity over an
algebraically closed field is isomorphic to a twisted matrix units semigroup
algebra. Further work on quasi-Baer rings appears in [3, 4, 5, 10, 11]. An
ideal I of R is called δ-ideal if δ(I) ⊆ I. R is called δ-quasi-Baer if the right
annihilator of every δ-ideal of R is generated by an idempotent of R. Clearly
each quasi-Baer ring is δ-quasi-Baer. But the converse is not true (see [7]
Example). R is said to be reduced if R has no nonzero nilpotent elements.
Note that in a reduced ring R, R is Baer if and only if R is quasi-Baer.

In [1], Armendariz has shown that if R is reduced, then R is Baer if and
only if the polynomial ring R[x] is a Baer ring. Han et al. [7], have gener-
alized this result by showing that if R is δ-semiprime (i.e., for any δ-ideal I

of R, I2 = 0 implies I = 0), then R is a δ-quasi-Baer ring if and only if the
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Ore extension R[x; δ] is a quasi-Baer ring.
Han et al. (2000) posed this question: If e(x) ∈ R[x; δ] is a left semicen-

tral idempotent, then does there exists a left semicentral idempotent e0 ∈ R

such that e(x)R[x; δ] = e0R[x; δ]? In this note first we give a positive an-
swer to this question, then we show that R is δ-quasi-Baer if and only if
the differential polynomial ring S = R[x; δ] is quasi-Baer if and only if S

is δ-quasi-Baer for every extended derivation δ on S of δ. This results is a
generalization of Han et al. [7], to the case where R is not assumed to be
δ-semiprime.

For a ring R with a derivation δ, there exists a derivation on S = R[x; δ]
which extends δ. For example given in [7], consider an inner derivation δ on
S by x defined by δ(f(x)) = xf(x)−f(x)x for all f(x) ∈ S. Then δ(f(x)) =
δ(a0) + · · · + δ(an)xn for all f(x) = a0 + · · · + anxn ∈ S and δ(r) = δ(r) for
all r ∈ R, which means that δ is an extension of δ. We call such a derivation
δ on S an extended derivation of δ. For each a ∈ R and nonnegative integer
n, there exist t0, · · · , tn ∈ Z such that xna =

∑n
i=0 tiδ

n−i(a)xi.

Lemma 1. (Han et al. Lemma 1) Let R be a ring with a derivation δ and

δ be an extended derivation of δ on S = R[x; δ]. If I is a δ-ideal of R, then

I[x; δ] is δ-ideal of S.

Proof. By ([8], Lemma 1.3), I[x; δ] is an ideal of S. Let f(x) = a0 + · · · +
anxn ∈ I[x; δ]. For each i, δ(aix

i) = δ(ai)x
i + aiδ(x

i) = δ(ai)x
i + aiδ(x

i) ∈
I[x; δ]. Hence I[x; δ] is a δ-ideal of S. �

Now we give a positive answer to the question posed in Han et al. [7].

Theorem 2. Let I be a δ-ideal of R and S = R[x; δ]. If rS(I[x; δ]) = e(x)S
for some idempotent e(x) = e0+e1x+· · ·+enxn ∈ S, then rS(I[x; δ]) = e0S.

Proof. Since Ie(x) = 0, we have Iei = 0 for each i = 0, · · · , n. Hence
0 = δ(Iei) = δ(I)ei + Iδ(ei) for i = 0, · · · , n. Since I is δ-ideal and Iei = 0,
so Iδ(ei) = 0 for each i = 0, · · · , n. By a similar argument we can show that
Iδk(ei) = 0 for each i = 0, · · · , n and k ≥ 0. Hence δk(ei) ∈ rS(I[x; δ]) for
each i = 0, · · · , n and k ≥ 0. Thus δk(ei) = e(x)δk(ei) and that enδk(ei) =
0 for each i = 0, · · · , n and k ≥ 0. Hence δk(ei) = (e0 + e1x + · · · +
en−1x

n−1)δk(ei) and that en−1δ
k(ei) = 0 for each i ≥ 0, k ≥ 0. Continuing

in this way, we have ejδ
k(ei) = 0 for each i ≥ 0, k ≥ 0, j = 1, · · · , n. Thus

δk(ei) = e0δ
k(ei) for each i ≥ 0, k ≥ 0. Therefore e(x) = e0e(x) and that

rS(I[x; δ]) = e(x)S ⊆ e0S. Since δk(e0) ∈ rR(I), so e0 ∈ rS(I[x; δ]) and that
e0S ⊆ rS(I[x; δ]). Therefore rS(I[x; δ]) = e0S. �

Proposition 3. Let R be a δ-quasi-Baer ring. Then S = R[x; δ] is a quasi-

Baer ring.
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Proof. Let J be an arbitrary ideal of S. Consider the set J0 of leading
coefficients of polynomials in J . Then J0 is a δ-ideal of R. Since R is δ-
quasi-Baer, rR(J0) = eR for some idempotent e ∈ R. Since J0e = 0 and J0 is
δ-ideal of R, we have J0δ

k(e) = 0 for each k ≥ 0. Hence δk(e) = eδk(e) and
eS ⊆ rS(J0[x; δ]). Clearly rS(J0[x; δ]) ⊆ eS. Thus rS(J0[x; δ]) = eS. We
claim that rS(J) = eS. Let f(x) = a0 + · · · + anxn ∈ J . Then an ∈ J0 and
that anδk(e) = 0 for each k ≥ 0. Hence f(x)e = (a0 + · · · + an−1x

n−1)e =
· · ·+an−1ex

n−1. Thus an−1e ∈ J0, and an−1δ
k(e) = an−1eδ

k(e) = 0 for each
k ≥ 0. Hence an−1x

n−1e = 0. Continuing in this way, we can show that
aix

ie = 0, for each i = 0, · · · , n. Hence f(x)e = 0 and so eS ⊆ rS(J). Now,
let g(x) = b0 + · · ·+bmxm ∈ rS(J) and f(x) = a0 + · · ·+anxn ∈ J . First, we
will show that aix

ibjx
j = 0, for i = 0, · · · , n, j = 0, · · · ,m. Since f(x)g(x) =

0, we have anbm = 0. Hence bm ∈ rR(J0). Since J0 is δ-ideal of R,
δk(bm) ∈ J0 for each k ≥ 0 and that bm ∈ rS(J0[x; δ]). Thus bm = ebm and
anxnbmxm = 0. Since f(x)e = (a0 + · · · + anxn)e = (a0 + · · · + an−1x

n−1)e,
we have an−1e ∈ J0 and an−1δ

k(e) = an−1eδ
k(e) = 0, for each k ≥ 0.

There exist t0, · · · , tn−1 ∈ Z such that, an−1x
n−1bmxm = an−1x

n−1ebmxm =

an−1(
∑n−1

j=0 tjδ
n−1−j(e)xj)bmxm = (

∑n−1
j=0 tjan−1δ

n−1−j(e)xj)bmxm. Hence

an−1x
n−1bmxm = 0. Continuing in this way, we have aix

ibjx
j = 0 for

each i, j. Therefore bj ∈ rS(J0[x; δ]) = eS, for each j ≥ 0. Consequently,
g(x) = eg(x) and rS(J) = eS. Therefore S is a quasi-Baer ring. �

Theorem 4. Let R be a ring and S = R[x; δ]. Then the following are

equivalent:

(1) R is δ-quasi-Baer;

(2) S is quasi-Baer;

(3) S is δ-quasi-Baer for every extended derivation δ on S of δ.

Proof. (1)⇒(2). It follows from Proposition 3.
(2)⇒(3). It is clear.
(3)⇒(1). Suppose that R is δ-quasi-Baer for every extended derivation δ

on S of δ. Let I be any δ-ideal of R. Then by Lemma 1, I[x; δ] is δ-ideal of S.
Since S is δ-quasi-Baer, rS(I[x; δ]) = e(x)S for some idempotent e(x) ∈ S.
Hence rS(I[x; δ]) = e0S for some idempotent e0 ∈ R, by Theorem 2. Since
rR(I) = rS(I[x; δ]) ∩ R = e0R, R is δ-quasi-Baer. �
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