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SOME QUESTIONS ON THE IDEAL CLASS GROUP OF

IMAGINARY ABELIAN FIELDS

Tsuyoshi ITOH

Abstract. Let k be an imaginary quadratic field. Assume that the
class number of k is exactly an odd prime number p, and p splits into
two distinct primes in k. Then it is known that a prime ideal lying above
p is not principal. In the present paper, we shall consider a question
whether a similar result holds when the class number of k is 2p. We
also consider an analogous question for the case that k is an imaginary
quartic abelian field.

1. Questions

At first, we shall introduce the following:

Theorem A. Let k be an imaginary quadratic field. Assume that the class
number of k is exactly an odd prime number p which splits into two distinct
primes p and p′ in k. Then p is not principal.

This result is mentioned in the proof of [2, Proposition 2.4]. In the present
paper, we try to generalize the above result. In particular, we shall consider
the following two questions:

Question 1.1. Let k be an imaginary quadratic field. Assume that the
class number of k is exactly 2p with an odd prime p which splits into two
distinct primes p and p′ in k. Then is p2 not principal?

Question 1.2. Let k be an imaginary quartic abelian field. Assume that
both of the class number and the relative class number of k are exactly an
odd prime number p, and p splits completely in k. Let p be a prime ideal of
k lying above p. Then is p not principal?

The assertion in the above questions (and Theorem A) implies that all
classes in the Sylow p-subgroup of the ideal class group contain a power of
p. Of course, it is not satisfied in general (see Remark 2.9).

Question 1.1 has originally arisen from a question on Iwasawa theory. Un-
der the assumption of Theorem A, it is known that both of the Iwasawa λ-

Mathematics Subject Classification. Primary 11R29; Secondary 11R23.
Key words and phrases. Ideal class group.

185



186 T. ITOH

and µ-invariants of the “p-ramified” Zp-extension of k are zero ([2, Propo-
sition 2.4]). If Question 1.1 has a positive answer, we can obtain a similar
result (see section 4).

The author expects that at least Question 1.1 always has a positive an-
swer.

We shall consider Question 1.1 in section 2. We will show that Question
1.1 has a positive answer for many imaginary quadratic fields. Especially, if
the absolute value of the discriminant of k is “small”, then Question 1.1 has
a positive answer for k (Corollary 2.5). Moreover, if a rational prime which
is smaller than 1525 ramifies in k, then Question 1.1 has a positive answer
for k (Corollary 2.8).

In section 3, we shall consider Question 1.2. We will show that if k is
a bicyclic biquadratic field, then Question 1.2 has a positive answer for k
(Proposition 3.1). However, little is known in the case that k is a cyclic
quartic field.

In section 4, we will give an application to Iwasawa theory.
We will use the following notations throughout the present paper. We

denote by
(

·
·

)

the quadratic residue symbol. Let k be an algebraic number
field. We denote by Cl(k) the ideal class group of k, h(k) the class number
of k, and d(k) the absolute value of the discriminant of k. For a fractional
ideal a of k, we denote by c(a) the ideal class of k which contains a. For a
finite extension k′/k of algebraic number fields, we denote by Nk′/k the norm

mapping from k′ to k. If k is a CM-field, then we denote by k+ the maximal
real subfield of k and h−(k) = h(k)/h(k+) the relative class number.

2. Consideration for Question 1.1

First, we shall briefly recall the proof of Theorem A which is stated in [2].
Let k be an imaginary quadratic field such that h(k) = p with an odd prime
p which splits into two distinct primes p and p′ in k. Since h(k) is odd, we
may write k = Q(

√−q) with an odd prime number q which satisfies q ≡ 3
(mod 4). If p is principal, then we have an inequality p ≥ q/4 by taking the
norm of a generator of p to Q. However, we can see p = h(k) < q/4 by using
Dirichlet’s class number formula. It is a contradiction.

Let k be an imaginary quadratic field such that h(k) = 2p with an odd
prime p which splits into two distinct primes p and p′ in k. We shall apply
the above method for Question 1.1. Assume that p2 is principal. Then
p2 ≥ d(k)/4. Since h(k) = 2p, if h(k) <

√

d(k) then Question 1.1 has a
positive answer. However, the Brauer-Siegel theorem implies that

log h(k)

log
√

d(k)
→ 1, (d(k) → ∞).
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Hence it seems difficult to solve Question 1.1 by applying this method di-
rectly. If we remove the restriction on the class number, an imaginary qua-
dratic field k which satisfies h(k) >

√

d(k) really exists.
We begin a more detailed consideration for Question 1.1. Since h(k) = 2p,

we may assume that k is one of the following:

(a) k = Q(
√−q) with an odd prime q satisfying q ≡ 5 (mod 8),

(b) k = Q(
√−2q) with an odd prime q satisfying q ≡ 3, 5 (mod 8),

(c) k = Q(
√
−lq) with odd primes l, q satisfying l ≡ 1, q ≡ 3 (mod 4)

and
(

l
q

)

= −1.

Proposition 2.1. Assume that k is of the form (a) or (b), that is, the
prime 2 ramifies in k. Then Question 1.1 has a positive answer for k.

Proof. We shall only show for the case that k is of the form (b). The rest
case can be proven similarly.

Let p be a prime ideal in k lying above p. Assume that p2 is principal.
We take a generator a + b

√−2q of p2, where a and b are integers. Since p
splits in k, we see ab 6= 0. We may assume that a > 0. By taking the norm
of a + b

√−2q to Q, we see p2 = a2 + 4b2q. Hence (p − a)(p + a) = 4b2q.
Note that the right hand side is positive and then p > a. Since q is a prime
number, q divides p + a or p − a. If q divides p − a, then p > p − a ≥ q.
Otherwise, 2p > p + a ≥ q. Consequently we have the inequality 2p > q.

On the other hand, by using a modified version of Dirichlet’s class number
formula (see, e.g., [8, Theorem 9.7.7]), we can see

2p = h(k) =

2q
∑

i=0

χk(i),

where χk is the Dirichlet character corresponding to k. Since χk(i) = 0 for
even i, the right hand side is less than or equal to q. Hence we see that
2p ≤ q. It is a contradiction. �

In the rest of this section, we assume that k is of the form (c). In this case,
Question 1.1 has not been solved yet. However, we can see that Question
1.1 has a positive answer for many cases.

Proposition 2.2. Assume that k is of the form (c) and h(k) = 2p with an
odd prime p which splits in k. If

(

l
p

)

= 1, then Question 1.1 has a positive

answer for k.

Proof. Assume that
(

l
p

)

= 1. We note that H := Q(
√

l,
√−q) is the Hilbert

2-class field of k. By the assumption, the prime p lying above p splits in H/k.
Hence, the order of the ideal class c(p) containing p is 1 or p. If the order
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of c(p) is 1, then we can see p > lq/4 by taking the norm of a generator of p

to Q. Hence h(k) = 2p > lq/2. However, we can easily see that h(k) < lq/2
by using Dirichlet’s class number formula. It is a contradiction. Then the
order of c(p) is p, and this implies that p2 is not principal. �

We will show that if d(k) is “small” then Question 1.1 has a positive
answer. First, we shall prove the following lemma.

Lemma 2.3. Assume that k is of the form (c) and h(k) = 2p with an odd
prime p which splits two distinct primes p and p′ in k. Moreover, assume
that

(

l
p

)

= −1. If p2 is principal, then there are non-zero integers b′ and c′

such that

p =
(b′)2l + (c′)2q

4

and b′ ≡ c′ (mod 2).

Proof. Under the assumptions, we can see that the order of c(p) is exactly 2
by using the argument given in the proof of Proposition 2.2. By Hilbert 94 or
Tannaka-Terada’s principal ideal theorem, we see that p becomes principal
in Q(

√
l,
√−q). We put H = Q(

√
l,
√−q) and denote by OH the ring of

algebraic integers in H. Let α ∈ OH be a generator of pOH . We can write

α =
a + b

√
l + c

√−q + d
√−lq

4
with some integers a, b, c, and d.

We note that NH/Q(
√

l)α is a totally positive integer of Q(
√

l). Since

NH/Q(
√

l)α generates the unique prime ideal of Q(
√

l) lying above p, we can

write NH/Q(
√

l)α = pε with a totally positive unit ε of Q(
√

l). We note

that the norm of the fundamental unit of Q(
√

l) to Q is −1. From this, we
can take α which satisfies NH/Q(

√
l)α = p by multiplying some power of the

fundamental unit. Hence we have the equation

NH/Q(
√

l)α =
(a2 + b2l + c2q + d2lq) + (2ab + 2cdq)

√
l

16
= p.

This implies that 2ab + 2cdq = 0, and then

p =
a2 + b2l + c2q + d2lq

16
.

Next, we shall take the norm of α to Q(
√−q). If q > 3, we see

NH/Q(
√
−q)α = ±p. If q = 3, we can take α which satisfies NH/Q(

√
l)α = p
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and NH/Q(
√
−q)α = ±p by multiplying some third root of unity. Hence we

have the equation

NH/Q(
√
−q)α =

(a2 − b2l − c2q + d2lq) + (2ac − 2bdl)
√−q

16
= ±p.

This implies that 2ac − 2bdl = 0, and then

±p =
a2 − b2l − c2q + d2lq

16
.

If NH/Q(
√
−q)α = p, then b = c = 0. In this case, we can see that both of

a and d are even by writing α explicitly with the following integral basis:
{

1,
1 +

√
l

2
,
1 +

√−q

2
,
1 +

√
l +

√−q +
√
−lq

4

}

.

Hence we can write α = (a′+d′
√
−lq)/2 with integers a′ = a/2 and d′ = d/2.

This implies that p is already principal in k. However, it contradicts to the
fact that the order of c(p) is 2. Then we see NH/Q(

√
−q)α = −p, and hence

a = d = 0. We can see that both of b and c are even and b ≡ c (mod 4)
by writing α explicitly with the above integral basis. Hence we can write
α = (b′

√
l + c′

√−q)/2 with integers b′ = b/2 and c′ = c/2 and they satisfy
b′ ≡ c′ (mod 2).

Since p is prime to l and q, we see that b′c′ 6= 0. The lemma follows. �

By using this, we can obtain the following:

Proposition 2.4. Assume that k is of the form (c) and h(k) = 2p
with an odd prime p which splits in k. If h(k) < (l + q)/2, then Question
1.1 has a positive answer for k. Moreover, if lq ≡ 7 (mod 8) and h(k) <
min{2l + 8q, 8l + 2q}, then Question 1.1 has a positive answer for k.

Proof. Throughout the proof, we may suppose that
(

l
p

)

= −1 by Proposi-
tion 2.1.

Assume that p2 is principal. Then by Lemma 2.3, we can write p =
((b′)2l + (c′)2q)/4 with some non-zero integers b′ and c′. Hence we see p ≥
(l + q)/4. Since h(k) = 2p, the former part follows.

Assume that lq ≡ 7 (mod 8) and p2 is principal. Similarly, we can write
4p = (b′)2l + (c′)2q. Since p is odd, we see 4p ≡ 4 (mod 8). Recall that
b′ ≡ c′ (mod 2). If both of b′ and c′ are odd, then

(b′)2l + (c′)2q ≡ l + q ≡ 0 (mod 8)

from the assumption that lq ≡ 7 (mod 8). Hence both of b′ and c′ must
be even, and p = (b′′)2l + (c′′)2q with b′′ = b′/2 and c′′ = c′/2. Moreover,



190 T. ITOH

either b′′ or c′′ must be even because p is odd. Hence we see that p ≥
min{l + 4q, 4l + q}. The latter part follows. �

Next, we shall quote the following:

Theorem B (Ramaré [13]). Let χ be a primitive Dirichlet character of
conductor f . Assume that χ(−1) = −1 and f is odd. Then

∣

∣

∣

∣

(

1 − χ(2)

2

)

L(1, χ)

∣

∣

∣

∣

≤ 1

4

(

log f + 5 − 2 log
3

2

)

,

where L(s, χ) is the Dirichlet L-function.

Let k be an imaginary quadratic field which is of the form (c). From the
above theorem, we obtain the following upper bound:

(1) h(k) ≤
√

lq

2(2 − χk(2))π

(

log lq + 5 − 2 log
3

2

)

by using the analytic class number formula, where χk is the Dirichlet char-
acter corresponding to k. We mentioned at the beginning of this section
that if h(k) <

√
lq then Question 1.1 has a positive answer. Moreover, if

lq ≡ 7 (mod 8) and h(k) < 8
√

lq then Question 1.1 has a positive answer
by Proposition 2.4. Connecting the above upper bound of h(k), we obtain
the following:

Corollary 2.5. Assume that k is of the form (c) and h(k) = 2p with an
odd prime p which splits in k.

• If lq ≡ 3 (mod 8) and

lq <
9

4
exp(6π − 5) = 2327920.965 . . . ,

then Question 1.1 has a positive answer.
• If lq ≡ 7 (mod 8) and

lq <
9

4
exp(16π − 5) = 102501865638106235900.902 . . . ,

then Question 1.1 has a positive answer.

Remark 2.6. By using the method which is given in the proof of Proposition
2.4, we can see that if lq ≡ 3 (mod 8), (l + q)/4 is not a prime number, and
h(k) < min{(l + 9q)/2, (9l + q)/2}, then Question 1.1 has a positive answer
for k. In particular, if lq ≡ 3 (mod 8), (l + q)/4 is not a prime number, and

lq <
9

4
exp(18π − 5) = 54888893724926503841046.318 . . . ,

then Question 1.1 has a positive answer.
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Next, we will show that if a “small” prime ramifies in k, then Question 1.1
has a positive answer. In the following, we use slightly different notations.
We put k = Q(

√
−rs) with rational primes r, s which satisfy rs ≡ 3 (mod 4)

and
(

r
s

)

= −1. Fix an odd prime s, and put

fs(x) =
x + s

2
−

√
xs

6π

(

log sx + 5 − 2 log
3

2

)

.

Assume that h(k) = 2p with an odd prime p which splits in k. By Propo-
sition 2.4 and (1), if fs(r) > 0, then Question 1.1 has a positive answer for
k.

We put κ = (9/4) exp(6π − 5). If r < κ/s, then fs(r) > 0. Moreover, if
f ′

s(κ/s) > 0, then we see that fs(r) > 0 for all r. We note that if

s <
9π exp

(

6π−5
2

)

6π + 2
= 1379.394 . . . ,

then f ′
s(κ/s) > 0. This implies:

Proposition 2.7. We put k = Q(
√
−rs) with rational primes r, s which

satisfy rs ≡ 3 (mod 4) and
(

r
s

)

= −1. Assume that h(k) = 2p with an odd
prime p which splits in k. If s ≤ 1379, then Question 1.1 has a positive
answer for k.

Moreover, if we fix a prime s > 1379, then at most finitely many primes
r satisfy fs(r) < 0. Hence we can check whether Question 1.1 has a positive
answer for all r. For example, we put s = 1523. There are only 23 primes r
which satisfies rs ≥ κ, rs ≡ 3 (mod 4),

(

r
s

)

= −1, and fs(r) < 0. These are
1609, 1621, 1637, 1693, 1733, 1741, 1777, 1801, 1861, 1913, 1933, 1973, 2053,
2069, 2089, 2113, 2153, 2161, 2237, 2269, 2281, 2297, 2309. All primes r in
this list satisfy rs < 1020. Hence by Corollary 2.5 and Remark 2.6, if rs ≡ 7
(mod 8) or (r+s)/4 is not a prime, then Question 1.1 has a positive answer.
From this, we see that the primes r for which we must check the class number
of Q(

√
−rs) are 1913 and 2153. We find that h(Q(

√
−1523 × 1913)) = 310

and h(Q(
√
−1523 × 2153)) = 350. Both fields do not satisfy the assumption

of Question 1.1. Hence if s = 1523, then Question 1.1 has a positive answer
for all r. Similarly, we checked that Question 1.1 has a positive answer if
1379 < s < 1525. (We note that

√
κ = 1525.752 . . . .) As a consequence, we

have the following:

Corollary 2.8. Let k be an imaginary quadratic field. Assume that
h(k) = 2p with an odd prime p which splits in k. If a rational prime which
is smaller than 1525 ramifies in k, then Question 1.1 has a positive answer
for k.
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Remark 2.9. We can also consider the following question: if h(k) = 3p
and p splits in k, then is the cube of a prime lying above p not principal?
However, this question has a negative answer. We put k = Q(

√
−15391).

Then h(k) = 3×31 and the rational prime 31 splits in k. Let p be a prime in
k lying above 31. Then p3 is principal because 313 = (120+

√
−15391)(120−√

−15391).

3. Consideration for Question 1.2

In this section, let k be an imaginary quartic abelian field. In this case, k
is a bicyclic biquadratic field or a cyclic quartic field. Assume that k satisfies
h(k) = h−(k) = p with an odd prime p which splits completely in k.

First, we shall show the following:

Proposition 3.1. If k is a bicyclic biquadratic field, then Question 1.2
has a positive answer.

Proof. Since h−(k) = p, there is a unique imaginary quadratic subfield k ′

of k which satisfies h(k′) = p or h(k′) = 2p. Let A(k) (resp. A(k′)) be the
Sylow p-subgroup of Cl(k) (resp. Cl(k ′)). Let p be a prime of k′ lying above
p. By Theorem A, Proposition 2.1, and Proposition 2.2, we can see that
A(k′) is generated by c(p). Let P be a prime of k lying above p. Since p is
not principal and p = Nk/k′P, it follows that P is not principal. (We can
also show this by using the following method. We denote by σP (resp. σp)
the Frobenius element of Gal(H(k)/k) (resp. Gal(H(k ′)/k′)) corresponding
to P (resp. p), where H(k) (resp. H(k ′)) is the Hilbert class field of k (resp.
k′). Since the restriction σP|H(k′) coincides with σp and the order of σp is
divisible by p, we see that the order of σP is exactly p.) The proposition
follows. �

We assume that k is a cyclic quartic field. If h−(k) is an odd prime, then
we can see that the conductor of k is an odd prime q by [3, Theorem 3’].
Moreover, we see q ≡ 5 (mod 8) because k is an imaginary cyclic quartic
field. By specializing the method given in the proof of [9, Theorem D], we
can obtain the following:

Lemma 3.2. Let q be an odd prime which satisfies q ≡ 5 (mod 8), and k
the imaginary cyclic quartic field of conductor q. Let p be a rational prime
which splits completely in k, and P a prime of k lying above p. If P is
principal, then p > q/8.

Proof. Let ε be the fundamental unit of k+ = Q(
√

q). Since h(k+) is odd,
we can see that k/k+ has a relative integral basis (see, e.g., [6]).
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Assume that, P is principal. We claim that

P =

(

α + β
√

−ε
√

q

2

)

with non-zero algebraic integers α, β in k+. It is known that
k = Q(

√

−(q + b
√

q)) with an even integer b (see, e.g., [10]). Since k/k+ has

a relative integral basis, we can write k = k+(
√

−ε
√

q) by using [6, Lemma
2]. Moreover, we can apply Theorem 2 of [6]. From this theorem, every al-

gebraic integer of k is written in the form
α+β

√
−ε

√
q

2 with algebraic integers
α, β in k+. Hence we can take an generator of P written in the above form.
Since p splits completely in k, both of α and β must be non-zero. The claim
follows.

By taking the norm of the above generator to Q, we obtain the following:

p =
1

16

{

(αασ)2 + (ββσ)2q +
√

q((ασ)2β2ε − α2(βσ)2εσ)
}

,

where σ is the nontrivial automorphism of Gal(k+/Q). We note that√
q((ασ)2β2ε − α2(βσ)2εσ) is a positive rational integer and divisible by

q. Hence we see p > (q + q)/16 = q/8. �

As a conclusion of the above lemma, if h−(k) < q/8 then Question 1.2 has
a positive answer. By using Theorem B, if q > 5 then we have the following
upper bound:

(2) h−(k) ≤ q

40π2

(

log q + 5 − 2 log
3

2

)2

(see also Corollary 11 of [11]). Unfortunately, the above lemma is not useful
to deduce that Question 1.2 has a positive answer for all k. In fact, if
we remove the restriction on the class number, there exist imaginary cyclic
quartic fields k of conductor q which satisfy h(k) > q/8 (see [10]).

We note that if an odd prime p divides h(k) and p does not divide h(k+),
then the p-rank of the Sylow p-subgroup of Cl(k) is greater than or equal
to the order of p in (Z/4Z)× (see, e.g., [14, Theorem 10.8]). Hence we see
that if h(k) = h−(k) = p, then p ≡ 1 (mod 4). On the other hand, we can
obtain the following result. It is also considered as an analog of Theorem A.

Proposition 3.3. Let q be an odd prime which satisfies q ≡ 5 (mod 8),
and k the imaginary cyclic quartic field of conductor q. Assume that k
satisfies h(k) = h−(k) = p2 with an odd prime p ≡ 3 (mod 4) which splits
completely in k. Then Cl(k) is generated by the classes containing a prime
ideal lying above p.
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Proof. We may assume that q ≥ 13. Let P be a prime of k lying above
p. By Lemma 3.2, we see that if h(k) < q2/64, then P is not principal. We
note that

q

40π2

(

log q + 5 − 2 log
3

2

)2

<
q2

64

holds if q ≥ 13. Hence P is not principal by (2).
Let D be the subgroup of Cl(k) generated by the classes containing a

prime ideal lying above p. Since P is not principal, D is a nontrivial p-
group. We note that Gal(k/Q) acts on D. By using the same argument
given in the proof of [14, Theorem 10.8], we can see that the p-rank of D is
greater than or equal to 2. Since Cl(k) ∼= (Z/pZ)2, the assertion follows. �

4. Application to Iwasawa theory

Our questions relate to a question on the Iwasawa invariants of certain
non-cyclotomic Zp-extensions. Let N be an algebraic number field and p a
rational prime. For a Zp-extension M/N , we denote by λ(M/N), µ(M/N),
and ν(M/N) the Iwasawa λ-, µ-, and ν-invariants of M/N , respectively.

4.1. Let k be an imaginary quadratic field and p an odd prime which splits
into two distinct primes p and p′ in k. By class field theory, there exists
a unique Zp-extension K/k which is unramified outside p. As an analog
of Greenberg’s conjecture, there is a question (cf. [2]): are the invariants
λ(K/k) and µ(K/k) always zero?.

For example, if h(k) is not divisible by p, then λ(K/k) = µ(K/k) = 0.
Moreover, it is known that if A(k) is generated by a power of c(p), then
λ(K/k) = µ(K/k) = 0 (see [12], [2]). Hence, if h(k) = p, then λ(K/k) =
µ(K/k) = 0 by Theorem A ([2]). Similarly, if h(k) = 2p and Question 1.1
has a positive answer for k, then λ(K/k) = µ(K/k) = 0.

Moreover, if A(k) is generated by a power of c(p), then Greenberg’s gen-
eralized conjecture (GGC) also holds for k and p ([12]). (For the detail of
GGC, see [5].)

4.2. Next, let k be an imaginary quartic abelian field and p an odd prime
which splits completely in k. Let p1 and p2 be the distinct primes in k+ lying
above p, and P1 (resp. P2) be a prime in k lying above p1 (resp. p2). By
class field theory, there exists a unique Zp-extension K/k which is unramified
outside P1,P2 (see, e.g., [7, Lemma 2.2]). Let k+

∞ be the cyclotomic Zp-
extension of k+. In [7], it is shown that if h(k) is not divisible by p and
λ(k+

∞/k+) = µ(k+
∞/k+) = ν(k+

∞/k+) = 0, then λ(K/k) = µ(K/k) = 0.
Moreover, Goto [4] independently obtained the following (the statement is
modified by using the argument given in [7]):
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Theorem C (Goto [4]). If both of P1 and P2 are totally ramified, A(k)
is generated by a power of c(P1) and c(P2), and λ(k+

∞/k+) = µ(k+
∞/k+) =

ν(k+
∞/k+) = 0, then λ(K/k) = µ(K/k) = 0.

By using this, we can see the following:

Proposition 4.1. Assume that h(k) = p and Question 1.2 has a positive
answer for k. If λ(k+

∞/k+) = µ(k+
∞/k+) = ν(k+

∞/k+) = 0, then λ(K/k) =
µ(K/k) = 0.

Proof. For a positive integer n, let kn be the n-th layer of K/k. By using
the argument given in the proof of [7, Proposition 3.2], we can see that
both of P1 and P2 are totally ramified or unramified in k1/k. If both of
P1 and P2 are totally ramified, then the assertion follows from Theorem
C. Otherwise, we can see that the order of A(kn)Gal(kn/k) is 1 for n ≥ 1 by
using the genus formula. Hence A(kn) is trivial for all n ≥ 1. �

Proposition 4.2. Assume that k is a cyclic quartic field, h(k) = h−(k) =
p2, and p ≡ 3 (mod 4). If both of P1 and P2 are totally ramified and
λ(k+

∞/k+) = µ(k+
∞/k+) = ν(k+

∞/k+) = 0, then λ(K/k) = µ(K/k) = 0.

Proof. Let D be the subgroup of Cl(k) generated by the classes containing
a prime ideal lying above p. By Proposition 3.3, we see that Cl(k) = D.
Since h(k+) = 1, D is actually generated by c(P1) and c(P2). Hence we
can apply Theorem C. �

By using the argument given in [7] (with some modifications), we can see
that if k satisfies the assumption of Proposition 4.1 or Proposition 4.2, then
GGC for k and p holds.
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