SOME QUESTIONS ON THE IDEAL CLASS GROUP OF IMAGINARY ABELIAN FIELDS

TSUYOSHI ITOH

ABSTRACT. Let k be an imaginary quadratic field. Assume that the class number of k is exactly an odd prime number p, and p splits into two distinct primes in k. Then it is known that a prime ideal lying above p is not principal. In the present paper, we shall consider a question whether a similar result holds when the class number of k is 2p. We also consider an analogous question for the case that k is an imaginary quartic abelian field.

1. QUESTIONS

At first, we shall introduce the following:

Theorem A. Let k be an imaginary quadratic field. Assume that the class number of k is exactly an odd prime number p which splits into two distinct primes \mathbf{p} and \mathbf{p}' in k. Then \mathbf{p} is not principal.

This result is mentioned in the proof of [2, Proposition 2.4]. In the present paper, we try to generalize the above result. In particular, we shall consider the following two questions:

Question 1.1. Let k be an imaginary quadratic field. Assume that the class number of k is exactly 2p with an odd prime p which splits into two distinct primes \mathfrak{p} and \mathfrak{p}' in k. Then is \mathfrak{p}^2 not principal?

Question 1.2. Let k be an imaginary quartic abelian field. Assume that both of the class number and the relative class number of k are exactly an odd prime number p, and p splits completely in k. Let p be a prime ideal of k lying above p. Then is p not principal?

The assertion in the above questions (and Theorem A) implies that all classes in the Sylow *p*-subgroup of the ideal class group contain a power of **p**. Of course, it is not satisfied in general (see Remark 2.9).

Question 1.1 has originally arisen from a question on Iwasawa theory. Under the assumption of Theorem A, it is known that both of the Iwasawa λ -

Mathematics Subject Classification. Primary 11R29; Secondary 11R23. Key words and phrases. Ideal class group.

and μ -invariants of the "p-ramified" \mathbb{Z}_p -extension of k are zero ([2, Proposition 2.4]). If Question 1.1 has a positive answer, we can obtain a similar result (see section 4).

The author expects that at least Question 1.1 always has a positive answer.

We shall consider Question 1.1 in section 2. We will show that Question 1.1 has a positive answer for many imaginary quadratic fields. Especially, if the absolute value of the discriminant of k is "small", then Question 1.1 has a positive answer for k (Corollary 2.5). Moreover, if a rational prime which is smaller than 1525 ramifies in k, then Question 1.1 has a positive answer for k (Corollary 2.8).

In section 3, we shall consider Question 1.2. We will show that if k is a bicyclic biquadratic field, then Question 1.2 has a positive answer for k (Proposition 3.1). However, little is known in the case that k is a cyclic quartic field.

In section 4, we will give an application to Iwasawa theory.

We will use the following notations throughout the present paper. We denote by (\div) the quadratic residue symbol. Let k be an algebraic number field. We denote by $\operatorname{Cl}(k)$ the ideal class group of k, h(k) the class number of k, and d(k) the absolute value of the discriminant of k. For a fractional ideal \mathfrak{a} of k, we denote by $c(\mathfrak{a})$ the ideal class of k which contains \mathfrak{a} . For a finite extension k'/k of algebraic number fields, we denote by $N_{k'/k}$ the norm mapping from k' to k. If k is a CM-field, then we denote by k^+ the maximal real subfield of k and $h^-(k) = h(k)/h(k^+)$ the relative class number.

2. Consideration for Question 1.1

First, we shall briefly recall the proof of Theorem A which is stated in [2]. Let k be an imaginary quadratic field such that h(k) = p with an odd prime p which splits into two distinct primes \mathfrak{p} and \mathfrak{p}' in k. Since h(k) is odd, we may write $k = \mathbb{Q}(\sqrt{-q})$ with an odd prime number q which satisfies $q \equiv 3 \pmod{4}$. If \mathfrak{p} is principal, then we have an inequality $p \ge q/4$ by taking the norm of a generator of \mathfrak{p} to \mathbb{Q} . However, we can see p = h(k) < q/4 by using Dirichlet's class number formula. It is a contradiction.

Let k be an imaginary quadratic field such that h(k) = 2p with an odd prime p which splits into two distinct primes \mathfrak{p} and \mathfrak{p}' in k. We shall apply the above method for Question 1.1. Assume that \mathfrak{p}^2 is principal. Then $p^2 \ge d(k)/4$. Since h(k) = 2p, if $h(k) < \sqrt{d(k)}$ then Question 1.1 has a positive answer. However, the Brauer-Siegel theorem implies that

$$\frac{\log h(k)}{\log \sqrt{d(k)}} \to 1, \quad (d(k) \to \infty).$$

Hence it seems difficult to solve Question 1.1 by applying this method directly. If we remove the restriction on the class number, an imaginary quadratic field k which satisfies $h(k) > \sqrt{d(k)}$ really exists.

We begin a more detailed consideration for Question 1.1. Since h(k) = 2p, we may assume that k is one of the following:

- (a) $k = \mathbb{Q}(\sqrt{-q})$ with an odd prime q satisfying $q \equiv 5 \pmod{8}$,
- (b) $k = \mathbb{Q}(\sqrt{-2q})$ with an odd prime q satisfying $q \equiv 3, 5 \pmod{8}$,
- (c) $k = \mathbb{Q}(\sqrt{-lq})$ with odd primes l, q satisfying $l \equiv 1, q \equiv 3 \pmod{4}$ and $\left(\frac{l}{q}\right) = -1$.

Proposition 2.1. Assume that k is of the form (a) or (b), that is, the prime 2 ramifies in k. Then Question 1.1 has a positive answer for k.

Proof. We shall only show for the case that k is of the form (b). The rest case can be proven similarly.

Let \mathfrak{p} be a prime ideal in k lying above p. Assume that \mathfrak{p}^2 is principal. We take a generator $a + b\sqrt{-2q}$ of \mathfrak{p}^2 , where a and b are integers. Since p splits in k, we see $ab \neq 0$. We may assume that a > 0. By taking the norm of $a + b\sqrt{-2q}$ to \mathbb{Q} , we see $p^2 = a^2 + 4b^2q$. Hence $(p-a)(p+a) = 4b^2q$. Note that the right hand side is positive and then p > a. Since q is a prime number, q divides p + a or p - a. If q divides p - a, then $p > p - a \geq q$. Otherwise, $2p > p + a \geq q$. Consequently we have the inequality 2p > q.

On the other hand, by using a modified version of Dirichlet's class number formula (see, e.g., [8, Theorem 9.7.7]), we can see

$$2p = h(k) = \sum_{i=0}^{2q} \chi_k(i),$$

where χ_k is the Dirichlet character corresponding to k. Since $\chi_k(i) = 0$ for even i, the right hand side is less than or equal to q. Hence we see that $2p \leq q$. It is a contradiction.

In the rest of this section, we assume that k is of the form (c). In this case, Question 1.1 has not been solved yet. However, we can see that Question 1.1 has a positive answer for many cases.

Proposition 2.2. Assume that k is of the form (c) and h(k) = 2p with an odd prime p which splits in k. If $\left(\frac{l}{p}\right) = 1$, then Question 1.1 has a positive answer for k.

Proof. Assume that $\left(\frac{l}{p}\right) = 1$. We note that $H := \mathbb{Q}(\sqrt{l}, \sqrt{-q})$ is the Hilbert 2-class field of k. By the assumption, the prime \mathfrak{p} lying above p splits in H/k. Hence, the order of the ideal class $c(\mathfrak{p})$ containing \mathfrak{p} is 1 or p. If the order

T. ITOH

of $c(\mathfrak{p})$ is 1, then we can see p > lq/4 by taking the norm of a generator of \mathfrak{p} to \mathbb{Q} . Hence h(k) = 2p > lq/2. However, we can easily see that h(k) < lq/2 by using Dirichlet's class number formula. It is a contradiction. Then the order of $c(\mathfrak{p})$ is p, and this implies that \mathfrak{p}^2 is not principal. \Box

We will show that if d(k) is "small" then Question 1.1 has a positive answer. First, we shall prove the following lemma.

Lemma 2.3. Assume that k is of the form (c) and h(k) = 2p with an odd prime p which splits two distinct primes \mathfrak{p} and \mathfrak{p}' in k. Moreover, assume that $\left(\frac{l}{p}\right) = -1$. If \mathfrak{p}^2 is principal, then there are non-zero integers b' and c' such that

$$p = \frac{(b')^2 l + (c')^2 q}{4}$$

and $b' \equiv c' \pmod{2}$.

Proof. Under the assumptions, we can see that the order of $c(\mathfrak{p})$ is exactly 2 by using the argument given in the proof of Proposition 2.2. By Hilbert 94 or Tannaka-Terada's principal ideal theorem, we see that \mathfrak{p} becomes principal in $\mathbb{Q}(\sqrt{l}, \sqrt{-q})$. We put $H = \mathbb{Q}(\sqrt{l}, \sqrt{-q})$ and denote by \mathcal{O}_H the ring of algebraic integers in H. Let $\alpha \in \mathcal{O}_H$ be a generator of $\mathfrak{p}\mathcal{O}_H$. We can write

$$\alpha = \frac{a + b\sqrt{l} + c\sqrt{-q} + d\sqrt{-lq}}{4}$$

with some integers a, b, c, and d.

We note that $N_{H/\mathbb{Q}(\sqrt{l})}\alpha$ is a totally positive integer of $\mathbb{Q}(\sqrt{l})$. Since $N_{H/\mathbb{Q}(\sqrt{l})}\alpha$ generates the unique prime ideal of $\mathbb{Q}(\sqrt{l})$ lying above p, we can write $N_{H/\mathbb{Q}(\sqrt{l})}\alpha = p\varepsilon$ with a totally positive unit ε of $\mathbb{Q}(\sqrt{l})$. We note that the norm of the fundamental unit of $\mathbb{Q}(\sqrt{l})$ to \mathbb{Q} is -1. From this, we can take α which satisfies $N_{H/\mathbb{Q}(\sqrt{l})}\alpha = p$ by multiplying some power of the fundamental unit. Hence we have the equation

$$N_{H/\mathbb{Q}(\sqrt{l})}\alpha = \frac{(a^2 + b^2l + c^2q + d^2lq) + (2ab + 2cdq)\sqrt{l}}{16} = p.$$

This implies that 2ab + 2cdq = 0, and then

$$p = \frac{a^2 + b^2l + c^2q + d^2lq}{16}$$

Next, we shall take the norm of α to $\mathbb{Q}(\sqrt{-q})$. If q > 3, we see $N_{H/\mathbb{Q}(\sqrt{-q})}\alpha = \pm p$. If q = 3, we can take α which satisfies $N_{H/\mathbb{Q}(\sqrt{l})}\alpha = p$

and $N_{H/\mathbb{Q}(\sqrt{-q})}\alpha = \pm p$ by multiplying some third root of unity. Hence we have the equation

$$N_{H/\mathbb{Q}(\sqrt{-q})}\alpha = \frac{(a^2 - b^2l - c^2q + d^2lq) + (2ac - 2bdl)\sqrt{-q}}{16} = \pm p.$$

This implies that 2ac - 2bdl = 0, and then

$$\pm p = \frac{a^2 - b^2l - c^2q + d^2lq}{16}$$

If $N_{H/\mathbb{Q}(\sqrt{-q})}\alpha = p$, then b = c = 0. In this case, we can see that both of a and d are even by writing α explicitly with the following integral basis:

$$\left\{1, \frac{1+\sqrt{l}}{2}, \frac{1+\sqrt{-q}}{2}, \frac{1+\sqrt{l}+\sqrt{-q}+\sqrt{-lq}}{4}\right\}.$$

Hence we can write $\alpha = (a'+d'\sqrt{-lq})/2$ with integers a' = a/2 and d' = d/2. This implies that \mathfrak{p} is already principal in k. However, it contradicts to the fact that the order of $c(\mathfrak{p})$ is 2. Then we see $N_{H/\mathbb{Q}(\sqrt{-q})}\alpha = -p$, and hence a = d = 0. We can see that both of b and c are even and $b \equiv c \pmod{4}$ by writing α explicitly with the above integral basis. Hence we can write $\alpha = (b'\sqrt{l} + c'\sqrt{-q})/2$ with integers b' = b/2 and c' = c/2 and they satisfy $b' \equiv c' \pmod{2}$.

Since p is prime to l and q, we see that $b'c' \neq 0$. The lemma follows. \Box

By using this, we can obtain the following:

Proposition 2.4. Assume that k is of the form (c) and h(k) = 2p with an odd prime p which splits in k. If h(k) < (l+q)/2, then Question 1.1 has a positive answer for k. Moreover, if $lq \equiv 7 \pmod{8}$ and $h(k) < \min\{2l+8q,8l+2q\}$, then Question 1.1 has a positive answer for k.

Proof. Throughout the proof, we may suppose that $\left(\frac{l}{p}\right) = -1$ by Proposition 2.1.

Assume that \mathfrak{p}^2 is principal. Then by Lemma 2.3, we can write $p = ((b')^2 l + (c')^2 q)/4$ with some non-zero integers b' and c'. Hence we see $p \ge (l+q)/4$. Since h(k) = 2p, the former part follows.

Assume that $lq \equiv 7 \pmod{8}$ and \mathfrak{p}^2 is principal. Similarly, we can write $4p = (b')^2 l + (c')^2 q$. Since p is odd, we see $4p \equiv 4 \pmod{8}$. Recall that $b' \equiv c' \pmod{2}$. If both of b' and c' are odd, then

$$(b')^2 l + (c')^2 q \equiv l + q \equiv 0 \pmod{8}$$

from the assumption that $lq \equiv 7 \pmod{8}$. Hence both of b' and c' must be even, and $p = (b'')^2 l + (c'')^2 q$ with b'' = b'/2 and c'' = c'/2. Moreover, either b'' or c'' must be even because p is odd. Hence we see that $p \ge \min\{l+4q, 4l+q\}$. The latter part follows.

Next, we shall quote the following:

Theorem B (Ramaré [13]). Let χ be a primitive Dirichlet character of conductor f. Assume that $\chi(-1) = -1$ and f is odd. Then

$$\left| \left(1 - \frac{\chi(2)}{2} \right) L(1,\chi) \right| \le \frac{1}{4} \left(\log f + 5 - 2\log \frac{3}{2} \right)$$

where $L(s, \chi)$ is the Dirichlet L-function.

Let k be an imaginary quadratic field which is of the form (c). From the above theorem, we obtain the following upper bound:

(1)
$$h(k) \le \frac{\sqrt{lq}}{2(2-\chi_k(2))\pi} \left(\log lq + 5 - 2\log \frac{3}{2}\right)$$

by using the analytic class number formula, where χ_k is the Dirichlet character corresponding to k. We mentioned at the beginning of this section that if $h(k) < \sqrt{lq}$ then Question 1.1 has a positive answer. Moreover, if $lq \equiv 7 \pmod{8}$ and $h(k) < 8\sqrt{lq}$ then Question 1.1 has a positive answer by Proposition 2.4. Connecting the above upper bound of h(k), we obtain the following:

Corollary 2.5. Assume that k is of the form (c) and h(k) = 2p with an odd prime p which splits in k.

• If $lq \equiv 3 \pmod{8}$ and

$$lq < \frac{9}{4}\exp(6\pi - 5) = 2327920.965\dots,$$

then Question 1.1 has a positive answer.

• If $lq \equiv 7 \pmod{8}$ and $lq < \frac{9}{4} \exp(16\pi - 5) = 102501865638106235900.902...,$

then Question 1.1 has a positive answer.

Remark 2.6. By using the method which is given in the proof of Proposition 2.4, we can see that if $lq \equiv 3 \pmod{8}$, (l+q)/4 is not a prime number, and $h(k) < \min\{(l+9q)/2, (9l+q)/2\}$, then Question 1.1 has a positive answer for k. In particular, if $lq \equiv 3 \pmod{8}$, (l+q)/4 is not a prime number, and

$$lq < \frac{9}{4}\exp(18\pi - 5) = 54888893724926503841046.318\dots,$$

then Question 1.1 has a positive answer.

Next, we will show that if a "small" prime ramifies in k, then Question 1.1 has a positive answer. In the following, we use slightly different notations. We put $k = \mathbb{Q}(\sqrt{-rs})$ with rational primes r, s which satisfy $rs \equiv 3 \pmod{4}$ and $\left(\frac{r}{s}\right) = -1$. Fix an odd prime s, and put

$$f_s(x) = \frac{x+s}{2} - \frac{\sqrt{xs}}{6\pi} \left(\log sx + 5 - 2\log\frac{3}{2} \right).$$

Assume that h(k) = 2p with an odd prime p which splits in k. By Proposition 2.4 and (1), if $f_s(r) > 0$, then Question 1.1 has a positive answer for k.

We put $\kappa = (9/4) \exp(6\pi - 5)$. If $r < \kappa/s$, then $f_s(r) > 0$. Moreover, if $f'_s(\kappa/s) > 0$, then we see that $f_s(r) > 0$ for all r. We note that if

$$s < \frac{9\pi \exp\left(\frac{6\pi - 5}{2}\right)}{6\pi + 2} = 1379.394\dots,$$

then $f'_s(\kappa/s) > 0$. This implies:

Proposition 2.7. We put $k = \mathbb{Q}(\sqrt{-rs})$ with rational primes r, s which satisfy $rs \equiv 3 \pmod{4}$ and $\left(\frac{r}{s}\right) = -1$. Assume that h(k) = 2p with an odd prime p which splits in k. If $s \leq 1379$, then Question 1.1 has a positive answer for k.

Moreover, if we fix a prime s > 1379, then at most finitely many primes r satisfy $f_s(r) < 0$. Hence we can check whether Question 1.1 has a positive answer for all r. For example, we put s = 1523. There are only 23 primes r which satisfies $rs \ge \kappa$, $rs \equiv 3 \pmod{4}$, $\left(\frac{r}{s}\right) = -1$, and $f_s(r) < 0$. These are 1609, 1621, 1637, 1693, 1733, 1741, 1777, 1801, 1861, 1913, 1933, 1973, 2053, 2069, 2089, 2113, 2153, 2161, 2237, 2269, 2281, 2297, 2309. All primes r in this list satisfy $rs < 10^{20}$. Hence by Corollary 2.5 and Remark 2.6, if $rs \equiv 7 \pmod{8}$ or (r+s)/4 is not a prime, then Question 1.1 has a positive answer. From this, we see that the primes r for which we must check the class number of $\mathbb{Q}(\sqrt{-rs})$ are 1913 and 2153. We find that $h(\mathbb{Q}(\sqrt{-1523 \times 1913})) = 310$ and $h(\mathbb{Q}(\sqrt{-1523 \times 2153})) = 350$. Both fields do not satisfy the assumption of Question 1.1. Hence if s = 1523, then Question 1.1 has a positive answer for all r. Similarly, we checked that Question 1.1 has a positive answer if 1379 < s < 1525. (We note that $\sqrt{\kappa} = 1525.752...$.) As a consequence, we have the following:

Corollary 2.8. Let k be an imaginary quadratic field. Assume that h(k) = 2p with an odd prime p which splits in k. If a rational prime which is smaller than 1525 ramifies in k, then Question 1.1 has a positive answer for k.

Remark 2.9. We can also consider the following question: if h(k) = 3pand p splits in k, then is the cube of a prime lying above p not principal? However, this question has a negative answer. We put $k = \mathbb{Q}(\sqrt{-15391})$. Then $h(k) = 3 \times 31$ and the rational prime 31 splits in k. Let \mathfrak{p} be a prime in k lying above 31. Then \mathfrak{p}^3 is principal because $31^3 = (120 + \sqrt{-15391})(120 - \sqrt{-15391})$.

3. Consideration for Question 1.2

In this section, let k be an imaginary quartic abelian field. In this case, k is a bicyclic biquadratic field or a cyclic quartic field. Assume that k satisfies $h(k) = h^{-}(k) = p$ with an odd prime p which splits completely in k.

First, we shall show the following:

Proposition 3.1. If k is a bicyclic biquadratic field, then Question 1.2 has a positive answer.

Proof. Since $h^{-}(k) = p$, there is a unique imaginary quadratic subfield k' of k which satisfies h(k') = p or h(k') = 2p. Let A(k) (resp. A(k')) be the Sylow p-subgroup of $\operatorname{Cl}(k)$ (resp. $\operatorname{Cl}(k')$). Let \mathfrak{p} be a prime of k' lying above p. By Theorem A, Proposition 2.1, and Proposition 2.2, we can see that A(k') is generated by $c(\mathfrak{p})$. Let \mathfrak{P} be a prime of k lying above \mathfrak{p} . Since \mathfrak{p} is not principal and $\mathfrak{p} = N_{k/k'}\mathfrak{P}$, it follows that \mathfrak{P} is not principal. (We can also show this by using the following method. We denote by $\sigma_{\mathfrak{P}}$ (resp. $\sigma_{\mathfrak{p}}$) the Frobenius element of $\operatorname{Gal}(H(k)/k)$ (resp. $\operatorname{Gal}(H(k')/k')$) corresponding to \mathfrak{P} (resp. \mathfrak{p}), where H(k) (resp. H(k')) is the Hilbert class field of k (resp. k'). Since the restriction $\sigma_{\mathfrak{P}}|_{H(k')}$ coincides with $\sigma_{\mathfrak{p}}$ and the order of $\sigma_{\mathfrak{p}}$ is divisible by p, we see that the order of $\sigma_{\mathfrak{P}}$ is exactly p.) The proposition follows.

We assume that k is a cyclic quartic field. If $h^{-}(k)$ is an odd prime, then we can see that the conductor of k is an odd prime q by [3, Theorem 3']. Moreover, we see $q \equiv 5 \pmod{8}$ because k is an imaginary cyclic quartic field. By specializing the method given in the proof of [9, Theorem D], we can obtain the following:

Lemma 3.2. Let q be an odd prime which satisfies $q \equiv 5 \pmod{8}$, and k the imaginary cyclic quartic field of conductor q. Let p be a rational prime which splits completely in k, and \mathfrak{P} a prime of k lying above p. If \mathfrak{P} is principal, then p > q/8.

Proof. Let ε be the fundamental unit of $k^+ = \mathbb{Q}(\sqrt{q})$. Since $h(k^+)$ is odd, we can see that k/k^+ has a relative integral basis (see, e.g., [6]).

Assume that, \mathfrak{P} is principal. We claim that

$$\mathfrak{P} = \left(\frac{\alpha + \beta\sqrt{-\varepsilon\sqrt{q}}}{2}\right)$$

with non-zero algebraic integers α, β in k^+ . It is known that $k = \mathbb{Q}(\sqrt{-(q+b\sqrt{q})})$ with an even integer b (see, e.g., [10]). Since k/k^+ has a relative integral basis, we can write $k = k^+(\sqrt{-\varepsilon\sqrt{q}})$ by using [6, Lemma 2]. Moreover, we can apply Theorem 2 of [6]. From this theorem, every algebraic integer of k is written in the form $\frac{\alpha+\beta\sqrt{-\varepsilon\sqrt{q}}}{2}$ with algebraic integers α, β in k^+ . Hence we can take an generator of \mathfrak{P} written in the above form. Since p splits completely in k, both of α and β must be non-zero. The claim follows.

By taking the norm of the above generator to \mathbb{Q} , we obtain the following:

$$p = \frac{1}{16} \left\{ (\alpha \alpha^{\sigma})^2 + (\beta \beta^{\sigma})^2 q + \sqrt{q} ((\alpha^{\sigma})^2 \beta^2 \varepsilon - \alpha^2 (\beta^{\sigma})^2 \varepsilon^{\sigma}) \right\},$$

where σ is the nontrivial automorphism of $\operatorname{Gal}(k^+/\mathbb{Q})$. We note that $\sqrt{q}((\alpha^{\sigma})^2\beta^2\varepsilon - \alpha^2(\beta^{\sigma})^2\varepsilon^{\sigma})$ is a positive rational integer and divisible by q. Hence we see p > (q+q)/16 = q/8.

As a conclusion of the above lemma, if $h^-(k) < q/8$ then Question 1.2 has a positive answer. By using Theorem B, if q > 5 then we have the following upper bound:

(2)
$$h^{-}(k) \le \frac{q}{40\pi^2} \left(\log q + 5 - 2\log \frac{3}{2}\right)^2$$

(see also Corollary 11 of [11]). Unfortunately, the above lemma is not useful to deduce that Question 1.2 has a positive answer for all k. In fact, if we remove the restriction on the class number, there exist imaginary cyclic quartic fields k of conductor q which satisfy h(k) > q/8 (see [10]).

We note that if an odd prime p divides h(k) and p does not divide $h(k^+)$, then the p-rank of the Sylow p-subgroup of $\operatorname{Cl}(k)$ is greater than or equal to the order of p in $(\mathbb{Z}/4\mathbb{Z})^{\times}$ (see, e.g., [14, Theorem 10.8]). Hence we see that if $h(k) = h^-(k) = p$, then $p \equiv 1 \pmod{4}$. On the other hand, we can obtain the following result. It is also considered as an analog of Theorem A.

Proposition 3.3. Let q be an odd prime which satisfies $q \equiv 5 \pmod{8}$, and k the imaginary cyclic quartic field of conductor q. Assume that k satisfies $h(k) = h^{-}(k) = p^{2}$ with an odd prime $p \equiv 3 \pmod{4}$ which splits completely in k. Then Cl(k) is generated by the classes containing a prime ideal lying above p.

T. ITOH

Proof. We may assume that $q \ge 13$. Let \mathfrak{P} be a prime of k lying above p. By Lemma 3.2, we see that if $h(k) < q^2/64$, then \mathfrak{P} is not principal. We note that

$$\frac{q}{40\pi^2} \left(\log q + 5 - 2\log \frac{3}{2} \right)^2 < \frac{q^2}{64}$$

holds if $q \ge 13$. Hence \mathfrak{P} is not principal by (2).

Let D be the subgroup of $\operatorname{Cl}(k)$ generated by the classes containing a prime ideal lying above p. Since \mathfrak{P} is not principal, D is a nontrivial pgroup. We note that $\operatorname{Gal}(k/\mathbb{Q})$ acts on D. By using the same argument given in the proof of [14, Theorem 10.8], we can see that the p-rank of D is greater than or equal to 2. Since $\operatorname{Cl}(k) \cong (\mathbb{Z}/p\mathbb{Z})^2$, the assertion follows. \Box

4. Application to Iwasawa theory

Our questions relate to a question on the Iwasawa invariants of certain non-cyclotomic \mathbb{Z}_p -extensions. Let N be an algebraic number field and p a rational prime. For a \mathbb{Z}_p -extension M/N, we denote by $\lambda(M/N)$, $\mu(M/N)$, and $\nu(M/N)$ the Iwasawa λ -, μ -, and ν -invariants of M/N, respectively.

4.1. Let k be an imaginary quadratic field and p an odd prime which splits into two distinct primes \mathfrak{p} and \mathfrak{p}' in k. By class field theory, there exists a unique \mathbb{Z}_p -extension K/k which is unramified outside \mathfrak{p} . As an analog of Greenberg's conjecture, there is a question (cf. [2]): are the invariants $\lambda(K/k)$ and $\mu(K/k)$ always zero?.

For example, if h(k) is not divisible by p, then $\lambda(K/k) = \mu(K/k) = 0$. Moreover, it is known that if A(k) is generated by a power of $c(\mathfrak{p})$, then $\lambda(K/k) = \mu(K/k) = 0$ (see [12], [2]). Hence, if h(k) = p, then $\lambda(K/k) = \mu(K/k) = 0$ by Theorem A ([2]). Similarly, if h(k) = 2p and Question 1.1 has a positive answer for k, then $\lambda(K/k) = \mu(K/k) = 0$.

Moreover, if A(k) is generated by a power of $c(\mathfrak{p})$, then Greenberg's generalized conjecture (GGC) also holds for k and p ([12]). (For the detail of GGC, see [5].)

4.2. Next, let k be an imaginary quartic abelian field and p an odd prime which splits completely in k. Let \mathfrak{p}_1 and \mathfrak{p}_2 be the distinct primes in k^+ lying above p, and \mathfrak{P}_1 (resp. \mathfrak{P}_2) be a prime in k lying above \mathfrak{p}_1 (resp. \mathfrak{p}_2). By class field theory, there exists a unique \mathbb{Z}_p -extension K/k which is unramified outside $\mathfrak{P}_1, \mathfrak{P}_2$ (see, e.g., [7, Lemma 2.2]). Let k_{∞}^+ be the cyclotomic \mathbb{Z}_p extension of k^+ . In [7], it is shown that if h(k) is not divisible by p and $\lambda(k_{\infty}^+/k^+) = \mu(k_{\infty}^+/k^+) = \nu(k_{\infty}^+/k^+) = 0$, then $\lambda(K/k) = \mu(K/k) = 0$. Moreover, Goto [4] independently obtained the following (the statement is modified by using the argument given in [7]):

Theorem C (Goto [4]). If both of \mathfrak{P}_1 and \mathfrak{P}_2 are totally ramified, A(k) is generated by a power of $c(\mathfrak{P}_1)$ and $c(\mathfrak{P}_2)$, and $\lambda(k_{\infty}^+/k^+) = \mu(k_{\infty}^+/k^+) = \nu(k_{\infty}^+/k^+) = 0$, then $\lambda(K/k) = \mu(K/k) = 0$.

By using this, we can see the following:

Proposition 4.1. Assume that h(k) = p and Question 1.2 has a positive answer for k. If $\lambda(k_{\infty}^+/k^+) = \mu(k_{\infty}^+/k^+) = \nu(k_{\infty}^+/k^+) = 0$, then $\lambda(K/k) = \mu(K/k) = 0$.

Proof. For a positive integer n, let k_n be the n-th layer of K/k. By using the argument given in the proof of [7, Proposition 3.2], we can see that both of \mathfrak{P}_1 and \mathfrak{P}_2 are totally ramified or unramified in k_1/k . If both of \mathfrak{P}_1 and \mathfrak{P}_2 are totally ramified, then the assertion follows from Theorem C. Otherwise, we can see that the order of $A(k_n)^{\operatorname{Gal}(k_n/k)}$ is 1 for $n \geq 1$ by using the genus formula. Hence $A(k_n)$ is trivial for all $n \geq 1$.

Proposition 4.2. Assume that k is a cyclic quartic field, $h(k) = h^-(k) = p^2$, and $p \equiv 3 \pmod{4}$. If both of \mathfrak{P}_1 and \mathfrak{P}_2 are totally ramified and $\lambda(k_{\infty}^+/k^+) = \mu(k_{\infty}^+/k^+) = \nu(k_{\infty}^+/k^+) = 0$, then $\lambda(K/k) = \mu(K/k) = 0$.

Proof. Let D be the subgroup of Cl(k) generated by the classes containing a prime ideal lying above p. By Proposition 3.3, we see that Cl(k) = D. Since $h(k^+) = 1$, D is actually generated by $c(\mathfrak{P}_1)$ and $c(\mathfrak{P}_2)$. Hence we can apply Theorem C.

By using the argument given in [7] (with some modifications), we can see that if k satisfies the assumption of Proposition 4.1 or Proposition 4.2, then GGC for k and p holds.

Acknowledgements

The author would like to express his thanks to the referee for his/her comments. The calculation of class numbers and all other computations are done by using KASH [1].

References

- M. Daberkow, C. Fieker, K. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger: KANT V4, J. Symbolic Comp. 24 (1997), 267–283.
- [2] T. Fukuda and K. Komatsu : Noncyclotomic \mathbb{Z}_p -extensions of imaginary quadratic fields, Experiment. Math. **11** (2002), 469–475.
- [3] H. Furuya : On divisibility by 2 of the relative class numbers of imaginary number fields, Tôhoku Math. J. (2) 23 (1971), 207–218.

T. ITOH

- [4] H. Goto : Iwasawa invariants on non-cyclotomic \mathbb{Z}_p -extensions of CM fields, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 152–154.
- [5] R. Greenberg: Iwasawa theory-past and present, Class field theory-its centenary and prospect, Advanced Studies in Pure Mathematics, **30**, 335–385, Mathematical Society of Japan, Tokyo, 2001.
- [6] J. A. Hymo and C. J. Parry : On relative integral bases for cyclic quartic fields, J. Number Theory 34 (1990), 189–197.
- [7] T. Itoh : On multiple \mathbb{Z}_p -extensions of imaginary abelian quartic fields, preprint.
- [8] H. Koch : Number theory: algebraic numbers and functions (translated by D. Kramer), Graduate Studies in Mathematics, **24**, American Mathematical Society, Providence, Rhode Island, 2000.
- [9] S. Louboutin : On the class number one problem for non-normal quartic CM-fields Tôhoku Math. J. (2), 46 (1994), 1–12.
- [10] S. Louboutin : Computation of relative class numbers of imaginary abelian number fields, Experiment. Math. 7 (1998), 293–303.
- [11] S. R. Louboutin : Explicit upper bounds for $|L(1,\chi)|$ for primitive characters χ , Q. J. Math., **55** (2004), 57–68.
- [12] J. Minardi : Iwasawa modules for \mathbb{Z}_p^d -extensions of algebraic number fields, Thesis (1986), University of Washington.
- [13] O. Ramaré : Approximate formulae for $L(1, \chi)$, II, Acta Arith. **112** (2004), 141–149.
- [14] L. C. Washington : Introduction to cyclotomic fields, second edition, Graduate Texts in Mathematics, 83, Springer, Berlin, Heidelberg, New York, 1996.

College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, JAPAN

e-mail address: tsitoh@se.ritsumei.ac.jp

(Received July 10, 2006) (Revised June 22, 2007)