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SOME QUESTIONS ON THE IDEAL CLASS GROUP OF
IMAGINARY ABELIAN FIELDS

TsuvosH! ITOH

ABSTRACT. Let k be an imaginary quadratic field. Assume that the
class number of k is exactly an odd prime number p, and p splits into
two distinct primes in k. Then it is known that a prime ideal lying above
p is not principal. In the present paper, we shall consider a question
whether a similar result holds when the class number of k is 2p. We
also consider an analogous question for the case that k is an imaginary
quartic abelian field.

1. QUESTIONS

At first, we shall introduce the following;:

Theorem A. Let k be an imaginary quadratic field. Assume that the class
number of k is exactly an odd prime number p which splits into two distinct
primes p and p’ in k. Then p is not principal.

This result is mentioned in the proof of [2, Proposition 2.4]. In the present
paper, we try to generalize the above result. In particular, we shall consider
the following two questions:

Question 1.1.  Let k be an imaginary quadratic field. Assume that the
class number of k is exactly 2p with an odd prime p which splits into two
distinct primes p and p’ in k. Then is p? not principal?

Question 1.2. Let k be an imaginary quartic abelian field. Assume that
both of the class number and the relative class number of k are exactly an
odd prime number p, and p splits completely in k. Let p be a prime ideal of
k lying above p. Then is p not principal?

The assertion in the above questions (and Theorem A) implies that all
classes in the Sylow p-subgroup of the ideal class group contain a power of
p. Of course, it is not satisfied in general (see Remark 2.9).

Question 1.1 has originally arisen from a question on Iwasawa theory. Un-
der the assumption of Theorem A, it is known that both of the Iwasawa A-
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and p-invariants of the “p-ramified” Z,-extension of k are zero ([2, Propo-
sition 2.4]). If Question 1.1 has a positive answer, we can obtain a similar
result (see section 4).

The author expects that at least Question 1.1 always has a positive an-
Swer.

We shall consider Question 1.1 in section 2. We will show that Question
1.1 has a positive answer for many imaginary quadratic fields. Especially, if
the absolute value of the discriminant of k£ is “small”, then Question 1.1 has
a positive answer for k (Corollary 2.5). Moreover, if a rational prime which
is smaller than 1525 ramifies in k, then Question 1.1 has a positive answer
for k (Corollary 2.8).

In section 3, we shall consider Question 1.2. We will show that if k is
a bicyclic biquadratic field, then Question 1.2 has a positive answer for k
(Proposition 3.1). However, little is known in the case that k is a cyclic
quartic field.

In section 4, we will give an application to Iwasawa theory.

We will use the following notations throughout the present paper. We
denote by (—) the quadratic residue symbol. Let k be an algebraic number
field. We denote by Cl(k) the ideal class group of k, h(k) the class number
of k, and d(k) the absolute value of the discriminant of k. For a fractional
ideal a of k, we denote by c(a) the ideal class of k£ which contains a. For a
finite extension &’/k of algebraic number fields, we denote by Ny, the norm
mapping from &’ to k. If k is a CM-field, then we denote by £+ the maximal
real subfield of k and h~ (k) = h(k)/h(k™) the relative class number.

2. CONSIDERATION FOR (QUESTION 1.1

First, we shall briefly recall the proof of Theorem A which is stated in [2].
Let k be an imaginary quadratic field such that h(k) = p with an odd prime
p which splits into two distinct primes p and p’ in k. Since h(k) is odd, we
may write k& = Q(y/—¢) with an odd prime number ¢ which satisfies ¢ = 3
(mod 4). If p is principal, then we have an inequality p > ¢/4 by taking the
norm of a generator of p to Q. However, we can see p = h(k) < ¢/4 by using
Dirichlet’s class number formula. It is a contradiction.

Let k be an imaginary quadratic field such that h(k) = 2p with an odd
prime p which splits into two distinct primes p and p’ in k. We shall apply
the above method for Question 1.1. Assume that p? is principal. Then
p? > d(k)/4. Since h(k) = 2p, if h(k) < \/d(k) then Question 1.1 has a
positive answer. However, the Brauer-Siegel theorem implies that

log h(k)

log /d(k)

1, (d(k) — o0).
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Hence it seems difficult to solve Question 1.1 by applying this method di-
rectly. If we remove the restriction on the class number, an imaginary qua-
dratic field & which satisfies h(k) > +/d(k) really exists.

We begin a more detailed consideration for Question 1.1. Since h(k) = 2p,
we may assume that k is one of the following:

(a) k= Q(y/—q) with an odd prime ¢ satisfying ¢ =5 (mod 8),

(b) k= Q(y/—2q) with an odd prime ¢ satisfying ¢ = 3,5 (mod 8),
(c) k = Q(v/—lq) with odd primes [, ¢ satisfying [ = 1,q = 3 (mod 4)

and (é) = —1.

Proposition 2.1.  Assume that k is of the form (a) or (b), that is, the
prime 2 ramifies in k. Then Question 1.1 has a positive answer for k.

Proof.  We shall only show for the case that & is of the form (b). The rest
case can be proven similarly.

Let p be a prime ideal in k lying above p. Assume that p? is principal.
We take a generator a 4 by/—2q of p?, where a and b are integers. Since p
splits in k, we see ab # 0. We may assume that a > 0. By taking the norm
of a + by/—2q to Q, we see p> = a® + 4b*q. Hence (p — a)(p + a) = 4b%q.
Note that the right hand side is positive and then p > a. Since ¢ is a prime
number, ¢ divides p + a or p — a. If ¢ divides p — a, then p > p—a > q.
Otherwise, 2p > p + a > ¢q. Consequently we have the inequality 2p > q.

On the other hand, by using a modified version of Dirichlet’s class number
formula (see, e.g., [8, Theorem 9.7.7]), we can see

2q
2p = h(k) = Y x(i),
1=0

where xj is the Dirichlet character corresponding to k. Since x(i) = 0 for
even ¢, the right hand side is less than or equal to q. Hence we see that
2p < q. It is a contradiction. [

In the rest of this section, we assume that & is of the form (c). In this case,
Question 1.1 has not been solved yet. However, we can see that Question
1.1 has a positive answer for many cases.

Proposition 2.2. Assume that k is of the form (c) and h(k) = 2p with an
odd prime p which splits in k. If (%) =1, then Question 1.1 has a positive
answer for k.

Proof. Assume that (%) = 1. We note that H := Q(+/I, /—¢) is the Hilbert

2-class field of k. By the assumption, the prime p lying above p splits in H/k.
Hence, the order of the ideal class c(p) containing p is 1 or p. If the order
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of ¢(p) is 1, then we can see p > lq/4 by taking the norm of a generator of p
to Q. Hence h(k) = 2p > lq/2. However, we can easily see that h(k) < lq/2
by using Dirichlet’s class number formula. It is a contradiction. Then the
order of c(p) is p, and this implies that p? is not principal. O

We will show that if d(k) is “small” then Question 1.1 has a positive
answer. First, we shall prove the following lemma.

Lemma 2.3. Assume that k is of the form (c) and h(k) = 2p with an odd
prime p which splits two distinct primes p and p’ in k. Moreover, assume
that (]LD) = —1. If p? is principal, then there are non-zero integers b’ and c
such that
)21+ ()%

4

p =
and b = ¢ (mod 2).

Proof. Under the assumptions, we can see that the order of ¢(p) is exactly 2
by using the argument given in the proof of Proposition 2.2. By Hilbert 94 or
Tannaka-Terada’s principal ideal theorem, we see that p becomes principal
in Q(v1,v/—q). We put H = Q(v/1,/—¢) and denote by O the ring of
algebraic integers in H. Let o € Op be a generator of pOp. We can write

B a+ b1+ cey/=q+dy=Iq
4

with some integers a, b, ¢, and d.
We note that N, 1o is a totally positive integer of Q(+/1). Since

Ny 1o/ generates the unique prime ideal of Q(\/Z) lying above p, we can
write Ny o = pe with a totally positive unit e of Q(v1). We note

that the norm of the fundamental unit of Q(v/1) to Q is —1. From this, we
can take o which satisfies N, JQHe =D by multiplying some power of the

fundamental unit. Hence we have the equation

N B (a® 4+ b?1 + 2q + d?lq) + (2ab + 2¢dq)V/1 B
H/QWDHY 16 - P

This implies that 2ab 4 2cdq = 0, and then

a? + b2l + c2q + dzlq
16 '

Next, we shall take the norm of a to Q(v/—¢). If ¢ > 3, we see
Ny jo(y=g@ = *p. If ¢ = 3, we can take a which satisfies NH/Q(\/Z)a =p

p:
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and Ny q(,/=g)® = £p by multiplying some third root of unity. Hence we
have the equation

(a® — bl — ?q + d?1q) + (2ac — 2bdl)\/—q
Nujaw=a@ = 16 = =P

This implies that 2ac — 2bdl = 0, and then
a’ — bl — g+ dPlg
16 '

If Ny g(y=g = p, then b =c = 0. In this case, we can see that both of
a and d are even by writing « explicitly with the following integral basis:

{1 14+vI 1+ =g 1+\/Z+\/—_q+¢——lq}
M ) ] 4 .

+p =

2 2

Hence we can write a = (a’+d'\/—1q) /2 with integers ' = a/2 and d’ = d/2.
This implies that p is already principal in k. However, it contradicts to the
fact that the order of c(p) is 2. Then we see Ny /q(,/=5@ = —p, and hence
a =d = 0. We can see that both of b and ¢ are even and b = ¢ (mod 4)
by writing « explicitly with the above integral basis. Hence we can write
a = (V'V1+ ¢\/—q)/2 with integers ' = b/2 and ¢ = ¢/2 and they satisfy
b = (mod 2).

Since p is prime to [ and g, we see that b'c’ # 0. The lemma follows. [

By using this, we can obtain the following:

Proposition 2.4. Assume that k is of the form (c) and h(k) = 2p
with an odd prime p which splits in k. If h(k) < (I 4+ q)/2, then Question
1.1 has a positive answer for k. Moreover, if lg = 7 (mod 8) and h(k) <
min{2l + 8¢, 81 + 2q}, then Question 1.1 has a positive answer for k.

Proof. 'Throughout the proof, we may suppose that (%) = —1 by Proposi-
tion 2.1.

Assume that p? is principal. Then by Lemma 2.3, we can write p =
(b))% + (¢/)%q) /4 with some non-zero integers b’ and ¢’. Hence we see p >
(I + q)/4. Since h(k) = 2p, the former part follows.

Assume that I¢g = 7 (mod 8) and p? is principal. Similarly, we can write
4p = (b')%1 + ()?q. Since p is odd, we see 4p = 4 (mod 8). Recall that
b = (mod 2). If both of &’ and ¢ are odd, then

M2+ ()?q¢=1+¢=0 (mod 8)

from the assumption that lg = 7 (mod 8). Hence both of b’ and ¢ must
be even, and p = (b”)%l + (¢")%q with b = V//2 and ¢’ = ¢//2. Moreover,
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either " or ¢’ must be even because p is odd. Hence we see that p >
min{l + 4q, 4l + q}. The latter part follows. O

Next, we shall quote the following:

Theorem B (Ramaré [13]). Let x be a primitive Dirichlet character of
conductor f. Assume that x(—1) = —1 and f is odd. Then

|< _ @) LX) < 5 <1ogf+5—2log§),

where L(s, x) is the Dirichlet L-function.

Let k be an imaginary quadratic field which is of the form (c). From the
above theorem, we obtain the following upper bound:

Vig 3

(1) h(k) < 22— xr@)m (log lg+5—2log 2)

by using the analytic class number formula, where Y is the Dirichlet char-
acter corresponding to k. We mentioned at the beginning of this section
that if h(k) < v/Iq then Question 1.1 has a positive answer. Moreover, if
lg =7 (mod 8) and h(k) < 8y/Iq then Question 1.1 has a positive answer
by Proposition 2.4. Connecting the above upper bound of h(k), we obtain
the following;:

Corollary 2.5. Assume that k is of the form (c) and h(k) = 2p with an
odd prime p which splits in k.
e Iflg=3 (mod 8) and

9
lqg < B exp(6m — 5) = 2327920.965. . . ,

then Question 1.1 has a positive answer.
e [flg="7 (mod 8) and

9
lg < 1 exp(16m — 5) = 102501865638106235900.902.. . . ,

then Question 1.1 has a positive answer.

Remark 2.6. By using the method which is given in the proof of Proposition
2.4, we can see that if l[¢ =3 (mod 8), (I + ¢)/4 is not a prime number, and
h(k) < min{(l + 9¢)/2, (91 + q)/2}, then Question 1.1 has a positive answer
for k. In particular, if g = 3 (mod 8), (I + ¢)/4 is not a prime number, and

9
lq < 7 exp(18 — 5) = 54888803724926503841046.318 ...

then Question 1.1 has a positive answer.
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Next, we will show that if a “small” prime ramifies in &k, then Question 1.1
has a positive answer. In the following, we use slightly different notations.
We put k = Q(v/—rs) with rational primes 7, s which satisfy rs = 3 (mod 4)
and (g) = —1. Fix an odd prime s, and put

xr—+ S B VIS8
2 om

Assume that h(k) = 2p with an odd prime p which splits in k. By Propo-
sition 2.4 and (1), if fs(r) > 0, then Question 1.1 has a positive answer for
k.

We put k = (9/4) exp(6m — 5). If r < k/s, then fs(r) > 0. Moreover, if
fi(k/s) > 0, then we see that fs(r) > 0 for all . We note that if

fs(x) =

3
(logsx+5— 2log 5) .

97 exp (6”7_5

6m + 2
then f!(x/s) > 0. This implies:

5 < ) = 1379.304. ..,

Proposition 2.7. We put k = Q(\/—rs) with rational primes r,s which
satisfy rs = 3 (mod 4) and (L) = —1. Assume that h(k) = 2p with an odd
prime p which splits in k. If s < 1379, then Question 1.1 has a positive
answer for k.

Moreover, if we fix a prime s > 1379, then at most finitely many primes
r satisfy fs(r) < 0. Hence we can check whether Question 1.1 has a positive
answer for all r. For example, we put s = 1523. There are only 23 primes r
which satisfies rs > k, rs =3 (mod 4), (£) = —1, and fs(r) < 0. These are
1609, 1621, 1637, 1693, 1733, 1741, 1777, 1801, 1861, 1913, 1933, 1973, 2053,
2069, 2089, 2113, 2153, 2161, 2237, 2269, 2281, 2297, 2309. All primes r in
this list satisfy rs < 10?0, Hence by Corollary 2.5 and Remark 2.6, if rs = 7
(mod 8) or (r+s)/4 is not a prime, then Question 1.1 has a positive answer.
From this, we see that the primes r for which we must check the class number
of Q(v/—rs) are 1913 and 2153. We find that h(Q(v/—1523 x 1913)) = 310
and h(Q(v/—1523 x 2153)) = 350. Both fields do not satisfy the assumption
of Question 1.1. Hence if s = 1523, then Question 1.1 has a positive answer
for all ». Similarly, we checked that Question 1.1 has a positive answer if
1379 < s < 1525. (We note that /k = 1525.752....) As a consequence, we
have the following;:

Corollary 2.8. Let k be an imaginary quadratic field. Assume that
h(k) = 2p with an odd prime p which splits in k. If a rational prime which
1s smaller than 1525 ramifies in k, then Question 1.1 has a positive answer

for k.
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Remark 2.9. We can also consider the following question: if h(k) = 3p
and p splits in k, then is the cube of a prime lying above p not principal?
However, this question has a negative answer. We put k& = Q(+/—15391).
Then h(k) = 3 x 31 and the rational prime 31 splits in k. Let p be a prime in
k lying above 31. Then p? is principal because 313 = (120++/—15391)(120—

V/—15301).

3. CONSIDERATION FOR QUESTION 1.2

In this section, let k be an imaginary quartic abelian field. In this case, k&
is a bicyclic biquadratic field or a cyclic quartic field. Assume that k satisfies
h(k) = h™ (k) = p with an odd prime p which splits completely in k.

First, we shall show the following:

Proposition 3.1. If k is a bicyclic biquadratic field, then Question 1.2
has a positive answer.

Proof. Since h™ (k) = p, there is a unique imaginary quadratic subfield k'
of k which satisfies h(k’) = p or h(k") = 2p. Let A(k) (resp. A(k’)) be the
Sylow p-subgroup of Cl(k) (resp. CIl(k")). Let p be a prime of k¥’ lying above
p. By Theorem A, Proposition 2.1, and Proposition 2.2, we can see that
A(K') is generated by c(p). Let B be a prime of k lying above p. Since p is
not principal and p = Ny /B, it follows that P is not principal. (We can
also show this by using the following method. We denote by o (resp. oyp)
the Frobenius element of Gal(H (k)/k) (resp. Gal(H(k")/k")) corresponding
to P (resp. p), where H(k) (resp. H(k')) is the Hilbert class field of k (resp.
k’). Since the restriction op|g () coincides with oy, and the order of oy, is
divisible by p, we see that the order of og is exactly p.) The proposition
follows. 0

We assume that k is a cyclic quartic field. If h~ (k) is an odd prime, then
we can see that the conductor of k is an odd prime ¢ by [3, Theorem 3’|.
Moreover, we see ¢ = 5 (mod 8) because k is an imaginary cyclic quartic
field. By specializing the method given in the proof of [9, Theorem D], we
can obtain the following:

Lemma 3.2. Let q be an odd prime which satisfies ¢ =5 (mod 8), and k
the imaginary cyclic quartic field of conductor q. Let p be a rational prime
which splits completely in k, and B a prime of k lying above p. If P is
principal, then p > q/8.

Proof. Let ¢ be the fundamental unit of k™ = Q(,/g). Since h(k™) is odd,
we can see that k/k™ has a relative integral basis (see, e.g., [6]).
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Assume that, B is principal. We claim that

- <a+6\2/Tﬂ>

with non-zero algebraic integers «,3 in k™. It is known that
k = Q(y/—(q+ by/q)) with an even integer b (see, e.g., [10]). Since k/k* has
a relative integral basis, we can write k = k*(,/—¢,/q) by using [6, Lemma
2]. Moreover, we can apply Theorem 2 of [6]. From this theorem, every al-

gebraic integer of k is written in the form atPy —eva VZ_E\/(_] with algebraic integers
a, 3 in k*. Hence we can take an generator of 3 written in the above form.
Since p splits completely in k, both of @ and 3 must be non-zero. The claim
follows.

By taking the norm of the above generator to QQ, we obtain the following;:

= 15 {00 + (8870 + V(0”5 — 0?(87)%<")}

where o is the nontrivial automorphism of Gal(k™/Q). We note that
Va((@?)?B% — a?(37)%%) is a positive rational integer and divisible by
q. Hence we see p > (¢ + q)/16 = q/8. a

p

As a conclusion of the above lemma, if A~ (k) < ¢/8 then Question 1.2 has
a positive answer. By using Theorem B, if ¢ > 5 then we have the following
upper bound:

2
(2) h=(k) < 40(;2 (logq +5—2log g)
(see also Corollary 11 of [11]). Unfortunately, the above lemma is not useful
to deduce that Question 1.2 has a positive answer for all k. In fact, if
we remove the restriction on the class number, there exist imaginary cyclic
quartic fields k of conductor ¢ which satisfy h(k) > ¢/8 (see [10]).

We note that if an odd prime p divides h(k) and p does not divide h(k™),
then the p-rank of the Sylow p-subgroup of Cl(k) is greater than or equal
to the order of p in (Z/47)* (see, e.g., [14, Theorem 10.8]). Hence we see
that if h(k) = h~ (k) = p, then p =1 (mod 4). On the other hand, we can

obtain the following result. It is also considered as an analog of Theorem A.

Proposition 3.3. Let q be an odd prime which satisfies ¢ =5 (mod 8),
and k the imaginary cyclic quartic field of conductor q. Assume that k
satisfies h(k) = h~ (k) = p* with an odd prime p = 3 (mod 4) which splits
completely in k. Then Cl(k) is generated by the classes containing a prime
tdeal lying above p.
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Proof. 'We may assume that ¢ > 13. Let 8 be a prime of k lying above
p. By Lemma 3.2, we see that if h(k) < ¢?/64, then P is not principal. We

note that
q 3\* ¢
— (1 5—2log = =
407r2(0gQ+ ng) < 64

holds if ¢ > 13. Hence ‘B is not principal by (2).

Let D be the subgroup of Cl(k) generated by the classes containing a
prime ideal lying above p. Since ‘B is not principal, D is a nontrivial p-
group. We note that Gal(k/Q) acts on D. By using the same argument
given in the proof of [14, Theorem 10.8], we can see that the p-rank of D is
greater than or equal to 2. Since Cl(k) = (Z/pZ)?, the assertion follows. [J

2

4. APPLICATION TO IWASAWA THEORY

Our questions relate to a question on the Iwasawa invariants of certain
non-cyclotomic Zy-extensions. Let N be an algebraic number field and p a
rational prime. For a Z,-extension M /N, we denote by A(M/N), p(M/N),
and v(M/N) the Iwasawa A-, p-, and v-invariants of M /N, respectively.

4.1. Let k be an imaginary quadratic field and p an odd prime which splits
into two distinct primes p and p’ in k. By class field theory, there exists
a unique Zp-extension K/k which is unramified outside p. As an analog
of Greenberg’s conjecture, there is a question (cf. [2]): are the invariants
MK/k) and u(K/k) always zero?.

For example, if h(k) is not divisible by p, then A(K/k) = pu(K/k) = 0.
Moreover, it is known that if A(k) is generated by a power of ¢(p), then
MK /k) = w(K/k) = 0 (see [12], [2]). Hence, if h(k) = p, then AN(K/k) =
u(K/k) = 0 by Theorem A ([2]). Similarly, if A(k) = 2p and Question 1.1
has a positive answer for k, then A(K/k) = u(K/k) = 0.

Moreover, if A(k) is generated by a power of ¢(p), then Greenberg’s gen-
eralized conjecture (GGC) also holds for k& and p ([12]). (For the detail of
GGC, see [5].)

4.2. Next, let k be an imaginary quartic abelian field and p an odd prime
which splits completely in k. Let p; and po be the distinct primes in &% lying
above p, and Py (resp. Po) be a prime in k lying above p; (resp. p2). By
class field theory, there exists a unique Z,-extension K /k which is unramified
outside P, P (see, e.g., [7, Lemma 2.2]). Let kL be the cyclotomic Z,-
extension of k*. In [7], it is shown that if h(k) is not divisible by p and
AL /) = p(k /K%)= v(kL/E") = 0, then A(K/k) = p(K/k) = 0.
Moreover, Goto [4] independently obtained the following (the statement is
modified by using the argument given in [7]):
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Theorem C (Goto [4]). If both of P1 and Py are totally ramified, A(k)
is generated by a power of c(B1) and c(P2), and N(kL/kT) = p(kL /kT) =
v(kL JkT) =0, then \(K/k) = p(K/k) = 0.

By using this, we can see the following:

Proposition 4.1. Assume that h(k) = p and Question 1.2 has a positive
answer for k. If N\(kL/kT) = p(kL /kT) = v(kL /kT) = 0, then \(K/k) =
u(K /) = 0.

Proof. For a positive integer n, let k,, be the n-th layer of K/k. By using
the argument given in the proof of [7, Proposition 3.2], we can see that
both of 1 and Py are totally ramified or unramified in kq/k. If both of
B, and P, are totally ramified, then the assertion follows from Theorem
C. Otherwise, we can see that the order of A(ky)G#n/k) is 1 for n > 1 by
using the genus formula. Hence A(k,,) is trivial for all n > 1. O

Proposition 4.2. Assume that k is a cyclic quartic field, h(k) = h= (k) =
p?, and p = 3 (mod 4). If both of P1 and Po are totally ramified and
AR /ET) = p(k3/kT) = v(k3 /kT) = 0, then A(K/k) = u(K/k) = 0.

Proof. Let D be the subgroup of Cl(k) generated by the classes containing
a prime ideal lying above p. By Proposition 3.3, we see that Cl(k) = D.
Since h(k*) = 1, D is actually generated by c(1) and c(*B2). Hence we
can apply Theorem C. 0

By using the argument given in [7] (with some modifications), we can see
that if k satisfies the assumption of Proposition 4.1 or Proposition 4.2, then
GGC for k£ and p holds.
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