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A GENERALIZED PRIMITIVE ELEMENT THEOREM

Dirceu BAGIO and Antonio PAQUES

Abstract. We deal with the following variant of the primitive element
theorem: any commutative strongly separable extension of a commu-
tative ring can be embedded in another one having primitive element.
This statement holds for connected strongly separable extension of com-
mutative rings which are either local or connected semilocal. We show
that it holds for a more general family of rings, that is, for connected
commutative rings whose quotient ring by the corresponding Jacobson
radical is von Neumann regular and locally uniform. Some properties
of the (connected) separable closure of such rings are also given as an
application of this result.

Introduction

Throughout this paper by ring we mean a commutative ring with identity
element. By a connected ring we mean a ring whose unique idempotents are
0 and 1.

Let S ⊇ R be a ring extension. We say that S has a primitive element

over R if there exists α ∈ S such that S = R[α]. The existence of primitive
elements for strongly separable extensions has been extensively studied by
several authors (see, for instance, [1, 9, 10, 11, 12, 20, 22]). It holds for fields
and, more generally, for rings with many units [15] under certain restrictive
conditions on the cardinality of their residue fields (see [20]). For instance,
any strongly separable extension S of a semilocal ring R, with constant rank
over R, has a primitive element over R if and only if |R/m| ≥ rankRS, for
every maximal ideal m of R.

Our aim in this paper is concerned with a variant of the primitive element
theorem. Indeed, we are interested in the following question: the assertion

(?) every strongly separable extension S of a ring R can be embedded

into another one having primitive element

holds without any restriction on the cardinality of the residue fields of R?
This question has been affirmatively answered for connected strongly sep-
arable extension of R in the case that R is either local [18] or connected
semilocal [2].

We prove in Section 2 that the assertion (?) is also true in a more general
situation, that is, for connected strongly separable extensions of a connected
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ring R whose quotient ring by its Jacobson radical is von Neumann regular
and locally uniform. As an application of this main result we present in
Section 3 some interesting properties of the (connected) separable closure
of such a ring. The notion of locally uniform ring, which we introduce in
Section 1, is a slight extension of the notion of uniform ring as considered
in [4].

1. Preliminaires

In all of this paper we will be employing freely the ideas and results of [23]
on boolean spectrum and boolean localization of a ring (see also [14, 21]).
We begin by introducing the terminology we will need.

For any ring R let B(R) denotes the boolean ring of all idempotents
of R and Spec(B(R)) denotes the boolean spectrum of R consisting of all
prime (equivalently maximal) ideals of B(R). A base for a topology on
Spec(B(R)) is given by the family of basic open sets {Ue | e ∈ B(R)}, where
Ue = {x ∈ Spec(B(R)) | 1 − e ∈ x}. This base defines a compact, totally
disconnected, Hausdorff topology on Spec(B(R)).

By localization of R at x, for each x ∈ Spec(B(R)), we mean the quotient
ring Rx = R/I(x) where I(x) denotes the ideal of R generated by the
elements of x. By [23, 2.13] Rx is a connected ring. For any R-module
M , Mx = M ⊗R Rx = M/I(x)M . For any element a ∈ M , ax denotes
the image of a in Mx. For every R-module homomorphism f : M → N ,
the corresponding induced Rx-homomorphism fx : Mx → Nx is given by
fx = f ⊗Rx.

We say that a ring R is locally uniform if for each x ∈ Spec(B(R)) and
each finite subset F of R there exist an idempotent e = e(x, F ) ∈ R and
a collection of ring isomorphisms φy : Ry → Rx such that x ∈ Ue and
φy(ay) = ax, for every a ∈ F and y ∈ Ue. Uniform rings as introduced in [4]
are locally uniform but the converse is not true as it will be shown in the
following first example. We denote by J(R) the Jacobson radical of the ring
R.

Example 1.1 Let R be a semilocal ring with at least two maximal ideals
such that the corresponding residue fields are not isomorphic. Put R ′ =
R/J(R). Note that Spec(B(R′)) is finite. Thus, in order to verify that R′

is locally uniform, given any x ∈ Spec(B(R′)) and any finite subset F of
R′ it is enough to take e = e(x, F ) ∈ B(R′) such that Ue = {x} and the
identity isomorphism idx : R′

x → R′
x. On the other hand R′

x is a field. So,
I(x) = m/J(R) for some maximal ideal m of R and R′

x ' R/m. Therefore,
it follows from the assumption on the maximal ideals of R that R ′ is not
uniform.



A GENERALIZED PRIMITIVE ELEMENT THEOREM 173

We observe that the semilocal ring given in Example 1.1 is a particular
example of rings R such that R/J(R) is von Neumann regular and locally
uniform. In the following example we give a way to construct (connected)
rings with this same property and with infinitely many maximal ideals.

Example 1.2 Let p ∈ Z be a prime integer andR0 = Z(p) be the localization
of Z at pZ. Following Hasse [8] there exists a quadratic extension K1 of the
rational number field K0 = Q such that pR1 = q1q2, where R1 denotes the
integral closure of R0 in K1 and q1 and q2 are the unique maximal ideals of
R1 over q0 = pZ(p). Again by the same result due to Hasse there exists a
quadratic extension K2 of K1 such that qiR2 = qi1qi2 where R2 denotes the
integral closure of R1 in K2 and qi1 and qi2 are the unique maximal ideals
of R2 over qi, i = 1, 2. Applying this same argument successively we will
get a tower of rings R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ R, where R =

⋃

j≥0Rj is the

integral closure of R0 in K =
⋃

j≥0Kj .

From the construction of R it is easy to see that: (i) R has infinitely
many maximal ideals and all of them are over q0; (ii) R/pR is a ring of
Krull dimension zero and (iii) R/p ' Z/pZ for every prime ideal p of R.

It is a consequence of the assertions (i) and (ii) that R′ = R/J(R) '
(R/pR)/(J(R)/pR) = (R/pR)/J(R/pR) is von Neumann regular by [7,
Lemma 1]. And it follows from assertion (iii) that R′

z ' Z/pZ for all
z ∈ Spec(B(R′)). Put R′

z = {0z, 1z , . . . , (p− 1)z}.

Now take x ∈ Spec(B(R′)) and F = {a1, . . . , an} a finite set of elements
of R′. Assume that (aj)x = (ij)x, with 0 ≤ ij ≤ p− 1 and 1 ≤ j ≤ n. Thus,
for each j there is an idempotent ej ∈ R′ such that x ∈ Uej

and (aj)y = (ij)y
for every y ∈ Uej

[23, 2.9]. Let Ue =
⋂

1≤j≤nUej
, with e =

∏

1≤j≤n ej , and

φy : R′
y → R′

x be such that φy(iy) = ix, for every y ∈ Ue. Clearly φy is a
ring isomorphism and φy((aj)y) = φy((ij)y) = (ij)x = (aj)x, for all y ∈ Ue

and 1 ≤ j ≤ n. Therefore R′ is locally uniform.

2. The main theorem

Let R ⊆ S be a ring extension. We say that S is a strongly separable

extension of R if S is separable as R-algebra and finitely generated and
projective as R-module. If for any finite subset N ⊆ S there exists a subal-
gebra L of S which contains N and is a strongly separable extension of R,
we say that S is a locally strongly separable extension of R. We say that a
connected ring is separably closed if its unique connected strongly separable
extension is itself. We will denote by Ω(R), up to isomorphism, the (con-
nected) separable closure of a connected ring R, that is, Ω(R) is a locally
strongly separable extension of R which is connected and separably closed.
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For more about the (connected) separable closure of a connected ring we
refer to [9, 14].

Theorem 2.1 below provides a generalization of the primitive element
theorem and it was already stated for local rings [18] and for connected
semilocal rings [2]. In this paper we extend it to the setting of the connected
rings R such that R/J(R) is von Neumann regular and locally uniform.

A polynomial f(X) ∈ R[X] is said to be separable over R if it is monic
and R[X]/(f(X)) is a separable R-algebra. A monic polynomial f(X) ∈
R[X] is defined to be indecomposable in R[X] if whenever there exist monic
polynomials g(X), h(X) ∈ R[X] such that f(X) = g(X)h(X) it follows that
g(X) = 1 or h(X) = 1.

Theorem 2.1 Let R be a connected ring and S ⊆ Ω(R) be a strongly

separable extension of R. Assume that R/J(R) is von Neumann regular and

locally uniform. Then there exist a polynomial f(X) ∈ R[X] and α ∈ Ω(R)
such that:

(i) f(X) is separable and indecomposable,

(ii) f(α) = 0 and R[α] ' R[X]/(f(X)).

(iii) S ⊆ R[α].

Proof. Let R′ = R/J(R), S ′ = S/J(S). Note that R′
x is a field for every

x ∈ Spec(B(R′)) . Let Y = {x ∈ Spec(B(R′)) | |R′
x| < ∞}. The proof will

be divided in two parts.

Firstly assume that Y = ∅. Then S ′
x has primitive element over R′

x

for all x ∈ Spec(B(R′)) [9, Lemma 3.1]. Let α′(x) ∈ S′ be such that
S′

x = R′
x[α′(x)x] = R′[α′(x)]x. So, for each x ∈ Spec(B(R′)) there exists an

idempotent e(x) ∈ R′ such that x ∈ Ue(x) and S′e(x) = R′[α′(x)]e(x) [23, 2.8
and 2.11]. Applying compactness arguments we obtain elements α′

1, . . . , α
′
r ∈

S′ and orthogonal idempotents e1, . . . , er ∈ R′ such that
∑

1≤i≤r ei = 1 and

S′ei = R′[α′
i]ei. Then for α′ =

∑

1≤i≤r α
′
iei we have S′ = R′[α′] and by

Nakayama’s lemma S = R[α] with α ∈ S such that α′ = α + J(S). Finally
by [16, Theorem 3.3] there exists a separable and indecomposable polynomial
f(X) ∈ R[X] such that f(α) = 0 and S ' R[X]/(f(X)) .

Now consider Y 6= ∅. Note that S is free as R-module [6, Theorem 2.10]
of constant rank n say. Let p ∈ Z be a prime integer not divisor of n. From
now on we will proceed by steps.

Claim 1. For each x ∈ Spec(B(R′)) there exist an idempotent e(x) in R′

and a monic polynomial g(X) ∈ R′[X] of degree p such that:

(i) g(X)z is separable over R′
z for all z ∈ Ue(x),
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(ii) g(X)z is separable and indecomposable in R′
z[X] for all z ∈ Ue(x),

whenever x ∈ Y ,

(iii) Ue(x)

⋂

Ue(y) = ∅ whenever x 6∈ Y and y ∈ Y .

Clearly there exists a separable polynomial of degree p in R′
x[X] for every

x ∈ Spec(B(R′)). And we may assume that it is also indecomposable if
x ∈ Y because, in this case, R′

x is a finite field.
Take g(X) = a0 +a1X+ · · ·+ap−1X

p−1 +Xp ∈ R′[X] such that g(X)x ∈
R′

x[X] is such a polynomial. Consequently the discriminant d(g(X)x) =
d(g(X))x of g(X)x is a unit in R′

x. So, (d(g(X))λ)x = 1x for some λ ∈ R′.
By [23, 2.9] there exists an idempotent e1 ∈ R′ such that x ∈ Ue1

and
(d(g(X))λ)e1 = e1.

On the other hand, there exist by assumption an idempotent e2 ∈ R′ and
rings isomorphisms φz : R′

z → R′
x such that x ∈ Ue2

and φz((aj)z) = (aj)x
for all z ∈ Ue2

and 0 ≤ j ≤ p− 1.
It is enough to take Ue(x) = Ue1

⋂

Ue2
with e(x) = e1e2.

Claim 2. There exists a monic polynomial t(X) ∈ R[X] of degree p, which

is separable over R and indecomposable in S[X].

By Claim 1 and the usual compactness argument we can insure that
there are pairwise orthogonal idempotents e1 = e(x1), . . . , er = e(xr) in
R′ and monic polynomials of degree p g1(X), . . . , gr(X) in R′[X] such that
∑

1≤i≤r ei = 1 and eigi(X) is separable over eiR
′ for all 1 ≤ i ≤ r. And, in

addition, eigi(X) is indecomposable over eiR
′ for those i such that xi ∈ Y .

Let g(X) =
∑

1≤i≤r eigi(X) and t(X) ∈ R[X] be monic and such that

g(X) = t(X) modulo J(R)[X]. By construction t(X) is of degree p and
separable over R.

In order to verify that t(X) is indecomposable in S[X] take y ∈ Y . Note
that g(X)y = gi(X)y is indecomposable in R′

y[X] for some i such that y ∈
Uei

. Furthermore, R′
y = R′/I(y) is a field then I(y) = m/J(R) for some

maximal ideal m of R and R′
y ' R/m. So t(X) is indecomposable modulo

m[X]. Let M be a maximal ideal of S over m. Since rankR/m
S/M =

rankRS = n and by assumption p does not divide n then the claim follows.

From now on let q = min{|R′
x| |x ∈ Y } and assume that the prime

integer p above considered also satisfies qp−q
p ≥ n. By [9, Theorem 1.1] we

can also assume that S is a Galois extension of R in the sense of [3]. Set
T = S[X]/(t(X)). It easily follows from the properties of t(X) that T is a
connected strongly separable extension of R.

Claim 3. T has a primitive element over R.
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By Nakayama’s lemma and boolean localization it is enough to show
that T ′

x has a primitive element over R′
x for every x ∈ Spec(B(R)), where

T ′ = T/J(R)T = T/J(T ).
It is clear that T ′

x has a primitive element over R′
x if x 6∈ Y . So let x ∈ Y

and M1, . . . ,Ms be the maximal ideals of S over m, where m is such that
R′

x ' R/m.
Recall that t(X) = g(X) modulo J(R)[X] as constructed above. By the

same arguments used in Claim 2 t(X) is indecomposable in S/Mj [X], for
all 1 ≤ j ≤ s. By [16, Theorem 3.5] there is a unique maximal ideal M′

j of

T over Mj and
[

T/M′
j : S/Mj

]

= p, for each 1 ≤ j ≤ s.

On the other hand, we have S/Mj ' S/M1 since as assumed above S

is a Galois extension of R. Therefore,
[

T/M′
j : R/m

]

= p [S/Mj : R/m] =

p [S/M1 : R/m].

Let Fq denote the finite Galois field with q elements and Nq(m) the num-
ber of all monic and indecomposable polynomials of degree m in Fq[X].

By [13, Theorem 3.25] we have Nq(p) = qp−q
p . Hence, if |R′

x| = qx then

Nqx
(p) = qp

x−qx

p ≥ qp−q
p = Nq(p).

If [S/M1 : R/m] = 1 thenNqx
(p [S/M1 : R/m]) = Nqx

(p) ≥ Nq(p) ≥ n. If
[S/M1 : R/m] ≥ 2 then by [10, Lemma 1.2] we have Nqx

(p [S/M1 : R/m]) ≥
Nqx

(p)Nqx
([S/M1 : R/m]) ≥ Nqx

(p) ≥ Nq(p) ≥ n.

Thus Nqx
(p [S/M1 : R/m]) ≥ n ≥ s and there exist distinct separable and

indecomposable polynomials h1(X), . . . , hs(X) of degree p [S/M1 : R/m] in
R/m[X].

By [16, Theorem 2.1] mT =
⋂

1≤j≤s M′
j . Also T/M′

j ' R/m[X]/(hj(X))

for all 1 ≤ j ≤ s. So by chinese remainder theorem we have T/mT =
⊕

1≤j≤s T/M
′
j ' R/m[X]/(h(X)), with h(X) = h1(X) · · · hs(X).

Finally, by observing that T ′
x = T ′/I(x)T ′ = (T/J(T ))/(mT/J(T )) '

T/mT the claim follows.

The conclusion of the proof of Theorem 2.1 follows now from Claim 3 and
[16, Theorem 3.3]. �

Remark 2.2 In Theorem 2.1 the ring extension T = R[α] ⊇ S also satisfies
rankRT = pεrankRS, with p a prime integer and either ε = 0 or ε = 1, in
the following two cases: R is semilocal [2, Theorem 2.1.1] or S is a Galois
extension of R.

Remark 2.3 Corollaries 1.2 and 1.4 of [18] have natural corresponding
extensions, with similar proofs, to the setting of connected rings R such that
R/J(R) is von Neumann regular and locally uniform.



A GENERALIZED PRIMITIVE ELEMENT THEOREM 177

3. More about separable closures

For any ring R we will denote by Max(R) the set of all maximal ideals
of R.

Our purpose in this section is twofold. Firstly we will give necessary and
sufficient conditions in order to Max(R) and Max(Ω(R)) have the same
cardinality (Theorem 3.1). Secondly we will present an interesting charac-
terization of AutR(Ω(R)) (Corollary 3.6). We will do that in the setting
of connected rings R such that R/J(R) is von Neumann regular and lo-
cally uniform. In particular, our first result is an improved and generalized
version of Theorem 1.5 of [17].

Given a ring extension S ⊇ R and a maximal ideal M of S we de-
note by D(M) the decomposition group of M, that is, D(M) = {σ ∈
AutR(S) |σ(M) = M}. For S integral over R let ψ denotes the contrac-
tion map from Max(S) onto Max(R), that is, ψ(M) = M

⋂

R for all
M ∈Max(S).

Theorem 3.1 Let R be a connected ring such that R/J(R) is von Neumann

regular and locally uniform. Then the following statements are equivalent:

(i) The map ψ : Max(Ω(R)) →Max(R) is bijective.

(ii) D(M) = AutR(Ω(R)), for every M ∈Max(Ω(R)).

(iii) If f(X) is separable and indecomposable in R[X] then f(X) = f(X)+
mR[X] is separable and indecomposable in R/m[X] for every m ∈Max(R).

Proof. (i)⇒(ii) Take M ∈ Max(Ω(R)) and σ ∈ AutR(Ω(R)). Then
σ(M)

⋂

R = σ(M
⋂

R) = M
⋂

R and consequently σ(M) = M.

(ii)⇒(i) If M1,M2 ∈ Max(Ω(R)) satisfy M1
⋂

R = M2
⋂

R then there
exists σ ∈ AutR(Ω(R)) such that σ(M1) = M2 [16, Lemma 2.2]. The result
follows by the assumption.

(i)⇒(iii) Let f(X) ∈ R[X] be separable and indecomposable. The separa-

bility of f(X) over R/m is clear, for all m ∈Max(R). Put T = R[X]/(f(X)).
Clearly T is a connected strongly separable extension of R and by [5, The-
orem III.3.3] we may assume that T is contained in Ω(R). Thus it fol-
lows by the assumption that for each m ∈ Max(R) there exists a unique

M ∈Max(T ) such that M
⋂

R = m. Consequently f(X) is indecomposable
in R/m[X] for all m ∈Max(R) by [16, Theorem 3.5].

(iii)⇒(i) Let M1,M2 ∈ Max(Ω(R)) such that M1
⋂

R = M2
⋂

R = m. By
[16, Theorem 2.1] we have mΩ(R) ⊆ M1

⋂

M2. Thus, if mΩ(R) = M1 the
result follows. Assume that mΩ(R)  M1. Then there exist z ∈ M1\mΩ(R)
and a strongly separable extension S of R such that z ∈ S ⊆ Ω(R). Note that
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z ∈ (S
⋂

M1) \mS, so mS  S
⋂

M1. Since S
⋂

M1 is a maximal ideal of S
over m it follows from [16, Theorem 2.1] that S contains at least two maximal
ideals over m. On the other hand R/J(R) is von Neumann regular and
locally uniform, so there exist α ∈ Ω(R) and a separable and indecomposable
polynomial f(X) ∈ R[X] such that f(α) = 0 and S ⊆ R[α] ' R[X]/(f(X))
by Theorem 2.1. Consequently it follows from [16, Theorem 3.5] that R[α]
contains a unique maximal ideal over m, which is a contradiction. �

For our second result mentioned above we need some preparation and we
start with the following lemmas.

Lemma 3.2 Let R be a von Neumann regular ring. Then every locally

strongly separable extension of R is von Neumann regular.

Proof. Let T be a locally strongly separable extension of R. Take a ∈ T .
Thus T contains a strongly separable extension S of R such that a ∈ S.
Note that if S is von Neumann regular then a = a2b for some b ∈ S and
consequently T is also von Neumann regular. Hence, it is enough to prove
that S is von Neumann regular. For every maximal ideal m of R, Sm is a
separable extension of Rm and Rm is a field. So Sm is a finite direct sum of
fields and consequently a von Neumann regular ring. The required follows
from [7, Lemma 1]. �

Lemma 3.3 Let R be a connected ring, I ⊆ R an ideal and T a locally

strongly separable extension of R. Then IT
⋂

R = I.

Proof. Clearly I ⊆ IT
⋂

R. Now take c ∈ IT
⋂

R. Then c ∈ R and
c =

∑

1≤i≤n aibi ∈ R with ai ∈ I and bi ∈ T . Consider S ⊆ T a strongly

separable extension of R containing bi, 1 ≤ i ≤ n. So c ∈ IS
⋂

R. Since
R is a direct summand of S [5, Corollary III.2.3] we have IS = I

⊕

IN for
some R-module N and c = a + b with a ∈ I and b ∈ IN . Consequently
b = c− a ∈ R

⋂

N = 0 and c ∈ I. �

Lemma 3.4 Let R be a connected ring, I ⊆ R an ideal such that R/I is

von Neumann regular. Then Ω(R)/IΩ(R) also is von Neumann regular.

Proof. By Lemma 3.2 it is enough to prove that Ω(R)/IΩ(R) is a lo-
cally strongly separable extension of R/I. It follows from Lemma 3.3 that
Ω(R)/IΩ(R) is an extension of R/I. Let a1 + IΩ(R), . . . , an + IΩ(R) ∈
Ω(R)/IΩ(R). Then there exists a strongly separable extension S of R such
that a1, . . . , an ∈ S ⊆ Ω(R). Clearly S/IS is a strongly separable extension
of R/I. On the other hand, Ω(R) is a locally strongly separable exten-
sion of S [19, Proposition 2] and so IΩ(R)

⋂

S = (IS)Ω(R)
⋂

S = IS by
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Lemma 3.3. Therefore Ω(R)/IΩ(R) is an extension of S/IS and the result
follows. �

Theorem 3.5 Let R be a connected ring such that R/J(R) is von Neu-

mann regular and m ∈ Max(R). Then Ω(R/m) = Ω(R)/M for all M ∈
Max(Ω(R)) such that M

⋂

R = m.

Proof. Let M ∈Max(Ω(R)) such that M
⋂

R = m.

Claim 1. Ω(R)/M is a locally strongly separable extension of R/m.

Take a1 + M, . . . , an + M ∈ Ω(R)/M. Then a1, . . . , an ∈ S for some
strongly separable extension S of R contained in Ω(R). Note that Ω(R) is
integral over S, so M

⋂

S is a maximal ideal of S over m. Moreover, Sm is a
strongly separable extension of Rm and consequently a semilocal ring whose
maximal ideals are in bijective correspondence with the maximal ideals of
S over m. Hence there is only finitely many maximal ideals of S over m and
S/M

⋂

S is a direct summand of S/mS by [16, Theorem 2.1] and chinese
remainder theorem. Therefore S/M

⋂

S is a strongly separable extension of
R/m and the claim follows.

Claim 2. Ω(R)/M is separably closed.

Put R′ = R/J(R), Ω(R)′ = Ω(R)/J(R)Ω(R) and M′ = M/J(R)Ω(R).
By Lemma 3.4 Ω(R)′ is von Neumann regular, so M′ = I(x) for some
x ∈ Spec(B(Ω(R)′)). Therefore Ω(R)′x = Ω(R)′/M′ ' Ω(R)/M.

Let T be a connected and strongly separable extension of Ω(R)/M. Then
T ' Ω(R)′/M′[X]/(f(X)) for some separable and indecomposable polyno-
mial f(X) ∈ Ω(R)′/M′[X].

Let g1(X) ∈ Ω(R)′[X] be a monic polynomial such that g1(X)x = f(X).
It follows from the separability of g1(X)x and from [23, 2.9] that there exists
an idempotent e1 ∈ Ω(R)′ such that x ∈ Ue1

and e1g1(X) is separable over
e1Ω(R)′.

Put Y = Spec(B(Ω(R)′))\Ue1
and take g(X) ∈ Ω(R)′[X] a monic polyno-

mial such that deg(g(X)) = deg(f(X)) and g(X)y ∈ Ω(R′)y[X] is separable,
for each y ∈ Y . Since Y is an open set, it follows again from the separability
of g(X)y and from [23, 2.9] that there exists for each y ∈ Y an idempo-
tent e(y) ∈ Ω(R)′ such that y ∈ Ue(y) ⊆ Y and e(y)g(X) is separable over

e(y)Ω(R)′.
Now by compactness arguments we get pairwise orthogonal idempotents

e2, . . . , en ∈ Ω(R)′ and polynomials g2(X), . . . , gn(X) ∈ Ω(R)′[X] such that
e1 +e2 + · · ·+en = 1, deg(gi(X)) = deg(f(X)) and eigi(X) is separable over
eiΩ(R)′, for all 2 ≤ i ≤ n. Consequently g(X) = e1g1(X) + e2g2(X) + · · · +
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engn(X) is separable over Ω(R)′ and deg(g(X)) = deg(f(X)). Furthermore,
e1g1(X) (and, consequently, also g(X)) is indecomposable in Ω(R)′[X].

Let h(X) ∈ Ω(R)[X] a monic polynomial such that g(X) = h(X) mod-
ulo J(R)Ω(R). By construction h(X) is separable and indecomposable in
Ω(R)[X]. So Ω(R)[X]/(h(X)) is a connected strongly separable extension
of Ω(R). Hence deg(f(X)) = deg(h(X)) = 1 and T = Ω(R)/M. The proof
is complete. �

Corollary 3.6 Let R be a connected ring such that R/J(R) is von Neu-

mann regular, m ∈ Max(R) and M ∈ Max(Ω(R)) satisfying M
⋂

R = m.

Then D(M) ' AutR/m
(Ω(R/m)). If in addition R/J(R) is locally uniform

then AutR(Ω(R)) ' AutR/m
(Ω(R/m)), for all m ∈Max(R).

Proof. It follows from [16, Theorem 2.7] and Theorems 3.1 and 3.5. �
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[22] J-D. Therond, Le théorème de lélément primitif pour un anneau semilocal, J. of Al-

gebra 105 (1987), 29-39.
[23] O. E. Villamayor, D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya

Math. J. 35 (1969), 83-98.

Dirceu Bagio

Departamento de Matemática
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