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GENERALIZED DERIVATIONS WITH COMMUTATIVITY

AND ANTI-COMMUTATIVITY CONDITIONS

Howard E. BELL and Nadeem-Ur REHMAN

Abstract. Let R be a prime ring with 1, with char(R) 6= 2; and let
F : R −→ R be a generalized derivation. We determine when one of the
following holds for all x, y ∈ R: (i) [F (x), F (y)] = 0; (ii) F (x)◦F (y) = 0;
(iii) F (x) ◦ F (y) = x ◦ y .

1. Introduction

Let R be an associative ring with center Z = Z(R). For each x, y ∈ R

denote the commutator xy − yx by [x, y] and the anti-commutator xy + yx

by x ◦ y. Recall that a ring R is prime if for any a, b ∈ R, aRb = {0} implies
that a = 0 or b = 0. An additive mapping d : R −→ R is called a derivation
if d(xy) = d(x)y + xd(y) for all x, y ∈ R. In particular, for fixed a ∈ R, the
mapping Ia : R −→ R given by Ia(x) = [x, a] is a derivation called an inner
derivation.

An additive function F : R −→ R is called a generalized inner derivation
if F (x) = ax + xb for fixed a, b ∈ R. For such a mapping F , it is easy to see
that

F (xy) = F (x)y + x[y, b] = F (x)y + xIb(y) for all x, y ∈ R.

This observation leads to the following definition, given in [6]: an additive
mapping F : R −→ R is called a generalized derivation with associated
derivation d if

F (xy) = F (x)y + xd(y) for all x, y ∈ R.

Familiar examples of generalized derivations are derivations and general-
ized inner derivations, and the later include left multipliers and right multi-
pliers. Since the sum of two generalized derivations is a generalized deriva-
tion, every map of the form F (x) = cx + d(x), where c is a fixed element
of R and d is a derivation, is a generalized derivation; and if R has 1, all
generalized derivations have this form.

Our primary purpose is to determine when a generalized derivation F

satisfies [F (x), F (y)] = 0 for all x, y ∈ R, where R is a prime ring with 1 for
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which char(R) 6= 2; and we also study the conditions F (x) ◦ F (y) = 0 and
F (x) ◦ F (y) = x ◦ y. Our results extend known results for derivations.

2. Preliminary results

We shall use without explicit mention the following basic identities:

[xy, z] = x[y, z] + [x, z]y

[x, yz] = y[x, z] + [x, y]z

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z) − [x, z]y = (x ◦ z)y + x[y, z]

We shall also use the elementary fact that if R is prime and d is a nonzero
derivation, then xd(R) = {0} or d(R)x = {0} implies x = 0.

We shall require several lemmas, all but two of which are known.

Lemma 2.1. Let R be a prime ring and d a nonzero derivation of R.
(a) ([4, Theorem 2]). If char(R) 6= 2 and [d(x), d(y)] = 0 for all x, y ∈ R,

then R is commutative.
(b) ([5, Theorem 2]). If char(R) 6= 2 and [a, d(R)] = {0}, then a ∈ Z.

Lemma 2.2 ([8, Corollary 3.2]). Let R be a prime ring. If R admits a
nonzero generalized derivation F with associated derivation d 6= 0, such
that [F (x), x] = 0 for all x ∈ R, then R is commutative.

Lemma 2.3 ([1, Theorem 4.3]). Let R be a prime ring with char(R) 6= 2,
and let I be a nonzero ideal of R. If R admits a nonzero derivation d such
that d(x) ◦ d(y) = 0 for all x, y ∈ I, then R is commutative.

Lemma 2.4. Let R be a prime ring with 1. Let F be a generalized derivation
with associated derivation d 6= 0, such that d(F (x)) = 0 for all x ∈ R; and
let c = F (1). Then cd(x)+d(x)c = 0 for all x ∈ R. Moreover, if char(R) 6= 2,
c2 ∈ Z; and if c ∈ Z, then c = 0 and F = d.

Proof. We have

(2.1) d(F (x)) = 0 for all x ∈ R.

Replacing x by xy in (2.1) and using (2.1), we get

(2.2) F (x)d(y) + d(x)d(y) + xd2(y) = 0 for all x, y ∈ R.

Applying d again on (2.2) and using (2.1), we have

(2.3) F (x)d2(y) + d2(x)d(y) + d(x)d2(y) + d(x)d2(y)

+xd3(y) = 0 for all x, y ∈ R.
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But replacing y by d(y) in (2.2), we get

(2.4) F (x)d2(y) + d(x)d2(y) + xd3(y) = 0;

and combining (2.3) and (2.4), we find that

(2.5) d(x)d2(y) + d2(x)d(y) = 0 for all x, y ∈ R.

Since R has 1,

(2.6) F (x) = F (1x) = F (1)x + 1d(x) = cx + d(x) for all x ∈ R.

Using the hypothesis that d(F (R)) = {0}, we get d(c) = 0; and by applying
d to (2.6), we obtain

(2.7) cd(x) + d2(x) = 0 for all x ∈ R.

Using this fact to substitute for d2(x) and d2(y) in (2.5), we get

d(x)(−cd(y)) + (−cd(x))d(y) = 0;

hence

(d(x)c + cd(x))d(y) = 0 for all x, y ∈ R.

Thus,

(2.8) cd(x) + d(x)c = 0 for all x ∈ R.

Suppose now that char(R) 6= 2. It follows from (2.8) that [c2, d(R)] = {0},
so that c2 ∈ Z by Lemma 2.1(b). If c ∈ Z, then (2.8) yields 2cd(R) = {0};
hence 2c = 0 = c and F = d. �

Henceforth, except in our final section, R will always be a prime ring
with extended centroid C and central closure S = RC. (For definitions and
basic properties of C and S, see [7, Section 2] or [3, Chapter 1, Section 3]).
Note that if R has 1, then C is the center Z(S) of S.

Lemma 2.5 [2, Theorem 2.1]. Let R be a prime ring and let d, g, h be deriva-
tions on R for which there exist a, b ∈ R\Z such that d(x) = ag(x)+h(x)b for
all x ∈ R. Then there exists λ ∈ C such that d(x) = [λab, x], g(x) = [λb, x]
and h(x) = [λa, x] for all x ∈ R.

Lemma 2.6. Let R be prime ring with 1. let F be a generalized derivation
with associated derivation d 6= 0, such that d(F (x)) = 0 for all x ∈ R; and
suppose c = F (1) 6∈ Z. Then

(i) there exists λ ∈ C such that d(x) = [λc, x] for all x ∈ R;

(ii) F can be extended to a generalized derivation F̂ on S;

(iii) if [F (x), F (y)] = 0 for all x, y ∈ R, then [F̂ (x), F̂ (y)] = 0 for all
x, y ∈ S.
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Proof. (i) By Lemma 2.4, cd(x) + d(x)c = 0 for all x ∈ R; hence by Lemma
2.5, there exists λ ∈ C such that d(x) = [λc, x] for all x ∈ R.

(ii) Define F̂ (x) = cx + [λc, x] for all x ∈ S.

(iii) Let x ∈ S, and write x =
∑

n

i=1
riui, where ri ∈ R, ui ∈ C. Then

using the fact that ui ∈ Z(S), we get F̂ (x) =
∑

criui +
∑

[λc, riui] =
∑

ui(cri + [λc, ri]) =
∑

uiF (ri); and (iii) follows at once. �

Lemma 2.7 [7, Theorem 3]. If R is prime and S satisfies a generalized
polynomial identity over C, then S is primitive.

3. The condition [F (x), F (y)] = 0

In view of Lemma 2.1(a), it is natural to conjecture that if a prime ring R

of characteristic different from 2 admits a nonzero generalized derivation F

such that [F (x), F (y)] = 0 for all x, y ∈ R, then R is commutative. However,
this is not the case.

Example 3.1. Let R be either the ring H of real quaternions or the subring
K of H consisting of all elements a+ bi+ cj +dk where a, b, c, d are integers.
Define F (x) = ix + xi for all x ∈ R. Then R is a noncommutative prime
ring, and F is a generalized derivation such that [F (x), F (y)] = 0 for all
x, y ∈ R.

Example 3.2. Let K be any field, and let R be the ring M2(K) of 2 × 2
matrices over K. Define F (x) = cx + xc, where c is either e11 − e22 or e12.
It is easy to verify that, in either case, [F (x), F (y)] = 0 for all x, y ∈ R.

Example 3.3. Let R be the noncommutative prime ring M2(ZZ); and for

arbitrary x =

[

a b

c d

]

∈ R, define d(x) =

[

0 −b

c 0

]

. Define F : R −→ R

by F (x) = (e11−e22)x+d(x). It is easily verified that d is a derivation on R,

so that F is a generalized derivation; and since F

([

a b

c d

])

=

[

a 0
0 −d

]

,

[F (x), F (y)] = 0 for all x, y ∈ R. Note that F is the restriction to R of the

map F̂ : M2(Q) −→ M2(Q) given by F̂ (x) = cx+xc, where c = 1

2
e11−

1

2
e22.

In fact, for 2-torsion free prime rings with 1, these examples illustrate
all possibilities, as our next ( and principal) theorem shows.
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Theorem 3.4. Let R be a prime ring with 1 such that char(R) 6= 2. If R

admits a nonzero generalized derivation F such that [F (x), F (y)] = 0 for all
x, y ∈ R, then one of the following holds:

(i) R is commutative;
(ii) R is a noncommutative subring of a division ring ∆, and there exists

δ ∈ ∆ such that F (x) = δx + xδ for all x ∈ R;
(iii) R is a noncommutative subring of a 2 × 2 total matrix ring M over

a field, and there exists m ∈ M such that F (x) = mx + xm for all
x ∈ R.

The following lemma is the first step in the proof.

Lemma 3.5. Let R be a noncommutative prime ring with 1 and with
char(R) 6= 2. Let F be a nonzero generalized derivation with associated
derivation d, such that [F (x), F (y)] = 0 for all x, y ∈ R. Then

(i) d(F (x)) = 0 for all x ∈ R;
(ii) c = F (1) 6∈ Z and c2 ∈ Z;

(iii) S is primitive and there exists s ∈ S such that s2 ∈ Z(S) and

F̂ (x) = sx + xs for all x ∈ S.

Proof. (i) If d = 0, then c 6= 0 and [cx, cy] = 0 for all x, y ∈ R; thus cR is a
nonzero commutative right ideal. But a noncommutative prime ring cannot
have such a right ideal, hence d 6= 0.

We have

(3.1) [F (x), F (y)] = 0 for all x, y ∈ R.

Replacing y by yz in (3.1) and using (3.1), we get

(3.2) F (y)[F (x), z] + y[F (x), d(z)] + [F (x), y]d(z) = 0 for all x, y, z ∈ R.

Now replacing y by ry in (3.2) gives

F (r)y[F (x), z] + rd(y)[F (x), z] + ry[F (x), d(z)] + r[F (x), y]d(z)

+[F (x), r]yd(z) = 0 for all x, y, z, r ∈ R;

and hence application of (3.2) yields

F (r)y[F (x), z] + rd(y)[F (x), z] + [F (x), r]yd(z) − rF (y)[F (x), z] = 0.

Letting z = F (x), we obtain [F (x), r]yd(F (x)) = 0 for all x, y, r ∈ R -i.e.

[F (x), r]Rd(F (x)) = {0} for all x, r ∈ R.

Since R is prime, for each x ∈ R, either F (x) ∈ Z or d(F (x)) = 0. The
sets of x ∈ R for which these alternatives hold are additive subgroups whose
union is R; therefore, either F (R) ⊆ Z or d(F (x)) = 0 for all x ∈ R.
But by Lemma 2.2, F (R) ⊆ Z would force R to be a commutative; hence
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d(F (R)) = {0}.

(ii) Since R is not commutative, it follows from Lemmas 2.4 and 2.1 (a) that
c 6∈ Z and c2 ∈ Z.

(iii) By Lemma 2.4 we now have cd(x) + d(x)c = 0 for all x ∈ R; and
since c 6∈ Z, it follows by Lemma 2.6 that there exists λ ∈ C such that
d(x) = [λc, x] = λ[c, x] for all x ∈ R. Therefore F̂ (x) = cx + λ[c, x] for all

x ∈ S. Since F̂ (1) = c and [F̂ (x), F̂ (y)] = 0 for all x, y ∈ S, we have

(3.3) c(cx + λ[c, x]) = (cx + λ[c, x])c for all x ∈ S.

Now c2 ∈ Z(S) by Lemma 2.4, so (3.3) can be written as

(2λ + 1)(c2x − cxc) = 0 for all x ∈ S,

from which it follows that

(3.4) 2λ + 1 = 0 or c2x − cxc = 0 for all x ∈ S.

Since c2 ∈ Z(S), either c is regular or c2 = 0. In the first case we see from
(3.4) that 2λ + 1 6= 0 contradicts the fact that c 6∈ Z; in the second case
2λ + 1 6= 0 yields c = 0, contrary to our observation that c 6∈ Z. Therefore
λ = −1

2
and for each x ∈ S, F̂ (x) = cx− 1

2
(cx−xc) = sx+xs, where s = c

2
.

Recalling that [F̂ (x), F̂ (y)] = 0 for all x, y ∈ S, we see that S satisfies the
generalized polynomial identity 1

4
(cx + xc)(cy + yc) = 1

4
(cy + yc)(cx + xc)

over C; hence S is primitive by Lemma 2.7. �

Proof of Theorem 3.4. In view of Lemma 3.5 and Jacobson’s density the-
orem, we may assume that R is a noncommutative dense ring of linear
transformations on a vector space V over a division ring ∆, and that there
exists k ∈ R \ {0} such that k2 ∈ Z and F (x) = kx + xk for all x ∈ R. We
need only show that dim(V ) ≤ 2 and that in the case dim(V ) = 2, ∆ is a
field. For any subset W ⊆ V , we denote by < W > the subspace generated
by W .

By a standard argument it follows that if dim(V ) > 1 and k(u) ∈< u >

for each u ∈ V , then there exists β ∈ ∆ \ {0} such that k(u) = βu for all
u ∈ V . But in this case we have (kx + xk)(ky + yk)(u) = 4β2xy(u) and
(ky+yk)(kx+xk)(u) = 4β2yx(u) for all u ∈ V , contradicting our hypothesis
that R is not commutative.

Assume that dim(V ) ≥ 3, and choose u ∈ V such that k(u) = v 6∈
< u >. Since k2 ∈ Z(R), there exists α ∈ Z(∆) such that k2(w) = αw for
all w ∈ V ; therefore k(v) = αu.
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Suppose that k(V ) 6⊆< u, v >, in which case there exists z ∈ V \
< u, v > and w ∈ V such that k(w) = z. Then {u, v, w} is a linearly
independent subset of V and there exist a, b ∈ R such that a(u) = v, a(v) =
w, a(w) = u, b(u) = u, b(v) = 0 and b(w) = 0. It is readily verified that the
condition (ka+ak)(kb+bk)(u) = (kb+bk)(ka+ak)(u) implies that b(z) = z.
It follows that if z ∈< u, v, w >, then z = b(z) ∈< u >, contrary to the fact
that z 6∈< u, v >; therefore {u, v, w, z} is a linearly independent subset of
V and there exist a′, b′ ∈ R such that (a′(u), a′(v), a′(w), a′(z)) = (v, w, u, 0)
and (b′(u), b′(v), b′(w), b′(z)) = (u, 0, 0, 0). But the argument given for a and
b shows that this is incompatible with the requirement that [F (a′), F (b′)] =
0; therefore we must have k(V ) ⊆< u, v >.

Since dim(V ) ≥ 3, ker(k) 6= {0} and there exists t ∈ V \ {0} such
that k(t) = 0. Therefore k2(t) = αt = 0, so that α = 0, k(v) = 0 and
k2 = 0. Thus, if q ∈ V and k(q) = γu + δ(v), then 0 = k2(q) = γv so
γ = 0. Hence k(V ) ⊆< v > and ker(k) has dimension at least 2; and since
< u, v >6= ker(k), there exists y ∈ ker(k)\ < u, v >. Choosing a, b ∈ R such
that (a(u), a(v), a(y)) = (v, y, u) and (b(u), b(v), b(y)) = (u, u, y), we get
(kb + bk)(ka + ak)(u) = 0 and (ka + ak)(kb + bk)(u) = y − a contradiction.
Therefore dim(V ) < 3 as required.

Finally, assume dim(V ) = 2. As before, we have linearly independent
u, v such that k(u) = v. Let β, γ ∈ ∆ and consider a, b ∈ R such that
(a(u), a(v)) = (0, βu) and (b(u), b(v)) = (0, γu). Then (ka + ak)(u) = βu

and (kb+ bk)(u) = γu, and the condition [F (a), F (b)] = 0 gives βγu = γβu,
so that βγ = γβ. Thus ∆ is a field. �

4. Anti-commutativity conditions

In our final section we present some more elementary results, which involve
anti-commutativity hypotheses.

Theorem 4.1. Let R be a prime ring with 1 and char(R) 6= 2. If F is a
generalized derivation on R such that F (x) ◦ F (y) = 0 for all x, y ∈ R, then
F = 0.

Proof. Note that if R is commutative, it is a domain; and the condition
F (x) ◦ F (y) = 0 is just 2F (x)F (y) = 0. Taking y = x then shows that
F (x) = 0 for all x ∈ R.

Assume that F 6= 0. Then R is not commutative; and since
F (1) ◦ F (1) = 0, we have c2 = 0. Note that we cannot have d = 0, for in
that case F (1) ◦F (x) = 0 becomes cxc = 0 for all x ∈ R, which implies that
c = 0 and hence F = 0.

We now have d 6= 0 and
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(4.1) F (x) ◦ F (y) = 0 for all x, y ∈ R.

Replacing y by yz in (4.1) and using (4.1), we get

(4.2) (F (x) ◦ y)d(z) − F (y)[F (x), z] − y[F (x), d(z)] = 0 for all x, y, z ∈ R.

Now replacing z by zF (x) in (4.2) and using (4.2), we obtain

(4.3) (F (x) ◦ y)zd(F (x)) − yz[F (x), d(F (x))] − y[F (x), z]d(F (x)) = 0.

Finally, replacing y by ry in (4.3) and using (4.3), we conclude that

[F (x), r]yRd(F (x)) = {0} for all x, y, r ∈ R.

Again, invoking the primeness of R, we learn that F (R) ⊆ Z or d(F (x))
= 0 for all x ∈ R. But Lemma 2.2 implies that if F (R) ⊆ Z, then R is
commutative, contrary to our assumption that F 6= 0; therefore d(F (x)) = 0
for all x ∈ R, and by Lemma 2.4 cd(x) + d(x)c = 0 for all x ∈ R. The
condition that F (1) ◦ F (x) = 0 = c(cx + d(x)) + (cx + d(x))c reduces to
cxc = 0; hence c = 0 and R is commutative by Lemma 2.3, so we have again
contradicted our assumption that F 6= 0. Therefore, F = 0. �

Theorem 4.2. Let R be a 2-torsion free ring with 1. If F is a generalized
derivation such that F (x) ◦ F (y) = x ◦ y for all x, y ∈ R, then there exists c

in Z such that c2 = 1 and F (x) = cx for all x in R. Thus, if R is prime, F

is the identity map or its negative.

Proof. Since F (1) ◦ F (1) = 1 ◦ 1, we have c2 = 1. Thus, the condition
F (x) ◦ F (1) = x ◦ 1 reduces to

(4.4) cxc + d(x)c + cd(x) = x.

Postmultiplying and premultiplying this equation by c and comparing the
results yields d(x) + cd(x)c = 0; and premultiplying by c gives

(4.5) cd(x) + d(x)c = 0.

It now follows from (4.4) that cx = xc for all x in R, so that c is in Z; and
since c is invertible, (4.5) shows that d = 0 and hence F (x) = cx for all x in
R. �

A similar proof yields our final theorem.

Theorem 4.3. Let R be a 2-torsion free ring with 1. If F is a generalized
derivation such that F (x)◦F (y)+x◦y = 0 for all x, y ∈ R, then there exists
c in Z such that c2 = −1 and F (x) = cx for all x in R.
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