SOME RESULTS ON (σ, τ) -LIE IDEALS

EVRIM GÜVEN, KAZIM KAYA AND MUHARREM SOYTÜRK

ABSTRACT. In this note we give some basic results on one sided (σ, τ) -Lie ideals of prime rings with characteristic not 2.

1. INTRODUCTION

Let R be a ring and σ, τ be two mappings from R into itself. We write [x,y] = xy - yx, and $[x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$ for $x, y \in R$. For subsets $A, B \subset R$, let [A, B] be the additive subgroup generated by all [a,b], and $[A,B]_{\sigma,\tau}$ be the additive subgroup generated by all $[a,b]_{\sigma,\tau}$ for $a \in A$ and $b \in B$. We recall that a Lie ideal L is an additive subgroup of R such that $[R,L] \subset L$. We first introduce the generalized Lie ideal in [3] as follows. Let U be an additive subgroup of R. (i) U is called a (σ, τ) -right Lie ideal of R if $[U,R]_{\sigma,\tau} \subset U$, (ii) U is called a (σ,τ) -left Lie ideal if $[R,U]_{\sigma,\tau} \subset U$. (iii) U is called a (σ,τ) -left Lie ideal if (σ,τ) -left Lie ideal. An additive mapping $d : R \longrightarrow R$ is called a (σ,τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$. We write $C_{\sigma,\tau} = \{c \in R \mid c\sigma(r) = \tau(r)c$ for $r \in R\}$, and will make extensive use of the following basic commutator identities:

$$\begin{aligned} [xy,z]_{\sigma,\tau} &= x[y,z]_{\sigma,\tau} + [x,\tau(z)]y = x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y\\ [x,yz]_{\sigma,\tau} &= \tau(y)[x,z]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z) \end{aligned}$$

Throughout the present paper, R will represent a prime ring (of $char R \neq 2$, exclude Lemmas 1 and 2) and $\sigma, \tau, \alpha, \beta, \lambda$ and μ will be automorphisms of R. In this note, we give the following proporties on prime rings and some results on one sided (σ, τ) -Lie ideals. Let I be a nonzero ideal of R. (1) If $[[I, a]_{\sigma,\tau}, b]_{\alpha,\beta} = 0$ for $a, b \in R$, then $[\tau(a), \beta(b)] = 0$. (2) If $[[a, I]_{\sigma,\tau}, b]_{\alpha,\beta} = 0$ for $a, b \in R$, then $b \in Z$ or $[a, \tau^{-1}\beta(b)]_{\sigma,\tau} = 0$. (3) If $[b, [a, R]_{\sigma,\tau}]_{\alpha,\beta} = 0$ for $a, b \in R$, then $b \in C_{\alpha,\beta}$, $a \in C_{\sigma,\tau}$ or $a + \tau \sigma^{-1}(a) \in C_{\sigma,\tau}$. On the other hand, in [4] Park and Jung proved that if $d : R \longrightarrow R$ is a nonzero (σ, τ) -derivation and $a \in R$ such that $d[R, a]_{\sigma,\tau} = 0$, then $\sigma(a) + \tau(a) \in Z$. We prove that if $d : R \longrightarrow R$ is a nonzero (σ, τ) -derivation and $a \in R$ such that $d[a, R]_{\alpha,\beta} = 0$, then $a \in C_{\alpha,\beta}$ or $a + \beta \alpha^{-1}(a) \in C_{\alpha,\beta}$.

2. Results

The following Lemmas 1 and 2 are generalizations of [1, Lemma 1.5].

Mathematics Subject Classification. 16N10, 16W25, 16U80.

Key words and phrases. Prime ring, (σ, τ) -Lie ideal, (σ, τ) -derivation.

Lemma 1. Let I be a nonzero ideal of R and $a, b \in R$. If $[[I, a]_{\sigma, \tau}, b]_{\alpha, \beta} = 0$, then $[\tau(a), \beta(b)] = 0$.

Proof. Let $[[I, a]_{\sigma,\tau}, b]_{\alpha,\beta} = 0$. Then we have $0 = [[\tau(a)y, a]_{\sigma,\tau}, b]_{\alpha,\beta} = [\tau(a)[y, a]_{\sigma,\tau} + [\tau(a), \tau(a)]y, b]_{\alpha,\beta} = \tau(a)[[y, a]_{\sigma,\tau}, b]_{\alpha,\beta} + [\tau(a), \beta(b)][y, a]_{\sigma,\tau}$ for all $y \in I$. This gives that

(2.1)
$$[\tau(a), \beta(b)][y, a]_{\sigma,\tau} = 0 \text{ for all } y \in I.$$

Replacing $yr, r \in R$ by y in (2.1), we get $0 = [\tau(a), \beta(b)]y[r, \sigma(a)] + [\tau(a), \beta(b)][y, a]_{\sigma,\tau}r$ and so

(2.2)
$$[\tau(a), \beta(b)]y[r, \sigma(a)] = 0 \text{ for all } y \in I, r \in R.$$

Since R is prime, we get

(2.3)
$$[\tau(a), \beta(b)] = 0 \text{ or } a \in \mathbb{Z}.$$

Thus, $[\tau(a), \beta(b)] = 0$ is obtained for two cases in (2.3)

Corollary 1. (1) If I is a nonzero ideal of R and $a \in R$ such that $[I, a]_{\alpha,\beta} \subset C_{\lambda,\mu}$, then $a \in Z$.

(2) Let U be a nonzero (σ, τ) -right(left) Lie ideal of R and I a nonzero ideal of R. If $[[I, I]_{\sigma, \tau}, U]_{\alpha, \beta} = 0$ then $U \subset Z$.

(3) If $a \in R$ such that $[[I, I]_{\sigma, \tau}, a]_{\alpha, \beta} = 0$ then $a \in Z$.

Proof. (1) $[I, a]_{\alpha,\beta} \subset C_{\lambda,\mu}$ implies that $[[I, a]_{\alpha,\beta}, R]_{\lambda,\mu} = 0$. By Lemma 1 we obtain that $[\beta(a), \mu(R)] = 0$. Since μ is onto, we have $\beta(a) \in Z$ and so $a \in Z$.

(2) By Lemma 1 we have $[\tau(I), \beta(U)] = 0$ and so $U \subset Z$.

(3) $[[I, I]_{\sigma,\tau}, a]_{\alpha,\beta} = 0$ implies that $[\tau(I), \beta(a)] = 0$ by Lemma 1 and so $a \in \mathbb{Z}$.

Lemma 2. Let I be a nonzero ideal of R. If $a, b \in R$ and $[[a, I]_{\sigma,\tau}, b]_{\alpha,\beta} = 0$, then $b \in Z$ or $[a, \tau^{-1}\beta(b)]_{\sigma,\tau} = 0$.

Proof. For any $x, y \in I$ we have

$$0 = [[a, xy]_{\sigma,\tau}, b]_{\alpha,\beta}$$

= $[\tau(x)[a, y]_{\sigma,\tau} + [a, x]_{\sigma,\tau}\sigma(y), b]_{\alpha,\beta}$
= $\tau(x)[[a, y]_{\sigma,\tau}, b]_{\alpha,\beta} + [\tau(x), \beta(b)][a, y]_{\sigma,\tau} + [a, x]_{\sigma,\tau}[\sigma(y), \alpha(b)]$
+ $[[a, x]_{\sigma,\tau}, b]_{\alpha,\beta}\sigma(y)$

and so

(2.4)
$$[\tau(x), \beta(b)][a, y]_{\sigma,\tau} + [a, x]_{\sigma,\tau}[\sigma(y), \alpha(b)] = 0 \text{ for all } x, y \in I.$$

60

Replacing x by $rx, r \in R$ in (2.4) we get

$$\begin{aligned} 0 &= [\tau(rx), \beta(b)][a, y]_{\sigma, \tau} + [a, rx]_{\sigma, \tau}[\sigma(y), \alpha(b)] \\ &= \tau(r)[\tau(x), \beta(b)][a, y]_{\sigma, \tau} + [\tau(r), \beta(b)]\tau(x)[a, y]_{\sigma, \tau} + \tau(r)[a, x]_{\sigma, \tau}[\sigma(y), \alpha(b)] \\ &+ [a, r]_{\sigma, \tau}\sigma(x)[\sigma(y), \alpha(b)]. \end{aligned}$$

That is

$$[\tau(r), \beta(b)]\tau(x)[a, y]_{\sigma,\tau} + [a, r]_{\sigma,\tau}\sigma(x)[\sigma(y), \alpha(b)] = 0 \text{ for all } x, y \in I, r \in R.$$

If we take $\tau^{-1}\beta(b)$ instead of r in (2.5) then we have

(2.6)
$$[a, \tau^{-1}\beta(b)]_{\sigma,\tau}\sigma(I)[\sigma(I), \alpha(b)] = 0.$$

Since $\sigma(I) \neq 0$ an ideal of R and R is prime we get

(2.7)
$$[a, \tau^{-1}\beta(b)]_{\sigma,\tau} = 0 \text{ or } [\sigma(I), \alpha(b)] = 0.$$

Since R is prime, $[\sigma(I), \alpha(b)] = 0$ implies that $b \in Z$. Thus $[a, \tau^{-1}\beta(b)]_{\sigma,\tau} = 0$ or $b \in Z$ is obtained.

Lemma 3. Let U be a nonzero (σ, τ) -right Lie ideal of R and $a \in R$. If $[U, a]_{\alpha,\beta} = 0$, then $a \in Z$ or $U \subset C_{\sigma,\tau}$.

Proof. Since $[[U, R]_{\sigma, \tau}, a]_{\alpha, \beta} \subset [U, a]_{\alpha, \beta} = 0$ then we have

$$a \in Z \text{ or } [U, \tau^{-1}\beta(a)]_{\sigma,\tau} = 0$$

by Lemma 2. If $[U, \tau^{-1}\beta(a)]_{\sigma,\tau} = 0$ then $a \in Z$ or $U \subset C_{\sigma,\tau}$ by [6, Lemma 2].

Theorem 1. Let U be a nonzero (σ, τ) -right Lie ideal of R and $I \neq 0$ an ideal of R.

(1) If $a \in R$ and $[[U, I]_{\alpha,\beta}, a]_{\lambda,\mu} = 0$, then $a \in Z$ or $U \subset C_{\sigma,\tau}$. (2) If $[U, I]_{\alpha,\beta} \subset C_{\lambda,\mu}$, then $U \subset C_{\sigma,\tau}$ or R is commutative.

Proof. (1) $[[U, I]_{\alpha,\beta}, a]_{\lambda,\mu} = 0$ implies that $a \in Z$ or $[U, \beta^{-1}\mu(a)]_{\alpha,\beta} = 0$, by Lemma 2. If $[U, \beta^{-1}\mu(a)]_{\alpha,\beta} = 0$ then $a \in Z$ or $U \subset C_{\sigma,\tau}$ by Lemma 3.

(2) Let $[U, I]_{\alpha,\beta} \subset C_{\lambda,\mu}$ then we have $[[U, I]_{\alpha,\beta}, R]_{\lambda,\mu} = 0$. If we use (1) we get $R \subset Z$ or $U \subset C_{\sigma,\tau}$ and so $U \subset C_{\sigma,\tau}$ or R is commutative. \Box

Theorem 2. Let d be a nonzero (σ, τ) -derivation on R and $a \in R$. If $d[a, R]_{\alpha,\beta} = 0$, then $a \in C_{\alpha,\beta}$ or $a + \beta \alpha^{-1}(a) \in C_{\alpha,\beta}$.

Proof. For any $x, y \in R$ we have

$$0 = d[a, xy]_{\alpha,\beta} = d(\beta(x)[a, y]_{\alpha,\beta} + [a, x]_{\alpha,\beta}\alpha(y))$$

= $d\beta(x)\sigma[a, y]_{\alpha,\beta} + \tau[a, x]_{\alpha,\beta}d\alpha(y)$

Replacing x by $\beta^{-1}[a, z]_{\alpha, \beta}$ in the last relation we get

$$[a, \beta^{-1}[a, z]_{\alpha, \beta}]_{\alpha, \beta} d\alpha(y) = 0$$
 for all $y, z \in R$

and so

(2.8)
$$[a, \beta^{-1}[a, z]_{\alpha, \beta}]_{\alpha, \beta} = 0 \text{ for all } z \in R$$

by [5,Lemma 3]. Taking zy for z in (2.8) we get

$$0 = [a, \beta^{-1}[a, zy]_{\alpha,\beta}]_{\alpha,\beta} = [a, \beta^{-1}(\beta(z)[a, y]_{\alpha,\beta} + [a, z]_{\alpha,\beta}\alpha(y))]_{\alpha,\beta}$$
$$= [a, z\beta^{-1}[a, y]_{\alpha,\beta} + \beta^{-1}[a, z]_{\alpha,\beta}\beta^{-1}\alpha(y)]_{\alpha,\beta}$$
$$= [a, z]_{\alpha,\beta}\alpha\beta^{-1}[a, y]_{\alpha,\beta} + [a, z]_{\alpha,\beta}[a, \beta^{-1}\alpha(y)]_{\alpha,\beta}$$

which leads to

(2.9)
$$[a, z]_{\alpha, \beta}(\alpha \beta^{-1}[a, y]_{\alpha, \beta} + [a, \beta^{-1}\alpha(y)]_{\alpha, \beta}) = 0 \text{ for all } z, y \in R.$$

Replacing z by zt in (2.9), we get (2.10)

$$[a, z]_{\alpha,\beta} = 0, \forall z \in R \text{ or } \alpha\beta^{-1}[a, y]_{\alpha,\beta} + [a, \beta^{-1}\alpha(y)]_{\alpha,\beta} = 0 \text{ for all } y \in R.$$

Hence $a \in C_{\alpha,\beta}$ or $0 = \alpha\beta^{-1}[a, y]_{\alpha,\beta} + a\alpha\beta^{-1}\alpha(y) - \alpha(y)a$ for all $y \in R$. If we apply α^{-1} and β to the last relation we have $a\alpha(y) - \beta(y)a + \beta\alpha^{-1}(a)\alpha(y) - \beta(y)\beta\alpha^{-1}(a) = 0$ for all $y \in R$. This implies that $(a + \beta\alpha^{-1}(a))\alpha(y) - \beta(y)(a + \beta\alpha^{-1}(a)) = 0$ and so $a + \beta\alpha^{-1}(a) \in C_{\alpha,\beta}$ for all $y \in R$. Thus we obtain $a \in C_{\alpha,\beta}$ or $a + \beta\alpha^{-1}(a) \in C_{\alpha,\beta}$ by (2.10).

Corollary 2. If $[b, [a, R]_{\sigma,\tau}]_{\alpha,\beta} = 0$, then $a \in C_{\sigma,\tau}$ or $b \in C_{\alpha,\beta}$ or $a + \tau \sigma^{-1}(a) \in C_{\sigma,\tau}$.

Proof. $d(x) = [b, x]_{\alpha,\beta}$ is a (α, β) -derivation on R. Furthermore $d[a, R]_{\sigma,\tau} = 0$. This implies that $a \in C_{\sigma,\tau}$, $b \in C_{\alpha,\beta}$ or $a + \tau \sigma^{-1}(a) \in C_{\sigma,\tau}$ by Theorem 2.

Theorem 3. Let U be a nonzero (σ, τ) -right Lie ideal of R and $d : R \longrightarrow R$ a nonzero (λ, μ) -derivation.

(1) If d(U) = 0, then $v + \tau \sigma^{-1}(v) \in C_{\sigma,\tau}$ for all $v \in U$. (2) If d[U, R] = 0, then $U \subset Z$.

Proof. (1) Suppose that d(U) = 0. Then $d[U, R]_{\sigma,\tau} = 0$. This implies that $U \subset C_{\sigma,\tau}$ or $v + \tau \sigma^{-1}(v) \in C_{\sigma,\tau}$ for all $v \in U$ by Theorem 2.

(2) Taking $\alpha = \beta = 1$ in Theorem 2, we have $U \subset Z$.

Theorem 4. Let U be a nonzero (σ, τ) -left Lie ideal of R and $d : R \longrightarrow R$ a nonzero (α, β) -derivation.

(1) If d(U) = 0, then $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

(2) If $a \in R$ and [U, a] = 0, then $a \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

(3) If $a \in R$ and $[U,a]_{\alpha,\beta} = 0$, then $a \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

(4) If $[[R, U]_{\alpha,\beta}, a]_{\lambda,\mu} = 0$ then $a \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

Proof. (1) Suppose that d(U) = 0. Then $d[R, v]_{\sigma,\tau} = 0$ for all $v \in U$. This implies that $\sigma(v) + \tau(v) \in Z$ for all $v \in U$ by [4, Corollary 5] for all $v \in U$.

(2) Let d(x) = [x, a] for all $x \in R$. Then d is a derivation and furthermore d(U) = 0. Thus we have $a \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$ by (1).

(3) Since $[[R, U]_{\sigma,\tau}, a]_{\alpha,\beta} \subset [U, a]_{\alpha,\beta} = 0$ we have $[\tau(U), \beta(a)] = 0$ by Lemma 1. That is $[U, \tau^{-1}\beta(a)] = 0$. This implies that $a \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$ by (2).

(4) By Lemma 1 and hypothesis, we have $[\beta(U), \mu(a)] = 0$. That is $[U, \beta^{-1}\mu(a)] = 0$. This implies that $a \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$ by (2).

Remark 1. Let U be a nonzero (σ, τ) -left Lie ideal of R such that $[U, U]_{\alpha,\beta} = 0$. Then we have $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

Proof. By Theorem 4(3) we have $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

Theorem 5. Let U be a nonzero (σ, τ) -left Lie ideal of R and $a \in R$.

(1) If $[a, U]_{\alpha,\beta} = 0$, then $a \in C_{\alpha,\beta}$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$.

(2) If $[a, [R, U]_{\alpha,\beta}]_{\lambda,\mu} = 0$, then $a \in C_{\lambda,\mu}$ or $\alpha(v) + \beta(v) \in Z$ for all $v \in U$. (3) If $[R, U]_{\alpha,\beta} \subset C_{\lambda,\mu}$, then R is commutative or $\sigma(v) = \tau(v)$ for all $v \in U$.

(4) If $U \subset C_{\lambda,\mu}$, then $\sigma(v) = \tau(v)$ for all $v \in U$ or R is commutative.

Proof. (1) Let $d(x) = [a, x]_{\alpha,\beta}$ for all $x \in R$. Then d is (α, β) -derivation of R. Since $[a, [R, U]_{\sigma,\tau}]_{\alpha,\beta} \subset [a, U]_{\alpha,\beta} = 0$ then we have $d[R, U]_{\sigma,\tau} = 0$. This implies that $a \in C_{\alpha,\beta}$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in U$ by [4,Corollary 5].

(2) Considering as in the proof (1) we obtain the result.

(3) Suppose that $[R, U]_{\alpha,\beta} \subset C_{\lambda,\mu}$. Then we have $[[R, U]_{\alpha,\beta}, R]_{\lambda,\mu} = 0$. This gives $[\beta(U), \mu(R)] = 0$ by Lemma 1 and so $U \subset Z$. Thus $[R, U]_{\sigma,\tau} \subset U \subset Z$ is obtained. For any $r, s \in R, v \in U$ we have $0 = [[r, v]_{\sigma,\tau}, s] = [r\sigma(v) - \tau(v)r, s] = [r(\sigma(v) - \tau(v)), s] = r[\sigma(v) - \tau(v), s] + [r, s] (\sigma(v) - \tau(v))$ which leads to

(2.11)
$$[r,s](\sigma(v) - \tau(v)) = 0 \text{ for all } r, s \in \mathbb{R}, v \in U.$$

Since R is prime and $\sigma(v) - \tau(v) \in Z$ we get

(2.12)
$$[r,s] = 0 \text{ for all } r, s \in R \text{ or } \sigma(v) = \tau(v) \text{ for all } v \in U.$$

and so R is commutative or $\sigma(v) = \tau(v)$ for all $v \in U$.

(4) If $U \subset C_{\lambda,\mu}$, then $[R, U]_{\sigma,\tau} \subset C_{\lambda,\mu}$. This implies that R is commutative or $\sigma(v) = \tau(v)$ for all $v \in U$ by (3).

Acknowledgement

The authors wish to thank the referee for valuable suggestions.

References

- [1] I.N.Herstein, Topics in Ring Theory, The University of Chicago Press,(1969).
- [2] J.C.Chang, On Fixed Power Central (α, β) -derivations, Bull.of Inst.Math.Acad.Scica.Vol.15, No.2,(1975),163-178.
- [3] K.Kaya, (σ, τ) -Lie ideals in Prime Rings, An. Univ. Timisoara, Stiinte Mat. 30, No. 2-3, 251-255 (1992).
- [4] Kyoo-Hong Park and Yong-Soo Jung, Some Results Concerning (θ, φ)-Derivations on Prime Rings, J.Korea Soc.Math.Educ.Ser
 B, Pure Appl.Math.10(2003), no.4, 207-215.
- [5] N.Aydın and K.Kaya, Doğa-Tr.J.of Mathematics 16 (1992), 169-176.
- [6] N.Aydın and H.Kandamar, (σ, τ) -Lie Ideals in Prime Rings, Tr.J.Math. 18 (1994), 143-148.

KOCAELI UNIVERSITY FAKULTY OF ART AND SCIENCES DEPARTMENT OF MATHEMATICS KOCAELI - TURKEY *e-mail address*: evrim@kou.edu.tr *URL*: www.kou.edu.tr

Çanakkale Onsekiz Mart University Fakulty of Art and Sciences Department of Mathematics Canakkale - TURKEY

e-mail address: kkaya@comu.edu.tr URL: www.comu.edu.tr

Kocaeli University Fakulty of Art and Sciences Department of Mathematics Kocaeli - TURKEY

e-mail address: msoyturk@kou.edu.tr URL: www.kou.edu.tr

(Received November 28, 2005) (Revised September 1, 2006)