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ON IDEALS AND ORTHOGONAL GENERALIZED

DERIVATIONS OF SEMIPRIME RINGS

Emine ALBAŞ

Abstract. In this paper, some results concerning orthogonal general-
ized derivations are generalized for a nonzero ideal of a semiprime ring.
These results are a generalization of results of M. Bres̆ar and J. Vukman
in [3], which are related to a theorem of E. Posner for the product of
derivations on a prime ring.

1. Introduction

Throughout R will represent an associative ring. In [2], Bres̆ar defined
the following notion. An additive mapping D : R → R is said to be a gen-
eralized derivation if there exists a derivation d : R → R such that

D(xy) = D(x)y + xd(y) for all x, y ∈ R.

By the above notion it is easily seen that the concept of a generalized deriva-
tions covers both the concepts of a derivation and of a left multiplier. This
notion is found in P. Ribenboim [9], where some module structures of these
higher generalized derivations were treated. Other properties of generalized
derivations were given by B. Hvala [4], T-K. Lee [5] and A. Nakajima [6],
[7] and [8].

Two additive maps d, g : R → R are called orthogonal if

d(x)Rg(y) = 0 = g(y)Rd(x) for all x, y ∈ R.

In [3] Bres̆ar and Vukman introduced the notion of orthogonality for two
derivations d and g on a semiprime ring, and they presented several necessary
and sufficient conditions for d and g to be orthogonal. In [10] the authors
replaced R by a non zero ideal I of R, then they showed that some properties
in [[3], Theorem] are also valid in this subconstruction. Finally, in [1] the
authors introduced orthogonal generalized derivations on a semiprime ring
and they presented some results concerning two generalized derivations on
a semiprime ring. Their results are a generalization of results of M. Bres̆ar
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and J. Vukman in [3]. In this paper, our aim is to extend their results to
orthogonal generalized derivations on a nonzero ideal I of R.

For a semiprime ring R and an ideal I of R, it is well-known that the
left and right annihilators of I in R coincide. Note that I ∩ `(I) = 0 (or
I ∩ r(I) = 0) where `(I) and r(I) denote the left annihilator and the right
annihilator of I, respectively.

Throughout this paper we assume that R is a 2-torsion free semiprime
ring and I is a nonzero ideal of R unless stated otherwise.

2. Preliminaries

In the following, we give the notation of orthogonal generalized deriva-
tions.

Definition. Two generalized derivations (D, d) and (G, g) of R are called
orthogonal if

D(x)RG(y) = 0 = G(y)RD(x) for all x, y ∈ R.

The following example shows that there are many pairs of generalized
derivations which are orthogonal.

Example 1. Let R =

{[

x y

0 z

]

: x, y, z ∈ Z, the set of integers

}

. Let m,

p and s be fixed two nonzero elements of Z and the additive maps D, G, d
and g define the following;

D

([

x y

0 z

])

=

[

0 mx + mz

0 0

]

, d

([

x y

0 z

])

=

[

0 mx − mz

0 0

]

,

G

([

x y

0 z

])

=

[

0 pz − ys

0 0

]

and g

([

x y

0 z

])

=

[

0 −ys

0 0

]

. Then

it is easy to see that d and g are derivations of R and that (D,d) and (G,g)
are a generalized derivation on R such that (D,d) and (G,g) are orthogonal.

Now, to obtain the main result, we need the following lemmas:

Lemma 1. ([10], Lemma 1). Let R be a 2-torsion free semiprime ring, I a
nonzero ideal of R and a, b the elements of R. Then the following conditions
are equivalent.

(i) axb = 0 for all x ∈ I.

(ii) bxa = 0 for all x ∈ I.

(iii) axb + bxa = 0 for all x ∈ I.

Moreover, if one of the three conditions is fulfilled and `(I) = 0, then ab =
ba = 0.
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Lemma 2. ([10], Lemma 3). Let R be a semiprime ring and I be a nonzero
ideal of R. Suppose that additive mappings F and H of R into itself satisfy
F (x)IH(x) = 0 for all x ∈ I. Then F (x)IH(y) = 0 for all x, y ∈ I.

3. The Results

The main goal of this section is to prove the following theorem, which
corresponds to [[3], Theorem 1].

Theorem 1. Let (D, d) and (G, g) be generalized derivations of R and I be
a nonzero ideal of R such that `(I) = 0. Then the following conditions are
equivalent.

(i) (D, d) and (G, g) are orthogonal.
(ii) For all x, y ∈ I, the following relations hold.

(a) D(x)G(y) + G(x)D(y) = 0.
(b) d(x)G(y) + g(x)D(y) = 0.

(iii) D(x)G(y) = d(x)G(y) = 0 for all x, y ∈ I.
(iv) D(x)G(y) = 0 for all x, y ∈ I and dG(x) = dg(x) = 0 for all x, y ∈ I.
(v) (DG, dg) is a generalized derivation on I and D(x)G(y) = 0 for all

x, y ∈ I.

For the proof of the Theorem 1 we need the following lemmas. In all that
follows x, y, z ∈ I and r, s, t ∈ R.

Lemma 3. Let (D, d) and (G, g) be generalized derivations of R and `(I) =
0. If D(I)IG(I) = 0, then D(R)RG(R) = 0.

Proof. By 0 = D(x)zG(y) = G(y)zD(x) for all x, y, z ∈ I and Lemma
1, we have 0 = D(x)g(r) = g(r)D(x) and by g(r)D(x) = 0, we get 0 =
g(r)d(s) = d(s)g(r). Using these relations, we have D(s)xg(r) = 0 and so
by 0 = D(xz)G(y), we obtain d(z)G(y) = 0. Therefore 0 = D(rx)G(sy) =
D(r)xG(s)y, which shows D(r)xG(s) = 0. Replace x by r ′G(s)xD(r)r′ for
some r′

∈ R, we have D(r)r′G(s) = 0, as desired.
Moreover, we have the following:

Lemma 4. Let (D, d) and (G, g) be generalized derivations of R and I an
ideal of R such that `(I) = 0. Then the following conditions are equivalent.

(i) For any x, y ∈ I, the following relations hold.
(a) D(x)G(y) + G(x)D(y) = 0.
(b) d(x)G(y) + g(x)D(y) = 0.

(ii) D(x)G(y) = d(x)G(y) = 0 for all x, y ∈ I.
(iii) D(x)G(y) = 0 for all x, y ∈ I and dG = dg = 0 for all x, y ∈ I.
(iv) (DG, dg) is a generalized derivation from I to R and D(x)G(y) = 0

for all x, y ∈ I.
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Proof. (i) ⇔ (ii). By (a), (b) Lemmas 1 and 2, we have 0 = D(x)zG(y) =
D(x)G(y) and using this d(z)G(y) = 0. This shows (ii). And the converse
is easily obtained by the relations D(x)G(y) = G(y)D(x) = 0 and Lemma 1.

(ii) ⇒ (iii). By assumption, D(x)zG(y) = d(x)zg(y) = 0. Then by
Lemma 3, d and g are orthogonal, which shows dg = 0. Moreover, by
0 = d(x)G(y) and Lemma 1, we have 0 = d(d(r)sG(y)) = d(r)sdG(y) for
r, s ∈ R. Take r = G(y), we have dG(y) = 0. Since D(x)G(y) = G(y)d(x) =
d(x)g(y) = 0, using Lemma 3 we obtain dG(r) = 0, this gives (iii).

(iii) ⇒ (iv). By dG = dg = 0, we have

G(x)d(y) + d(x)g(y) = 0 = g(x)d(y) + d(x)g(y).

Then by the proof of (i) ⇒ (ii), we see that d(x)g(y) = 0 and so G(x)d(y) =
0. Moreover, by 0 = D(x)G(y), we have D(x)g(z) = 0. Therefore DG(xy) =
DG(x)y and thus (DG, dg = 0) is a generalized derivation from I to R.

(iv) ⇒ (ii). (DG, dg) is a generalized derivation if and only if

G(x)d(y) + D(x)g(y) = 0 = d(x)g(y) + g(x)d(y).

So we obtain dg = 0. Furthermore by 0 = D(x)G(y), we get D(x)g(y) = 0
and by the above relation, we see G(x)d(y) = 0. Therefore G(x)zd(y) = 0
and by Lemma 1, we arrive at d(y)G(x) = 0. This shows (ii).

Using Lemma 3 and Lemma 4, the proof of Theorem 1 is easily seen as
follows:

Proof of Theorem 1. (i) ⇒ (ii), (iii), (iv) and (v) are clear by [[1], Theorem
1]. Since (ii), (iii), (iv) and (v) are equivalent by Lemma 4, we assume (iii).
This implies that 0 = (D(x)z + xd(z))G(y) = D(x)zG(y). Then we have
D(I)IG(I) = 0. Thus by Lemma 3, we have Theorem 1 (iii) ⇒ (i).

Remark 1. If (DG, dg) is a generalized derivations on I and `(I) = 0 then
(DG, dg) is a generalized derivations on R.

Proof. It is easily seen that (DG, dg) is a generalized derivations on I if
and only if

G(x)d(y) + D(x)g(y) = 0, d(x)g(y) + g(x)d(y) = 0.

Then by the second relation, we have d and g are orthogonal. By the first
relation 0 = G(x)d(y) + D(x)g(y), we get 0 = G(x)zd(y) + D(x)zg(y).
Hence replacing z by g(y)z in this relation and using the orthogonality
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of the derivations d and g, we obtain 0 = D(x)g(y)zg(y) which implies
that D(x)g(y) = G(x)d(y) = 0. Moreover by 0 = D(x)g(yr), we get
0 = D(x)g(r) for all r ∈ R. Using this relation we have D(s)xg(r) = 0
and similarly we can see that D(s)g(r) = G(s)d(r) = 0. Thus we obtain
DG(rs) = DG(r)s for all r, s ∈ R which completes the proof.

Theorem 2. Let (D, d) and (G, g) be generalized derivations of R and
`(I) = 0. Then the following conditions are equivalent.

(i) (DG, dg) is a generalized derivation on I.
(ii) (GD, gd) is a generalized derivation on I.
(iii) D and g are orthogonal, and G and d are orthogonal.

The proof of the Theorem 2 is clear by Remark 1 and [[1], Theorem 2].

Corollary 1. Let (D, d) be a generalized derivations of R and `(I) = 0. If
(D2, d2) is a generalized derivation on I, then d = 0.

Proof. The fact that (D2, d2) is a generalized derivation on I is implies
that d and d are orthogonal. Therefore we get d = 0 by the semiprimeness
of R.

Corollary 2. Let (D, d) be a generalized derivations of R and `(I) = 0. If
D(x)D(y) = 0 for all x, y ∈ I, then D = d = 0.

Proof. By the hypothesis we have 0 = D(x)D(yz) = D(x)D(y)z +
D(x)yd(z) = D(x)yd(z) for all x, y, z ∈ I. In particular, we see that
d(z)D(x) = 0 for all x, z ∈ I by Lemma 1. Replacing x by xy in the last
relation we get 0 = d(z)D(x)y + d(z)xd(y) = d(z)xd(y) for all x, y, z ∈ I.
By [[10], Lemma 2, (a) and (b)], we obtain d(s)Rd(r) = 0 for all s, r ∈ R.
In particular d(s)Rd(s) = 0 for all s ∈ R. Thus d = 0 by the semiprime-
ness of R. Then we have 0 = D(xz)D(y) = D(x)zD(y) for all x, y, z ∈ I.
By Lemma 3, we arrive at D(r)RD(s) = 0 for all r, s ∈ R. In particular,
D(r)RD(r) = 0 for all r ∈ R which implies D = 0, as desired.
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[8] A. Nakajima: On generalized higher derivations, Turkish J. Math. 24(2000), 295-311.
[9] P. Ribenboim: High order derivations of modules, Portgaliae Math. 39(1980), 381-

397.
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