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ALMOST PERIODIC SOLUTIONS OF C-WELL-POSED
EVOLUTION EQUATIONS

Nguyen Van MINH

Abstract. This paper is concerned with the existence and uniqueness
of almost periodic mild solutions of evolution equations of the form
u̇(t) = Au(t) + f(t) where A is the generator of a holomorphic C-
semigroup on a Banach space and f is an almost periodic function. A
sufficient condition in terms of spectral properties of A and f is obtained
that extends a well known result in this subject.

1. Introduction

In this paper we deal with conditions for the existence and uniqueness of
almost periodic mild solutions with specific spectra to evolution equations
of the form

(1.1)
du

dt
= Au + f(t),

where A is a (unbounded) linear operator which generates a holomorphic
C-semigroup of linear operators on a Banach space X and f is an almost
periodic function taking values in X.

This kind of problems has been of great interest to many mathematicians
for decades. Actually, it goes back to the far-reaching result of O. Perron on
the characterization of exponential dichotomy of linear ordinary differential
equations. We refer the reader to [3, 4, 5, 9, 14, 17, 19, 20, 21, 23, 24, 28, 29]
and the references therein for more information on recent and related results.
Notice that most results (except for those in [4]) were obtained for evolution
equations of the form (1.1) that are well-posed. As shown in many recent
works (see, for instance, [6, 7, 10, 11, 13, 15, 16, 18, 25, 26, 27, 30] and the
references therein) an important class of ill posed evolution equations can
be treated in the framework of C-semigroups that was introduced by Da
Prato [7], Davies and Pang [6].

As is well-known (see, e.g.,[9, 14, 19, 23, 28]), if A generates a holomorphic
C0-semigroup and σ(A) ∩ iσb(f) = ®, then Eq. (1.1) has a unique almost
periodic mild solution u such that σb(u) ⊂ σb(f) (here σb(f) denotes the
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Bohr spectrum of the given almost periodic function f whose definition
is given in the next section). In the simplest case, when A generates a C0-
semigroup and the spectrum of A does not cut the imaginary axis, the above
problem is directly concerned with the exponential dichotomy or stability
of the semigroup generated by A (see e.g. [22]). Hence, for arbitrary closed
operator A the above condition is not sufficient for the existence of an almost
periodic mild solution.

In this paper, we aim at extending this result to the case where A is the
generator of a holomorphic C-semigroup. Our main result (Theorem 3.8)
becomes the above when C = I. To this end, we will use the method of
sums of commuting operators (see [8, 12]). A modification of a result in [1]
on the spectra of sums of commuting operators will be made in the next
section that is the key tool to derive the main result of this paper (Theorem
3.8).

2. Preliminaries

2.1. Notation. Throughout the paper, R, C, X stand for the sets of real,
complex numbers and a complex Banach space, respectively; L(X),
BC(R, X), BUC(R, X), AP (X) denote the spaces of all linear bounded op-
erators on X, all X-valued bounded and continuous functions, all X-valued
bounded uniformly continuous and all almost periodic functions in Bohr’s
sense (see the definition below) with sup-norm, respectively. For a linear
operator A, we denote by D(A), σ(A) the domain and the spectrum of A.

2.2. Almost periodic functions. In this paper by almost periodic func-
tions we mean the almost periodic functions in the sense of Bohr (we refer
the reader to [17] for the definition and basic properties of such almost pe-
riodic functions). If f is an almost periodic function, the following limit

(2.1) a(λ, f) := lim
T→∞

1
2T

∫ T

−T
f(t)e−iλtdt, for all λ ∈ R

exists and is called the Bohr transform of f . As is known, there is an at most
countable set of reals λ such that the above limit differs from zero. This set
will be denoted by σb(f) and called Bohr spectrum of f . The Approximation
Theorem (see [17]) says that for every almost periodic function f there exists
a sequence of trigonometric polynomials Pn(t) =

∑Nn
k=1 ak,neλk,nt, where

λk,n ∈ σb(f) and ak,n ∈ X for all k, n, that converges uniformly in t ∈ R to
f as n → ∞.

2.3. Spectral theory of functions. In the present paper, for a given u ∈
BC(R, X), sp(u) stands for the Carleman spectrum of u, which consists of
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all ξ ∈ R such that the Carleman-Fourier transform of u, defined by

û(λ) :=


∫ ∞
0 e−λtu(t)dt (Reλ > 0)

−
∫ ∞
0 eλtu(−t)dt (Reλ < 0),

has no holomorphic extension to any neighborhood of iξ (see [2, 23]).

Proposition 2.1. Let u, un, v ∈ BC(R, X) such that limn→∞ ‖un −u‖ = 0.
Then

(i) sp(u(· + h)) = sp(u) for any h ∈ R;
(ii) sp(Bu(·)) ⊂ sp(u) for any B ∈ L(X);
(iii) sp(αu(·) ⊂ sp(u) for any α ∈ C;
(iv) If sp(un) ⊂ Λ, for all n, then sp(u) ⊂ Λ, (here Λ is a subset of R);
(v) If for u ∈ BUC(R, X), sp(u) is countable, and X does not con-

tain any subspace which is isomorphic to the space of numerical
sequences c0, then u is almost periodic;

(vi) If u is uniformly continuous and sp(u) is discrete, then u is almost
periodic;

(vii) If u is almost periodic, then sp(u) = σb(u).

Proof. We refer the reader to [2], [23, Prop. 0.4, Prop. 0.6, Theorem 0.8, p.
20-25] and [17, Chap. 6] for the proofs. ¤

If Λ is a closed subset of R, then Λ(X) stands for the subspace of
BUC(R, X) consisting of all g ∈ BUC(R, X) such that sp(g) ⊂ Λ. As a con-
sequence of the above properties, Λ(X) is a closed subspace of BUC(R, X)
that is invariant under translations. In particular, we have (see e.g. [19])

Lemma 2.2. Let Λ be a closed subset of the real line. Then

(2.2) σ(DΛ(X)) = iΛ.

Let us denote by APΛ(X) the subspace of AP (X) consisting of all almost
periodic functions g such that sp(g) ⊂ Λ. Then we can see that if f is almost
periodic, then Λ(X) is exactly APΛ(X).

2.4. C-semigroups.

Definition 2.3. Let X be a Banach space and let C be an injective operator
in L(X). A family {T (t); t ≥ 0} in L(X) is called an exponentially bounded
C-semigroup if the following conditions are satisfied:

(i) T (0) = C,
(ii) T (t + s)C = T (t)T (s) for t, s ≥ 0,
(iii) T (·)x : [0,∞) → X is continuous for any x ∈ X,
(iv) There are M ≥ 0 and a ∈ R such that ‖T (t)‖ ≤ Meat for t ≥ 0.
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We define an operator A as follows:

D(A) = {x ∈ X : lim
h→0+

(T (h)x − Cx)/h ∈ R(C)}

Ax = C−1 lim
h→0+

(T (h)x − Cx)/h, for all x ∈ D(A).

This operator is called the generator of (T (t))t≥0. It is known that A is
closed but not necessarily densely defined. Next we define the operator

Gx = lim
t→0

C−1 T (t)x − Cx

t

D(G) := {x ∈ R(C) : ∃ lim
t→0+

C−1 T (t)x − Cx

t
}.

The complete infinitesimal generator of (T (t))t≥0 is defined to be the oper-
ator G if R(C) is dense in X.

As in this paper we consider only exponentially bounded C-semigroups
which, for the sake of brevity, will be referred to as C-semigroups unless
otherwise stated.

Lemma 2.4. Let C be an injective linear operator and let (T (t))t≥0 be a
C-semigroup with generator A. Then, the following assertions hold true:

(i) T (t)T (s) = T (s)T (t), for all t, s ≥ 0,
(ii) If x ∈ D(A), then T (t)x ∈ D(A), AT (t)x = T (t)Ax and∫ t

0
T (ξ)Axdξ = T (t)x − Cx, for all t ≥ 0,

(iii)
∫ t
0 T (ξ)xdξ ∈ D(A) and A

∫ t
0 T (ξ)xdξ = T (t)x−Cx for every x ∈ X

and t ≥ 0,
(iv) A is closed and satisfies C−1AC = A,
(v) R(C) ⊂ D(A),
(vi) If R(C) is dense in X, then D(G) = X and G ⊂ A.

For more information about C-semigroups and the relations between them
and the so-called integrated semigroups we refer the reader to [10, 15, 18, 16]
and the references therein.

2.5. Holomorphic C-semigroups. Let C be an injective operator in L(X)
with range R(C) dense in X.

Definition 2.5. A holomorphic C-semigroup is a family of operators
{T (t), t ∈ C, arg t < δ} in L(X) (where 0 < δ ≤ π

2 ) satisfying
(i) T (t)T (s) = T (t + s)C, for | arg t| < δ; | arg s| < δ and T (0) = C;
(ii) T (t) is holomorphic on | arg t| < δ;
(iii) limt→0,| arg t|≤δ−ε T (t)x = Cx for all x ∈ X and ε ∈ (0, δ);
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(iv) For each ε ∈ (0, δ) there exist a real number a and a positive con-
stant Mε such that ‖T (t)‖ ≤ Mεe

aRet for | arg t| ≤ δ − ε.

The following result is due to Tanaka [25].

Theorem 2.6. A closed linear operator A is the complete infinitesimal gen-
erator of a holomorphic C-semigroup {T (t), | arg t| < δ} (where 0 < δ ≤ π

2 )
if and only if the following conditions hold

(A1) There is a real number a such that for any | arg(λ − a)| < π
2 + δ,

λ−A is injective, R(λ−A) ⊃ R(C) and (λ−A)−1C is holomorphic,
(A2) For ε ∈ (0, π) there is a positive constant Mε such that

‖(λ − A)−1C‖ ≤ Mε|λ − a|−1

for | arg(λ − a)| ≤ π
2 + δ − ε.

(A3) (λ−A)−1Cx = C(λ−A)−1x for all x ∈ D((λ−A)−1) and | arg(λ−
a)| < π

2 + δ,
(A4) D(A) is dense in X,
(A5) C(D(A)) is a core for A.

Proof. For the proof see [25, Theorem 1]. ¤
In the sequel, we need the following

Theorem 2.7. Let C be an injective bounded linear operator with dense
range in X, and let A be a closed operator that satisfies the conditions (A1)−
(A4) in Theorem 2.6. Then the family of operators T (t) defined as

T (t) :=

{
1

2πi

∫
γ eλt(λ − A)−1Cdλ, for | arg t| ≤ δ − 2ε,

C, for t = 0,

where ε ∈ (0, δ/2), δ is the constant defined in Theorem 2.6, and γ is a
curve running in the sector {| arg λ| < π/2 + δ} from ∞e−iφ to ∞eiφ with
φ = π/2 + δ − ε, forms a C-semigroup (with t ≥ 0) (whose generator may
be different from A).

Proof. For the proof and related remarks see [7] and [25]. ¤

2.6. Sums of commuting operators and holomorphic C-semigroups.
In this section we will extend a result by Arendt-Rabiger-Sourour [1, Theo-
rem 7.3] to the case of holomorphic C-semigroups.

Definition 2.8. Let A and B be operators on a Banach space G with non-
empty resolvent set. We say that A and B commute if one of the following
equivalent conditions hold:

(i) R(λ,A)R(µ, B) = R(µ,B)R(λ,A) for some (all) λ ∈ ρ(A), µ ∈
ρ(B) ,
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(ii) x ∈ D(A) implies R(µ,B)x ∈ D(A) and AR(µ,B)x = R(µ,B)Ax
for some (all) µ ∈ ρ(B).

For any θ ∈ (0, π) and R > 0 we let Σ(θ,R) := {z ∈ C : |z| ≥ R, | arg z| ≤
θ}.

Theorem 2.9. Let A and B be commuting operators on a Banach space X
that both commute with the given injective bounded linear operator C, and
let D(A) be dense in X. Assume further that there exist R > 0 and θ ∈ (0, π)
such that

(i) The operator A is the generator of a holomorphic C-semigroup;
(ii) There exist R > 0 and θ1 ∈ (0, θ) such that

Σ(
π

2
− θ1, R) ⊂ ρ(B)

and
sup

λ∈Σ(π
2
−θ1,R)

‖λR(λ,B)‖ < ∞.

(iii) σ(A) ∩ σ(−B) = ®.
Then, A+B is closable and there exists an injective bounded linear operator
Q commuting with A,B,C such that

(2.3) QA + B ⊂ A + BQ = C.

Proof. The proof is suggested by [1, Theorem 7.3]. Choose a rectifiable path
Γ0 lying in {z ∈ ρ(A) ∩ ρ(B) : |z| ≤ R} starting from the point Re−i(π/2+θ)

and ending at Rei(π/2+θ). Then, consider the oriented contour Γ0 consisting
of

{re−i(π/2+θ):r≥R}, Γ0, {rei(π/2+θ) : r ≥ R}
Then there exists a partition C = Ω− ∪ Γ0 ∪ Ω+, where Ω−, Ω+ are open
such that

int(Σ(θ + π/2, R)) ⊂ Ω+, {reiα : r ≥ R,α ∈ (θ + π/2, 3π/2 − θ)} ⊂ Ω−.

So, we have

{λ ∈ σ(A) : |λ| ≥ R} ⊂ Ω−, {λ ∈ σ(−B) : |λ| ≥ R} ⊂ Ω+.

There exist compact subsets K+,K− with oriented (piecewise C1) boundary
Γ+ and Γ−, respectively such that

Ω− ∩ σ(−B) ⊂ intK− ⊂ K− ⊂ Ω−\σ(A)

and
Ω+ ∩ σ(A) ⊂ intK+ ⊂ K+ ⊂ Ω+\σ(−B)
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Let Γ = Γ0 ∪ (−Γ−) ∪ Γ+. Since supλ∈Γ λ|2|‖R(λ,A)CR(λ,−B)‖ < ∞,

Q :=
1

2πi

∫
Γ

R(λ, A)CR(λ,−B)dλ

Qt :=
1

2πi

∫
Γ

eλtR(λ,A)CR(λ,−B)dλ, (t > 0)

define bounded operators on X that satisfy limt→0+ Qtx = Qx, for all x ∈ X.
By Theorem 2.7, the following family of operators

T (t) :=

{
1

2πi

∫
Γ eλtR(λ, A)Cdλ, for | arg t| ≤ δ − 2ε,

C, for t = 0,

forms a C-semigroup (with t ≥ 0). In particular, we have limt→0 T (t)x = Cx
for all x ∈ X. Since A, B,C commute with each other,

(A + B)R(λ,A)CR(λ,−B) = (R(λ,A) − R(λ,−B))C.

This yields in particular that Qtx ∈ D(A + B), for all x ∈ X. Next, we
have

(A + B)Qtx =
1

2πi

∫
Γ

eλtR(λ,A)Cxdλ − 1
2πi

∫
Γ

eλtR(λ,−B)Cxdλ.

Since
∫
Γ eλtR(λ,−B)dλ = 0 by Cauchy’s theorem, we have

(2.4) (A + B)Qtx = T (t)x, for all x ∈ X.

Moreover, for x ∈ D(A + B), since A is closed and A,B,C are commuting,

QtAx =
1

2πi

∫
Γ

eλtR(λ,A)CR(λ,−B)Axdλ

= A
1

2πi

∫
Γ

eλtR(λ,A)CR(λ,−B)xdλ = AQtx

Similarly, we can show that QtBx = BQtx for all x ∈ D(A+B). This yields
that for x ∈ D(A + B) we have Qt(A + B)x = (A + B)Qtx. By the same
argument, we can show that for all x ∈ D(A+B), Q(A+B)x = (A+B)Qx.
Next, for x ∈ D(A + B) by (2.4) we have

Qt(A + B)x = (A + B)Qtx = T (t)x.

Thus, letting t ↓ 0, since T (t)x → Cx, we obtain

Q(A + B)x = Cx, for all x ∈ D(A + B)

Therefore, for all x ∈ D(A + B), we have (A + B)Qx = Q(A + B)x = Cx.
From the commutativeness of A, B,C for any µ ∈ ρ(A) ∩ ρ(B) it follows
that

R(µ,A)R(µ, B)Cx = R(µ,A)R(µ,B)(A + B)Qx

= (R(µ,A) − R(µ, B))Qx.
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Hence, if Qx = 0, then R(µ,A)R(µ,B)Cx = 0. The injectiveness of
C,R(µ, A), R(µ,B) yields that x = 0, that is the injectiveness of Q. Next,
to show the closability of A + B we suppose that xn ∈ D(A + B) such that
xn → 0 and (A + B)xn → y ∈ X as n → ∞. Then

Qy = lim
n→∞

Q(A + B)xn = lim
n→∞

Cxn = 0.

Since Q is injectiveness, y = 0, that is, the closability of the operator A+B.
Next, let x ∈ X. Then, limt↓0 Qtx = Qx and

lim
t↓0

(A + B)Qtx = lim
t↓0

T (t)x = Cx.

Therefore, Qx ∈ D(A + B) and

A + BQx = Cx, ( for all x ∈ X)(2.5)

Conversely, let x ∈ D(A + B) and let xn ∈ D(A+B) such that xn → x and
(A + B)xn → A + Bx. Then

QA + Bx = lim
n→∞

Q(A + B)xn

= lim
n→∞

Cxn = Cx.

This and (2.5) prove the theorem. ¤

3. Almost periodic mild solutions

In this section we consider the equation

(3.1)
dx

dt
= Ax + f(t), x ∈ X, t ∈ R,

where A generates an exponentially bounded C-semigroup of bounded linear
operators on X and f is a bounded and uniformly continuous function.
We always assume in this section that C is an injection with R(C) dense
in X unless otherwise stated. The main purpose of this section is to find
conditions for the existence and uniqueness of almost periodic mild solutions
to Eq. (3.1) when f is almost periodic. To this end, we first recall the
following definitions:

Definition 3.1. (i) An X-valued function u on R is said to be a solu-
tion on R to Eq.(3.1) for given linear operator A and f ∈ BC(R, X)
(or sometimes, classical solution) if u ∈ BC1(R, X), u(t) ∈ D(A),
for all t and u satisfies Eq.(3.1) for all t ∈ R.

(ii) An X-valued continuous function u on R is said to be a mild solution
on R to Eq.(3.1) for a given f ∈ BC(R, X) if u satisfies

(3.2) Cu(t) = T (t − s)u(s) +
∫ t

s
T (t − ξ)f(ξ)dξ, for all t ≥ s.
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Lemma 3.2. Let (T (t))t≥0 be a C-semigroup with generator A and let f be
a continuous function on the real line. Then, u is a solution of Eq. (3.2) if
and only if both of the following assertions hold:∫ t

0
Cu(ξ)dξ ∈ D(A), for all t ∈ R(3.3)

Cu(t) − Cu(0) = A

∫ t

0
Cu(s)ds +

∫ t

0
Cf(s)ds, for all t ∈ R.(3.4)

Proof. For the proof see [4, Lemma 2.9]. ¤

From this lemma, by the injectivity of the operator C, it follows in par-
ticular that every classical solution is a mild one.

Definition 3.3. Let Λ be a closed subset of R and let (T (t))t≥0 be a
C-semigroup on X. Then the following family of bounded linear opera-
tors (T h)h≥0 on APΛ(X) is called the evolution semigroup associated with
(T (t))t≥0 on APΛ(X):

(3.5) (T hv)(t) := T (h)v(t − h), v ∈ APΛ(X), h ≥ 0.

Let us denote by C̃ the operator of multiplication by C on APΛ(X).

Lemma 3.4. Under the above notation the evolution semigroup (T h)h≥0 is
a C̃-semigroup with generator −LM, where M := AP (X).

Proof. For the proof see [4, Lemma 2.6]. ¤

We introduce the following operator LM.

Definition 3.5. Let M be a closed subspace of BUC(R, X). We define the
operator LM on M as follows: u ∈ D(LM) if and only if u ∈ M and there
is f ∈ M such that

(3.6) Cu(t) = T (t − s)u(s) +
∫ t

s
T (t − r)f(r)dr, for all t ≥ s

and in this case LMu := f .

Let us denote the differential operator d/dt in APΛ(X) by D and the
function space APΛ(X) by M. It is obvious that D, Ã and C̃ commute with
each other. Moreover, we have

Lemma 3.6. Let A be the generator of a C-semigroup. Then, under the
above notations, the operator LM is well-defined single valued operator.
Moreover,

(3.7) LM = D − Ã
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Proof. The fact that LM is a single valued operator was established in [4].
By Lemma 2.6 of [4], −LM is the generator of the evolution C̃-semigroup
(T h)h≥0. On the other hand, by [16, Theorem 2.1], the generator of this
evolution semigroup is nothing but −D + Ã. So, LM = D − Ã. ¤

We are now in a position to apply the method of sums of commuting
operators to derive conditions for the existence of almost periodic mild so-
lutions to Eq. (1.1). To this end, assume that the operator A in Eq. (1.1)
generates a holomorphic C-semigroup T (t) on the Banach space X. Let us
denote by Λ the closure of the Bohr spectrum of the almost periodic function
f . Consider the operators T̃ (t) of multiplication by T (t) and the operator
Ã of multiplication by A on M := APΛ(X). Recall that, by definition,
D(Ã) consists of all g ∈ APΛ(X) such that g(t) ∈ D(A), for all t ∈ R and
Ag(·) ∈ APΛ(X).

Lemma 3.7. Under the above assumptions and notations, the family of op-
erators of multiplication T̃ (t) is a holomorphic C̃-semigroup with generator
Ã on APΛ(X);

Proof. First, we show that the range of C̃ is dense in APΛ(X). In fact, by
the assumption, every trigonometric monomial eiλta, λ ∈ Λ, a ∈ X can
be approximated by a sequence of trigonometric monomials eiλtak with
ak ∈ R(C), k = 1, 2, · · · . So, every trigonometric polynomial Pn(t) :=∑n

k=1 ak,neiλk,nt, with λk,n ∈ Λ and ak,n ∈ X, can be approximated by a
trigonometric polynomial Qn(t) :=

∑n
k=1 bk,neiλk,nt with bk,n ∈ R(C). Note

that Qn ∈ R(C̃). On the other hand, by the Approximation Theorem of Al-
most Periodic Functions, every function in APΛ(X) can be approximated by
a sequence of trigonometric polynomials in X with exponents in Λ. There-
fore, it can be approximated by a sequence of trigonometric polynomials
with coefficients in R(C) and exponents in Λ (that are in R(C̃)). So, the
range of C̃ is dense in APΛ(X).

The precompactness of the range of each function in APΛ(X) yields the
convergence in APΛ(X) of the limit limt→0,| arg t|≤δ−ε T̃ (t)g = C̃g for all
g ∈ APΛ(X) and ε ∈ (0, δ). Therefore, T̃ (t) is a holomorphic C̃-semigroup.
It remains to show that its generator is exactly Ã. First of all, suppose that
g ∈ D(Ã). Then, for each t ∈ R there exists limh↓0(T (h)g(t) − Cg(t))/h ∈
R(C). From the precompactness of the range of g and the strong con-
tinuity of (T (h))h≥0 it follows that this limit is uniform in t ∈ R. Hence,
limh↓0(T̃ (h)g−Cg)/h exists as an element w of APΛ(X) with range in R(C).
Since C−1w(·) = Ag(·) = Ãg ∈ APΛ(X), we have that g = Cw ∈ R(C̃).
Hence, g ∈ D(A), where A denotes the generator of the C-semigroup T̃ (t).
Obviously, Ãg = Ag. This shows that Ã ⊂ A. Conversely, let g ∈ D(A).
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Then, by definition, we can easily see that for each t ∈ R, g(t) ∈ D(A) and
Ag(·) ∈ APΛ(X), that is, A ⊂ Ã. Finally, we obtain that Ã is exactly the
generator of the C-semigroup T̃ (t). ¤

We now state the main result of this paper.

Theorem 3.8. Let A be the generator of a holomorphic C-semigroup with
R(C) dense in X, and let the following conditions be satisfied:

(i) There exists an almost periodic function g such that f(t) = Cg(t),
for all t ∈ R;

(ii) σ(A) ∩ isp(g) = ®.

Then, the following assertions hold:

(i) There exists an almost periodic mild solution u to Eq. (3.1) such
that sp(u) ⊂ sp(g);

(ii) If there exists another bounded mild solution v to Eq. (3.1) such
that sp(v) ⊂ sp(g), then u(t) = v(t), for all t ∈ R.

Proof. (i) Let us denote Λ := sp(g). We can easily show σ(Ã) ⊂ σ(A).
And by Lemma 2.2 we obtain that σ(D) = iΛ = iσ(g). By Theorem 2.9,
there exists an injective bounded linear operator Q on APΛ(X) such that
D − ÃQ = C̃. Setting u = Qg, we have D − ÃQg = C̃g = f . Therefore,
u = Qg is an almost periodic mild solution of Eq. (3.1) such that sp(u) ⊂
Λ = sp(g).

(ii) The uniqueness of the solution u is an immediate consequence of the
following estimate: For any bounded mild solution w of Eq. (3.1) we have

sp(Cw) ⊂ σi(A) ∪ sp(g) ,(3.8)

where σi(A) := {ξ ∈ R : iξ ∈ σ(A)}. Assume that there is ξ0 ∈ R such that
iξ0 ∈ ρ(A). Taking the Laplace transforms of both sides of (3.4) we can
easily show that (for Reλ 6= 0 and λ close to iξ0),

(3.9) Ĉw(λ) = R(λ,A)Cw(0) + R(λ,A)Ĉf(λ).

Therefore, if ξ0 6∈ sp(g), (so ξ0 6∈ sp(f) by Proposition 2.1 (ii)), the function
Ĉw(λ) has an analytic extension around iξ. Thus, sp(Cw(·)) ⊂ σi(A) ∪
sp(Cf(·)). And hence we have (3.8).

Obviously [Cu(·)−Cv(·)] is an almost periodic mild solution of Eq. (3.1)
with f replaced by 0. In view of (3.8), isp(Cu(·) − Cv(·)) ⊂ σi(A). On the
other hand, since both u and v are in Λ(X) we have isp(Cu(·) − Cv(·)) ⊂
σi(A) ∩ iΛ = σi(A) ∩ isp(g) = ®. This yields that [Cu(·) − Cv(·)] = 0.

¤
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