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SELF-HOMOTOPY OF THE DOUBLE SUSPENSION OF
THE REAL 7-PROJECTIVE SPACE

TosHIYUKI MIYAUCHI

ABSTRACT. We determine the group structure of the self-homotopy set
of the double suspension of the real 7-dimensionnal projective space.

1. INTRODUCTION

In this paper, all spaces, maps and homotopies are based. We use the same
notation as [10] and [5]. Let "X be an n-fold suspension of a space X and
P" be the n-dimensional real projective space. The purpose of the present
paper is to determine the group structure of the homotopy set [S2P7, ¥2P7].
We denote by 7, : S — P" the covering map. According to [9], X276 = 0,
¥2P7 = ¥2P% v §Y, and so

[X2P7, 22P7] = [22PS, ¥2PC] @ m9(X?PS) @ mo(S9).
Let Z be the group of integers and set Z,, = Z/nZ. The notation (Z,)™
means a direct sum of m-copies of Z,,. Our result is stated as follows.

Theorem 1.1. [X?P7, X2P7| =2 Z @ (Zs)? @ (Z)".

In this paper we sometimes identify a map with its homotopy class. For
m < n, let iy, @ P — P" and py., 0 P" — P"/P™ be the inclusion
and collapsing maps, respectively. Especially, we write M" = X" 2P2,
ip = E"*Zil,g : 8"t M™ and p, = E"’2p271 : M™ — 8™ for n > 2.
We denote by [o, 5] the Whitehead product of homotopy classes a and g.
To determine the group structure of mg(X2P%), we use the following.

Theorem 1.2. [X25, %% 5] = 0 € mo(X2P?).
2. SOME HOMOTOPY GROUPS

We denote by tx € [X, X] the identity class of a space X and let ¢, = tgn.
For the Hopf maps 12 € 73(S?) and vy € 77(S?), we set 1, = X" 2ny,
N2 = NNty Mo = Nnni1fnse for n > 2 and v, = X" 4y, for n > 4. We
recall from [7] that there is an element 7y € 74(M3) such that psip = 73
and Y7, = 7j3, where 73 is a coextension of n3. Let 73 € [M®,S%] be an
extension of 13 and set 7, = X" 27j, for n > 2 and 7, = X" 37, for n > 3.

Mathematics Subject Classification. Primary 55Q52; Secondary 55Q15, 55Q40.

Key words and phrases. self-homotopy, real projective space.

Thanks are due to Tomohisa Inoue, Professor Juno Mukai and Professor Norio Iwase
for the kind and useful advices.

77



78 T. MIYAUCHI

Let v/ be a generator of the group mg(S%) = Zjo and Ao be the attaching
map of the 7-cell of the Stiefel manifold V52 = M tu Ao e”. We recall that
m6(M*) = Zy{ o} © Zo{ij3m5} [6]. We note mo(M*) = (Zg) [12, Theorem
5.8] and, by use of these facts and the homotopy exact sequence of a pair
(Vs.2, M%), we determine the generators.

Lemma 2.1. 7'['9(M4) = Z2{)\2V6} ) ZQ{[}\Q,’M]T]S} ) Z2{53U5778}.
Let s : S° — 32P3 = MV S° be the inclusion to the second factor. Then,

we recall

(2.1) Y2z = 25 4 (X%in3)73

By the Hilton-Milnor theorem, we obtain

(2.2) T (2*P3) = m(M*) © mi(S°) @ mi(M®) @ m(S(MT A M?)),

for i < 9. By Lemma 2.1 and the facts that ms(M?*) = Zo{\an?} @
Zo{[ia, Mo]} ©Zo{T3v5} [8, Lemma 2.4], m5(S°)=Zo4{vs}, ms(M®)=Zs{isns},
WQ(SS):ZQ{V5T]8}, 7T9(M8):Z4{?77} and 7T9(Z(M7 VAN M3)):Z2{Z(i7 VAN ig)},
we have the following.

Lemma 2.2.
(1) 7T8(22P3) = ZQ{(EQZQ 3 )\277 } ©® ZQ{(EQZQ 3)[24, /\2]}
BZo{(X2i23)T3v5}  Zoa{svs} & Zof{[S%i13, s]n7},
(2) m(X2P?) = Zo{(X%ig3)Navs} @ Zo{(X2izs)[ia, Ao]ris}
@22{(2212,3)77335778} © Zo{svsns}
SZy{[Z%i 3, 8)77} ® Zo{[[X%1 3, 5], D41 3]}
Let X be a connected finite CW-complex and X* = X Uy e™ for 6 :
S"~! — X a complex formed by attaching an n-cell. We denote by
wX %) e (X, X)
the characteristic map of the n-cell e” of X*. Let C'Y be a cone of a space
Y. For an element a € m,,(Y'), we denote by & € m,,+1(CY,Y) an element
satisfying &'(@’) = «, where & : m,+1(CY,Y) — m,(Y) is the connecting
bijection. For o € m,, (S™ 1), we set
a=wX X 60d €mpy (X X).
We note the following:
J@)=60oa and p.a=2ZXa,
where 0 : Tp41(X*, X) — 7 (X) is the boundary map and p : (X*, X) —
(S™, %) is the collapsing map. Now we show the following.

Lemma 2.3. 2((3%i34).m(X?P3)) = 0.
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Proof. We consider the homotopy exact sequence of a pair (£2P*, X2P3):

(3%i3,4)
-,

T10(S2P4, 52P3) 29, 1y(22P3) mo(X2PY).

There exists an element [we, s] € m10(X2P*, £2P3) for we = wé22P4’22P3). By
the relations [1, (3.5)] and (2.1), we have

Oo([ws, s]) = —[Z%13, 8] = £[(Zi23)71s, 5] = £[E?i2,3, s7r.
Hence, by Lemma 2.2 (2), we obtain 2((X2%i3,4).m9(X?P3)) = 0. This com-
pletes the proof. O
Since ¥2y3 0 3 = (X%ig3)73 0 4v5 = 0 by (2.1), there exists an element
e € {X%ig4, 5%y, 3} C mo(X2P%) such that (¥2%ps3)n2 = n3. For this
element, we show the following.

Lemma 2.4. {312,177, 218} = 73vsns and the order ofgg is two.
Proof. By the properties of Toda brackets and by [3, Lemma 4.1], we have
{71313, 17, 208} 0 pg = — (7313 © {n7, 218, ps}) = Tam3T; = N3vs7sPpy-

Since po* : mo(M*) — [M?, M*] is a monomorphism by Lemma 2.1, we
obtain the first. By (2.1), the relation (X%i4)73vsns = £2((X%i34)s) o
n3v5mg = 0 holds. So, by the first and Lemma 2.3, we have
27{% S {227:3,47 22737 775%} o 2L9

= —(Xiza 0 {3, 28})

D —(X%ig4 0 {7313, 7, 2u8})

= (2%274)537/5778 = O mod 2((222'374)*71'9(22P3)) = 0.
This leads to the second and completes the proof. O

Next we compute the homotopy groups of the homotopy fibre of %?py 3 :
$2P* — S8 to determine 79 (X2P*). Let K be the homotopy fibre of %2py 3.
By [2, Corollary 5.8], the 10-skeleton of K has a cellular decomposition

KO = 52PP Uy, s,y CSOPP
For m < n, we denote by zgn c KM — KM and 45 . K™ — K the
inclusion maps and pfgm KM g() /K (m) the collapsing map.

Lemma 2.5.

(1) 7s(K) = Zo{if [ia, Mo]} ® Zo{if v} © Zoa{if svs}
DZo{il [X2%11 3, s|n7},
(2) 7T9(K) = ZQ{if)\QVG} D Zz{ig(sygﬂ]s} (&) ZQ{Z.?[[EZL‘Lg, S], 221'173]}.
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Proof. We consider the homotopy exact sequence of a pair (K ®), »2P3):

K .
mio(K®, 523y 20, o (2p3) D8 1o ®)) I () 52p3)
LK i
B, g (£2PF) 22 rg(K®)) 2 mg (K, 52P%) &, 1 (£2P9).
The group structures 7g(K®), X2P3) = Z{wg} and mg(K®), ¥22P3) = Zy {77}

. (K(®) 32p3)
are obtained by the Blakers-Massey theorem, where wg = wg ™’ .

(2.1) and the relation [i4, tps4] = Aopg [8, Lemma 1.5], the attaching map of
the 8-cell of K(8) is [LEQPS, 22’}/3]0262'1,3 = (22’6'2’3)[1'4, LM4]ﬁ5 = (22i2,3))\2776-
So we have ag((,Ug) = (E2i273))\2776 and 69(ﬁ7) = (222‘273))\2?7%. By (2.2),
the order of these elements are two. Therefore, there exists an element
¢ € mg(K®) such that pgf)gp = 21g. Here we note that ¢ is taken as a
representative of the Toda bracket

xS {i§8[22i273, Y2q3], ig, 2u7}.

So, by Lemma 2.2 (1), we have
ms(K®)) =Zo{ifslia, Ao]} ® Za{ifgiavs} @ Zoaf{ilissvs}

® Zo{ig's[E%i1 3. 8]} © Z{p}.
We have mo(K®), 22P3) = Zg{?%} @AZQ{[W8,227:1,3]} by the James exact
sequence [4, Theorem 2.1]. Since d10(n?) = (S2iz3)A2ni = 0 and

o([ws, 2%i1.3]) = [(Z%i2,3)Aane, X2i1.3] = (X%ia3)[Na, ia]ns,

we obtain
mo(K®) =Zo{ifs A6} & Zo{ilsisusns} & Zo{ifgsusns}

& Zy{if's[S%a3, sl } @ Zo{ils[[S%1 3, ], £%11,3]}-

Note that ¢ is obtained in the follwoing diagram between the cofiber
sequences:

(2.3)

(2.4)

[£2i1,3,52%73] i?,s p§f5
T, 22]?3 . K(8) 7, SS

‘— W[22i2,372273} W‘P (—

§T et e g e s

Write now the homotopy exact sequence of a pair (K O, K (8)):

K
d10 8,9

m10(K ), K®) 20 mg(K®) 225 g (K©O) 2 g (K1), K®))

iK
Lo g (K®) =2 my(K) — 0.
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The group structures mo( K, K®) = Z{wy} and 71(K®, K®)) = Zo {7z}

. ( K ) K(8))
are obtained by the Blakers-Massey theorem, where wyg = wg . By

use of the exact sequence of a triple (K(g)7 K®), »2p3),
3 mg(KW K®)) - mg(K®) 22p?)
is the map of degree 2. So, by the commutative diagram

7o (KO, K®) — (k) £2P3)

b A

ms(K®),

@ is taken as the attaching map of 9-cell of K. Hence, by (2.3) and
ms(K () = 13(K), we obtain (1) and j,=0. We see that
O10(7s) = p o g € {ifg[S%ia3, N3], s, 27} 0 1
= ifs[S2ia3, 573 o {is, 27, 17}
> i3 [S%a,3, X237
mod i£g[E%,3, £%y3] o (ms(M®) 0 g + ig 0 mo(S7)) = 0.
Here we used [Y2ig 3, X2y3)isn? = [X2i13, 223]n2 = (Z2ia3)Aani = 0. By
the fact that [X%ig3, X2vy3] = 2[S%ia 3, 8] + (X%i9,3) [tara, 73] and [epra, 73] =
N3vsps = A2Tg [5, Lemma 1.2], we obtain
010(7) = 2ip[S%i2,3, s]i7 + i4sT3Vs7s,
and hence
mo(KW)) =Zofiffghove} @ Zo{ifgsvsns} ® Zuf{ifiy[S2in3, 577}
& Zo{ity[[X%1,3, 5], X%1,3]}.

Let pas : £2P3 — M* be the projection. Then,

(2.5)

(2.6) Lseps = s¥%pg o + (S%i2,3)pur,
(2.7) 22p372 o5 =15, par o Bigg =ty and ppsos = 0.
By (2.1) and (2.6), we have

[tx2ps, 223]) = [s5%p3 2, 23] + [(Z%ia.3)par, 23]
= [s, (S%i,3)713) 0 X0ps.2 + (Si0,3) [par, 7is) + 2[(E%i2,3)par, 8.
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By (2.7), we have [par, 73] o 2%93 = [1a4,73]. So, by use of the cofiber

8 EG7:2,3 613 261’3,2 9
sequence M°® — 3°pP° —= 57

[par, 73] = [eag4, 73] © Bt par mod mo(M*) 0 2 .
By the same reason,
[(227:273)])]\4, S] = [E2Z'273, 8} [¢] 24])]\/[ mod 7T9(22P3) o) 26]?372.
Hence, by Lemma 2.2 (2) and (2.7), we conclude that
[ts2ps, B2v3] 0 Bts = s, (221'2’3)773] mod (221'273) o mg(M*) o Z6p372.

The attaching map of the 10-cell of K19 is igfg[@ng, ¥2~3]E%s. By (2.1),
we have

iéfg [ts2p3, 2273]243 = :tiéfg[s, 227;273}777 mod ifg)\guﬁ.
So, by the homotopy exact sequence of a pair (K19, K®)) and (2.5), the
group structure of mg(K) is obtained. This completes the proof. O
Lemma 2.6.
mo(S2PY) =Zp {13} © Zo{(S2in.a) Aavis} ® Zo{ (S2is ) svsms}
© Zo{(X%i3.4)[[s, X%i1.3], X%i1 3]}

Proof. We consder the exact sequence induced from the fibration 22p4,3 :
¥2pt — §6.

m10(5%) = 0 = 7o (K) — 7o(S2P4) — m(S¢) 2% mg(K) — -
By [8, Lemma 1.2], we obtain the relations Ag(i6) = +if7; + 2if's and

Ag(ve) = Ag(16) 0 vs = iy Ti3vs + 2 svs.

Using the second relation and Lemma 2.5 (1), we obtain Ker Ag = Zo{ng}.
Therefore, by Lemma 2.4 and 2.5 (2) and by the fact that i o0 i = $2i3,
(i : K — X2P* is the inclusion), we obtain the result. This completes the
proof. O

Now we consider the homotopy exact sequence of a pair (X2P%, L2P4):
T10(E2P%, £2p1) 290, 1o (2P f, g (512PP)
I, ro(2P5, 22P1) & g (22PY),
where ¢ = 222‘475 : 22P* — ¥2P5. By the James exact sequence, the group
structures mo(X2P%, X2PY)=Zo{n2} B Zo{[wr, X%i1 4]} and m10(X2P°, 22PY)=

Z24{Vs} ® Zo{|wr, (X%i1.4)n3]} are settled, where wy; = wézzps’22p4).

recall, from [8, Lemma 1.3], the relation
(2.8) 22"}/4 = (22i374)87]5 + 2(22i274))\2.

We
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By Lemma 2.6 and by the relation nsvg = 0, we obtain
(29) 810(/7/\6) = (22’}/4)V6 = ((222.374)8775 + 2(221'1?4))\2)1/6 = 0.

The equation (X2i34)[%2%ia,3, s|777 = 0 is shown in the proof of Lemma 2.6.
Then

Ao(wr, (Z2iva)n3]) = [S2ya, (B2i1,4)ns] = [(B%i3,4)sm5, (5%i1,4)03]
= (22i374)[8, E2i173]n$ = 2(2%374)[8, 221'273]777 = 0.

Therefore (32i45)x : m9(X2P4) — 79(X2P®) is a monomorphism.
By the fact that 7T8(22P4) = Z4{(22i3’4)8V5} D ZQ{[(EzigA)S, 222'1’4]7’]7} 87
Zo{(X%i9,4)[i4, 2]} [8, Lemma 2.5] and by (2.8), we obtain

~

Bo(nR) = (S2ya)mg = (S2iz,a)sm3 = 4(S%i3.4)s05 = 0
and
9o (Jwr, %11 4]) = [E2y4, B2i1.4] = [(X%ig.4) 575, X2i14] = [(Z%i3.4)8, X2i1.4]77.

Then there exists an element 7% € {2214’5, 2274,77(2),} C 7TQ(EZPL%) such that
(X%p5.4)n2 = n2. We obtain

22 € {S%i45,5%v4,m5} 0 219 = —(E%ia5 0 {E%y4, 15, 2s})

and
(24,15, 28} C {S%iza, (15 + 2(X%ig,3) A2)ng, 2us}

= {Z%ig4, 5m2, 28}

= {X%i34,%%y3 0 2u5, 218}

D {222.3,4’ 2273’ ng}

>

mod  27g(X?P?) 4 (B2i3.4).mo(X2P?) = (223 4) 7o (TP,
and hence we conclude that 277% = (221'475)772) mod (X2i3 5).me(X2P3). Thus,
by Lemma 2.6, we have the following.
Lemma 2.7.
mo(X2P°) =Za {15} @ Zo{(X%i2,5) N} © Zo{(Z%i5,5) 05718}
@ Zo{(X%3,5)[[B%1,3, 8], B%01,3]}

where 27}2 = (221'4,5)7%3 for a suitable choice of%.
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3. PROOFS OF MAIN THEOREMS

First, we show Theorem 1.2.

From the fact that X2vy5 € {3245, X274, 206}, X374 = (Z3i3.4)(2s)n6, we

see that
(2295, 5% 5]pg = [txeps, Xi1,5) 0 S5 0 pg
[L22p5, 227;175} o {24’L’4’5, 24’)/4, 2L8} O P9
[ts2ps, 21 5]{ (Z%i3,5) %25, 17, 28} © po
—([2%35, £%1,5]5%s o {17, 28, ps })
(2235, X% 5] (X%s)7
mod [22i475, 221:175] o 7T9(E4P4) O Pg.

It is easily seen that mo(X4P4) = Zo{ (X% 4)vsns} @ Zo{(Xtis.4)(X2s)n2}.
Since [i3,t3] = 0 and (221'374)[3, 221'2,3]777 = 0, we obtain

U m

(X245, X201 5] 0 (Shina)vsng = (5241,5)[e3, e3]vsms = 0
and
(22145, 5%11,5] 0 (Shiga) (B2s)7 = [S%ia 5, B2i15] 0 (Bhya)s = 0.
Then [X%i45, X%i1 5] omg(X4P4) = 0. By (2.6), the element [%2%i3 5, %% 5]22s
is changed as follows.
(D25, 5%015]5% = (S%iss)[imeps, DPi1,3]5%s
= (S%isp)[s, BPins] + (Sia5) [par, i4]5%s.
By the fact that [pay, ia] € [SP?, MA)=(54ps o) *mr (M*)&(S%par)* [MC, MY,
we obtain
(2%ig5)[par, 14)5%s € D2igs 0 (m7(M*) 0 Shpg o + [MC, M*) 0 22pys) 0 225
== 22i275 (¢] 7T7(M4).
We recall from [7, Lemma 2.2] that 77(M?) = Zo{Xane} @ Z2{73n2}. Since
(X%i9.4) A2 = 0 [8, the proof of Lemma 2.2] and by (2.1), the group %2%ig 50
m7(M*) is 0. Then,
(2295, B2i1,5]p9 = [E2i35, %01 5] (X%8) 77 = (Z2ia 5)[s, B2 ,3]707-
Here we consider an element [X27y, ¥2ip4] € [M?,X2P4]. Since 214 =

iamspa [11], (X%ina)Aome = 0, (X2i3.4)[s, X%ia3]77 = 0 and no A tpr2 = @45 +
13ps5, we obtain

(52, S2in4] = (Z%i3.4)[5m5, X2i2,3] + (2i2,4) 200, tap1]
= (B%iza)[s, D3] 0 S(na A vygs) + (SPina) [N, 2004
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= (D%i34)[s, B%i23] 0 B(irTlg + Neps) + (%i2.4)[ N2, i4n3pa)
= (X%iza)ls, T2 3] + (%iza)[Aatis, ialpo
= (Xiza)[s, X1 3)77-
Thus, we get that
(5295, 21 5]p9 = (£%i5.5)[s, £%i1,3]77 = (S%ia5) (X4, B2i04] = 0.
By use of the cofibre sequence S8 10, o o, g9 2o, SY. we have
[X%v5, B%i1 5] € 2m9(X?P5) = Z {2772

Let [; : P4/P3 = §* — P%/P3 = S%V S5 be the canonical inclusion map. By
Lemma 2.7 and by the relations ps3 045 =11 0ops3 and ps30i15 = 0, we
obtain

Ypszo2n2 = NpszoXiisgsond
— 22l1 o 22p473 o ng
= (2211)772 #0¢€ 7T9(56 V S7) = Zoy D 2o

and

S2ps,3 0 [S%5, B2t 5] = 0.
Therefore we have [%%v5, $%i; 5] = 0 and the proof of Theorem 1.2 is com-
plete.

By [8, the proof of Lemma 2.5], we have a relation (X275)n7; = 0 and we
can define a coextension 7j; € mg(%?PO) of 77 as follows:

Ty € {5256, %5, 7}
Since 277 € {256, 275,717} 0 209 = —(3%i5,6 0 {75,717, 28}) and
3%ps.a 0 {5, m7, 208} C {207,777, 28} = 17,
we obtain 27, = (X2i5,6)n2 mod %2i5 ¢ o 2me(X2P5) + N2iy ¢ o me(X2P1) =
Y2i46 0 mo(X2P%). From the exact sequence of a pair (¥?P% ¥2P%) and by
Theorem 1.2, we see that (X2i5¢). : mo(X?P?) — m9(X2PF) is a monomor-

phism. Thus, 7 is of order 8 and the group structure of mo(X2P%) is given
as follows.

Lemma 3.1.
mo(X7P°) =Zs {77} ® Zo{(X%in6)\avis} ® Zo{(X%i36) 50578}
D Zo{(X%i56)[[X%1 3, 5], B%i1,3] }

where 21, = (221'576)77?25 for a suitable choice ofw;g.
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We denote by s1 : S — £2P7 = 2P0 v §° the inclusion map to the
second factor and by ¢ : £2P7 = 2P6 v §9 — 2P the map collapsing S
to one point. Finally we obtain the following.

Theorem 3.2.
[S2P7, 52P7] =Z{s1%%pr 6} @ Zs{(S%i6,7) a1} © Zs{(X7i6,7)177 5716}
@ Zo{ (S%i3,7)[s, £%i9,3] (2%p6.a)q1 }
B Zo{(E%i0,7) Mo (2 Pa3) 1 } @ Zo{(S%in,7) N2, i) (E%pe,5) a1 }
D Zo{(X%i3,7)s505(5%p65) a1} ® Zo{ (SPin7) AoveXpr 6}
D Zo{(X%ig7)svsnsS7pre}
( )

)

© Zo{(X%i3.7)[[Z%i1.3, 5], %41 3] %% pr 6 }-
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