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GLOBAL SOLVABLY CLOSED ANABELIAN GEOMETRY

Shinichi MOCHIZUKI

Abstract. In this paper, we study the pro-Σ anabelian geometry of hy-
perbolic curves, where Σ is a nonempty set of prime numbers, over Galois
groups of “solvably closed extensions” of number fields — i.e., infinite
extensions of number fields which have no nontrivial abelian extensions.
The main results of this paper are, in essence, immediate corollaries
of the following three ingredients: (a) classical results concerning the
structure of Galois groups of number fields; (b) an anabelian result of
Uchida concerning Galois groups of solvably closed extensions of number
fields; (c) a previous result of the author concerning the pro-Σ anabelian
geometry of hyperbolic curves over nonarchimedean local fields.

1. Introduction

In this paper, we study various properties of solvably closed Galois groups
of number fields, i.e., Galois groups of field extensions of number fields that
admit no nontrivial abelian field extensions [cf. Definition 1, (i)]. In §1,
we show that such Galois groups satisfy many of the properties of absolute
Galois groups of number fields that are of importance in the context of an-
abelian geometry. In particular, this includes properties concerning Galois
cohomology, center-free-ness, decomposition groups of valuations, and topo-
logically finitely generated closed normal subgroups. In §2, after reviewing
a fundamental result of Uchida [cf. [11]] to the effect that solvably closed
Galois groups of number fields are anabelian, we apply the various results
obtained in §1 to give a new version of the main result of [6] concerning the
pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set
of prime numbers, in the context of solvably closed Galois groups of number
fields. Finally, in §3, we observe that “relatively small” solvably closed Ga-
lois groups of number fields exist in “substantial abundance”. For instance,
in the case of punctured elliptic curves, it is possible in many instances to
obtain solvably closed Galois groups of number fields that are, on the one
hand, “large enough” to be compatible with the outer Galois action on the
pro-Σ geometric fundamental group of the punctured elliptic curve [i.e., in
the sense that this outer Galois action of the Galois group of the number
field factors through the quotient determined by the solvably closed exten-
sion], but, on the other hand, “small enough” to be linearly disjoint from
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various field extensions arising from the l-torsion points of the elliptic curve,
for a prime number l /∈ Σ.

Acknowledgment. The author wishes like to thank Akio Tamagawa for bring-
ing the results exposed in Theorems 2.4, 3.1 of the text to his attention.

2. Basic Properties

We begin by defining the notion of a solvably closed Galois group of a
number field and showing that such Galois groups satisfy many properties
that are well-known in the case of absolute Galois groups of number fields.

Let F be a number field [i.e., a finite extension of the field of rational
numbers], F an algebraic closure of F , and F̃ ⊆ F a [not necessarily finite!]
Galois extension of F . Write GF

def= Gal(F/F ), QF
def= Gal(F̃ /F ). Thus,

one may think of QF as a quotient GF ³ QF of GF .

Definition 1.

(i) We shall say that a field is solvably closed if it has no nontrivial abelian
extensions. If F̃ is solvably closed, then we shall say that F̃ /F is a solvably
closed extension and refer to QF as a solvably closed Galois group of the
number field F .

(ii) If G is any profinite group, and p is a prime number, then we shall
write

cdp(G)

for the smallest positive integer i such that Hj(G,A) = 0 for all continuous
p-torsion G-modules A and all j > i, if such an integer i exists; if such an
integer i does not exist, then we set cdp(G) def= ∞ [cf. [8], Definition 3.3.1].

Remark 1. Observe that the Galois group QF is solvably closed if and only
if, for any open subgroup HQ ⊆ QF , whose inverse image in GF we denote
by HG ⊆ GF , the surjection induced on maximal pro-solvable quotients

Hsol
G ³ Hsol

Q

by the quotient morphism HG ³ HQ is an isomorphism.

Remark 2. Thus, if we denote by F̃ sol ⊆ F the maximal solvable [Galois]
extension of F̃ , then one verifies immediately that Gal(F̃ sol/F ) is a solvably
closed Galois group of the number field F . In particular, [by taking F̃ = F ,
it follows that] the maximal pro-solvable quotient Gsol

F of GF is a solvably
closed Galois group of the number field F .
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Remark 3. One verifies immediately that any open subgroup of a solvably
closed Galois group of a number field is again a solvably closed Galois group
of a number field.

Proposition 2.1 (Galois Cohomology of Solvably Closed Galois Groups).
Suppose that QF is a solvably closed Galois group of the number field
F . Then:

(i) The natural surjection GF ³ QF induces an isomorphism

H i(QF , A) ∼→ H i(GF , A)

for all continuous torsion QF -modules A and all integers i ≥ 0. In partic-
ular, if F contains a square root of −1, then cdp(QF ) = 2 for all prime
numbers p.

(ii) Let p be a prime number; suppose that F contains a primitive p-th
root of unity. Then for any automorphism σ of the field F̃ that preserves
and acts nontrivially on F ⊆ F̃ , the automorphism induced by σ of the set
of one-dimensional Fp-subspaces of the Fp-vector space

H2(QF , Fp)

is nontrivial.

Proof. First, we consider assertion (i). Write JF
def= ker(GF ³ QF ). To

show the desired isomorphism, it follows immediately from the Leray-Serre
spectral sequence associated to the extension 1 → JF → GF → QF → 1
that it suffices to show that H i(JF , A) = 0 for all i ≥ 1. Since

H i(JF , A) ∼= lim−→
JF⊆H⊆GF

H i(H,A)

[where H ranges over the open subgroups of GF containing JF ], we thus
conclude the desired vanishing as follows: If i ≥ 3, then the fact that
H i(H,A) = 0 follows from the fact that cdp(H) ≤ 2, for H sufficiently
small [i.e., H that correspond to totally imaginary extensions of F — cf.
[8], Proposition 8.3.17]. If i = 2, then we recall that by the well-known
“Hasse Principle for central simple algebras” [cf., e.g., [8], Corollary 8.1.16;
the discussion of [8], §7.1], it follows that we have an exact sequence

0 → H2(GF , Fp(1)) →
⊕

v

H2(Gv, Fp(1)) → Fp → 0

where the “(1)” denotes a “Tate twist”; v ranges over the valuations of F ;
Gv denotes the decomposition group of v in GF , which is well-defined up to
conjugation; and we recall in passing that the restriction to the various direct
summands of the map to Fp induces an isomorphism H2(Gv, Fp(1)) ∼= Fp for
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all nonarchimedean v. Thus, by applying the analogue for H of this exact
sequence for GF , together with the Grunwald-Wang Theorem [which assures
the existence of global abelian field extensions with prescribed behavior at
a finite number of valuations — cf., e.g., [8], Corollary 9.2.3], we conclude
immediately that

lim−→
H

H2(H,A) = 0

[where H ranges over the open subgroups of GF containing JF ]. When i = 1,
the fact that

lim−→
H

H1(H,A) = 0

follows formally from the definition of a “solvably closed” Galois group [cf.
Definition 1, (i)]. Now the statement concerning cdp(QF ) follows immedi-
ately from the isomorphism just verified, together with the fact that, if F
contains a square root of −1 [hence is totally imaginary], then cdp(GF ) = 2
[cf. [8], Proposition 8.3.17; the exact sequence just discussed concerning
H2(GF , Fp(1))]. This completes the proof of assertion (i).

Finally, we observe that assertion (ii) follows immediately from the exact
sequence just discussed concerning

H2(GF , Fp(1)) ∼= H2(QF , Fp(1)) ∼= H2(QF , Fp)

[cf. assertion (i); our assumption that F contains a primitive p-th root
of unity], together with Tchebotarev’s density theorem [cf., e.g., [3], Chapter
VIII, §4, Theorem 10], which implies that if we write F0 ⊆ F for the subfield
fixed by σ, then there exist two distinct nonarchimedean valuations v1, v2 of
F0 that split completely in F . That is to say, if w1, w2 are valuations of F
lying over v1, v2, respectively, then there exists an element h ∈ H2(QF , Fp) ∼=
H2(GF , Fp(1)) [where we note that this isomorphism is compatible with the
natural actions by σ, up to multiplication by an element of F×

p ] which maps
to a nonzero element of the direct sum in the above sequence whose unique
nonzero components are the components labeled by v1, v2; thus, σ(Fp ·h) 6=
Fp · h, as desired. ¤

Remark 4. As was pointed out to the author by the referee, one may gener-
alize Proposition 2.1, (i), substantially if one assumes the Bloch-Kato con-
jecture — i.e., the assertion that the cup product

∪ : H1(GK , Fp(1))⊗i → H i(GK , Fp(i))

induces a surjection for every integer i ≥ 1, every prime number p, and
every field K of characteristic zero. Indeed, if GK ³ QK is a quotient by a
closed normal subgroup JK ⊆ GK corresponding to a field extension K̃ of
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K which has no nontrivial abelian extensions, then to show that the natural
morphism

H i(QK , A) → H i(GK , A)
is an isomorphism for all integers i ≥ 0 and continuous torsion QK-modules
A, it suffices to verify [cf. the proof of Proposition 2.1, (i)], in the case
A = Fp, that for all open subgroups H ⊆ GK containing JK , an arbitrary
class ∈ H i(H,A) vanishes upon restriction to a sufficiently small open sub-
group H1 ⊆ H containing JK ; but this follows from the fact that K̃ has no
nontrivial abelian extensions if i = 1, hence by the Bloch-Kato conjecture if
i ≥ 2.

Before proceeding, we recall that a profinite group ∆ is slim if every open
subgroup of ∆ has trivial centralizer in ∆ [cf. [5], Definition 0.1, (i)].

Corollary 2.2 (Slimness). Every solvably closed Galois group of a
number field is slim.

Proof. Suppose that QF is solvably closed. Let HQ ⊆ QF be an open sub-
group, σ ∈ QF an element of the centralizer of HQ. Write FH ⊆ F̃ for the
extension of F defined by HQ. Since QF is solvably closed, by taking HQ to
be sufficiently small, we may assume that FH contains a p-th root of unity,
for some prime number p. Note that since σ commutes with HQ, it follows
that σ acts trivially on H2(HQ, Fp). Thus, by applying Proposition 2.1, (ii),
to the action of σ on F̃ /FH , we conclude that σ acts trivially on FH , i.e.,
that σ ∈ HQ. On the other hand, since HQ may be taken to be arbitrarily
small, it thus follows that σ = 1, as desired. ¤

The next two results, concerning decomposition groups and topologically
finitely generated closed normal subgroups, respectively, are well-known in
the case of absolute Galois groups [cf., e.g., [8], Corollary 12.1.3; [2], Propo-
sition 16.11.6].

Proposition 2.3 (Decomposition Groups). Suppose that QF is a solvably
closed Galois group of the number field F . Let v, w be valuations of F
such that v 6= w; write Gv, Gw ⊆ QF for the corresponding decomposition
groups [which are well-defined up to conjugation] in QF and Fv, Fw for the
corresponding completions of F . Then:

(i) Suppose that F contains a square root of −1, and that v, w are
nonarchimedean; let K be a finite extension of Fv. Then there exists a
finite Galois extension of F contained in F̃ whose restriction to Fv contains
K and whose restriction to Fw is the trivial extension.

(ii) Suppose that v, w are archimedean; let K be a nontrivial finite
extension of Fv. Then there exists a quadratic extension of F contained in
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F̃ whose restriction to Fv contains K and whose restriction to Fw is the
trivial extension.

(iii) The surjection GF ³ QF induces an isomorphism of Gv with the
decomposition group of v in GF . In particular, if v is nonarchimedean,
then Gv is slim and torsion-free.

(iv) Gv
⋂

Gw = {1}.
(v) Suppose that v is archimedean (respectively, nonarchimedean).

Then the normalizer (respectively, commensurator) of Gv in QF is equal
to Gv.

Proof. First, we consider assertion (i). Since the absolute Galois group of
Fv is pro-solvable [cf., e.g., [8], Chapter VII, §5], we may assume, by recur-
sion, that K is an abelian extension of Fv. Since, moreover, F contains a
square root of −1, it follows that we may apply the Grunwald-Wang Theorem
[cf., e.g., [8], Corollary 9.2.3] to F . Now assertion (i) follows immediately
by applying the Grunwald-Wang Theorem to F . Assertion (ii) follows by
considering the quadratic extension of F determined by taking the square
root of an element f ∈ F which is < 0 at v and either > 0 or nonreal
at w [where we note that the existence of such an f follows immediately
from the fact that the valuations v, w are distinct]. In the nonarchimedean
case, assertion (iii) follows formally from assertion (i), together with the
well-known facts that the absolute Galois group of a nonarchimedean local
field is slim [cf., e.g., [5], Theorem 1.1.1, (ii)] and [of finite cohomological
dimension — cf., e.g., [8], Corollary 7.2.5 — hence] torsion-free. In the
archimedean case, assertion (iii) follows, for instance, by considering the ex-
tension of F obtained by adjoining a square root of −1. To verify assertion
(iv), let us first observe that if at least one of v, w is nonarchimedean, then
it follows from the torsion-free-ness portion of assertion (iii) that both v, w
are nonarchimedean [cf. also the well-known fact that the absolute Galois
group of an archimedean local field is finite, of order ≤ 2!], and, moreover,
that [from the point of view of verifying assertion (iv)] one may replace F
by a finite abelian extension of F that satisfies the hypothesis of assertion
(i). Now assertion (iv) follows immediately from assertions (i), (ii), (iii).
Finally, assertion (v) follows formally from assertion (iv) [together with the
torsion-free-ness portion of assertion (iii) in the nonarchimedean case]. ¤
Theorem 2.4 (Topologically Finitely Generated Closed Normal Subgroups).
Suppose that F̃ is a Galois extension of the number field F such that for some
prime number p, F̃ has no cyclic extensions of degree p [e.g., a solvably
closed extension of F ]. Then every topologically finitely generated closed
normal subgroup N ⊆ QF is trivial.
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Proof. Although this fact only follows formally from the statement of [2],
Proposition 16.11.6, in the case where F̃ is algebraically closed, as was ex-
plained to the author by A. Tamagawa, the proof given in [2] generalizes
immediately to the case of arbitrary F̃ [i.e., as in the statement of Theorem
2.4]: Indeed, if we write L ⊆ F̃ for the Galois [since N is normal] field exten-
sion of F determined by N , and assume that N is nontrivial, then it follows
that there exists a proper normal open subgroup N1 ⊆ N of N . Thus, N1

determines a finite Galois extension L1/L of degree > 1. Now let us recall
that number fields [such as F ] are Hilbertian [cf., e.g., [2], Theorem 13.4.2].
Thus, by [2], Theorem 13.9.1, (b) [i.e., “Weissauer’s extension theorem for
Hilbertian fields”], we conclude that L1 is Hilbertian, hence, by [repeated
application of] [2], Theorem 16.11.2, that L1 admits Galois extensions with
Galois group isomorphic to a product of an arbitrary finite number of copies
of Z/pZ. By our assumption on F̃ , it follows that such Galois extensions of
L1 are contained in F̃ , hence that N1 admits finite quotients isomorphic to a
product of an arbitrary finite number of copies of Z/pZ. But this contradicts
the assumption that N is topologically finitely generated. ¤

3. Anabelian Results

Next, we consider the anabelian geometry of hyperbolic curves, in the
context of solvably closed Galois groups of number fields.

The following result is due to K. Uchida [cf. the main theorem of [11]]:

Theorem 3.1 (Solvably Closed Galois Groups are Anabelian). For i =
1, 2, let F̃i/Fi be a solvably closed extension of a number field Fi; write
Qi

def= Gal(F̃i/Fi). Then passing to the induced morphism on Galois groups
determines a bijection between the set of isomorphisms of topological
groups

Q1
∼→ Q2

and the set of isomorphisms of fields F̃1
∼→ F̃2 that map F1 onto F2.

Next, let us assume that we have been given a hyperbolic curve [cf., e.g.,
[5], §0, for a discussion of hyperbolic curves] over F . Let Σ be a nonempty
set of prime numbers. Write

∆X

for the maximal pro-Σ quotient of the geometric fundamental group π1(X×F

F ) of X [relative to some basepoint]. Here, we note in passing that Σ may
be recovered from ∆X as the set of prime numbers that occur as factors of
orders of finite quotients of ∆X . Thus, one has a natural outer action

GF → Out(∆X)
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of GF on ∆X .

Lemma 3.2 (Slimness). ∆X is slim.

Proof. This follows immediately by considering Galois actions on abelian-
izations of open subgroups of ∆X — cf. the proof of [5], Lemma 1.3.1, in
the case where Σ is the set of all prime numbers. Another [earlier] approach
to proving the slimness of ∆X is given in [7], Corollary 1.3.4. ¤

Definition 2. We shall say that the [not necessarily solvably closed!] ex-
tension F̃ /F , or, alternatively, the Galois group QF , is Σ-compatible with X
if the natural outer action

GF → Out(∆X)

factors through the quotient GF ³ QF . Thus, if QF is Σ-compatible with
X, then one obtains an exact sequence of profinite groups

1 → ∆X → ΠX → QF → 1

by pulling back the natural exact sequence

1 → ∆X → Aut(∆X) → Out(∆X) → 1

[which is exact by Lemma 3.2!] via the resulting homomorphism QF →
Out(∆X). Here, we note that since [it is an easily verified tautology that] the
étale fundamental group π1(X) of X may be recovered as the result of pulling
back this natural exact sequence via the homomorphism GF → Out(∆X),
it thus follows that ΠX may be thought of as a quotient of π1(X).

Proposition 3.3 (Geometric Subgroups are Characteristic). For i = 1, 2,
let F̃i/Fi be a solvably closed extension of a number field Fi; Qi

def=
Gal(F̃i/Fi); Σi a nonempty set of prime numbers; Xi a hyperbolic curve
over Fi with which Qi is Σi-compatible; 1 → ∆Xi → ΠXi → Qi → 1
the resulting exact sequence of profinite groups [cf. Definition 2]. Then any
isomorphism of topological groups

ΠX1

∼→ ΠX2

maps ∆X1 isomorphically onto ∆X2. In particular, Σ1 = Σ2.

Proof. We give two proofs of Proposition 3.3. The first proof consists of sim-
ply observing [cf. the proof of [5], Lemma 1.1.4, (i), via [5], Theorem 1.1.2]
that the image of ∆X1 under the composite of the isomorphism ΠX1

∼→ ΠX2

with the surjection ΠX2 ³ Q2 forms a topologically finitely generated closed
normal subgroup of Q2, hence is trivial, by Theorem 2.4.

The second proof of Proposition 3.3 only uses Theorem 2.4 in the well-
known case of an absolute Galois group of a number field. Moreover, when
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either Σ1 or Σ2 is not equal to the set of all prime numbers, then this second
proof does not use Theorem 2.4 at all.

For i = 1, 2, let Hi ⊆ ΠXi be corresponding [i.e., relative to the given
isomorphism ΠX1

∼→ ΠX2 ] normal open subgroups; write Hi ³ Ji for the
quotients determined by the quotients ΠXi ³ Qi. By taking the Hi to be
sufficiently small, we may also assume that the number fields determined by
the Ji contain square roots of −1. Thus, by Proposition 2.1, (i), it follows
that

cdp(Hi) = 2 + d(p, i)

where d(p, i) is equal to 1 or 2 [depending on whether Xi is affine or proper]
if p ∈ Σi and d(p, i) = 0 if p /∈ Σi. Since H1

∼→ H2, we thus conclude that
Σ1 = Σ2, and that X1 is affine if and only if X2 is. Now if Σ1 = Σ2 is
the set of all prime numbers, and X1, X2 are affine, then it follows from
Matsumoto’s injectivity theorem [cf. [4], Theorem 2.1] that the field F̃i is an
algebraic closure of Fi; thus, in this case, Proposition 3.3 follows from [5],
Lemma 1.1.4, (i) [i.e., Theorem 2.4 for absolute Galois groups of number
fields].

Next, let us suppose that there exists a prime number p such that p /∈ Σ1,
p /∈ Σ2. This implies that every finite quotient group of Di

def= ker(Hi ³ Ji)
has order prime to p, hence [by consideration of the Leray-Serre spectral
sequence associated to the surjection Hi ³ Ji] that, for i = 1, 2, the natural
homomorphism

H2(Ji, Fp) → H2(Hi, Fp)

is an isomorphism. In particular, it follows that ∆Xi acts trivially on
H2(Hi, Fp). Thus, the natural action of ΠXi on H2(Hi, Fp) factors through
the quotient ΠXi ³ Qi/Ji. Now, by taking Hi to be sufficiently small,
we may assume [since Qi is solvably closed!] that the extension field of Fi

determined by Ji contains a primitive p-th root of unity. Thus, by Proposi-
tion 2.1, (ii), we conclude that the action of Qi/Ji on H2(Hi, Fp) is faithful.
Since the isomorphism ΠX1

∼→ ΠX2 induces an isomorphism H1
∼→ H2,

hence an isomorphism H2(H1, Fp)
∼→ H2(H2, Fp) which is compatible with

the respective actions of ΠX1 , ΠX2 , we thus conclude that the isomorphism
ΠX1

∼→ ΠX2 preserves the kernels of the surjections ΠXi ³ Qi/Ji, hence that
the subgroup ∆Xi = ker(ΠXi ³ Qi) may be recovered as the intersection of
the kernels of the surjections ΠXi ³ Qi/Ji, by letting the Hi range over all
sufficiently small normal open subgroups of ΠXi . This completes the proof
of Proposition 3.3 in the case where there exists a prime number p such that
p /∈ Σ1, p /∈ Σ2.

Finally, we consider the case where X1, X2 are proper. Let p be a prime
number; suppose that the Hi have been taken to be sufficiently small so
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that the number fields determined by the Ji contain a primitive p-th root of
unity and a square root of −1 [which, by Proposition 2.1, (i), implies that
cdp(Ji) = 2]. Since Di

def= ker(Hi ³ Ji) also satisfies cdp(Di) ≤ 2, it thus
follows from the Leray-Serre spectral sequence associated to the extension
1 → Di → Hi → Ji → 1 that there is a natural isomorphism

H4(Hi, Fp) ∼= H2(Ji, Fp) ⊗ H2(Di, Fp)

which is compatible with the natural action of ΠXi on the various cohomol-
ogy modules involved. Here, we note that [by the well-known structure of
the cohomology of the geometric fundamental group of an algebraic curve]
∆Xi ⊆ ΠXi acts trivially on H2(Di, Fp). Thus, Proposition 3.3 follows in
the present case by applying Proposition 2.1, (ii), as in the argument given
in the preceding paragraph. ¤

Theorem 3.4 (The Anabelian Geometry of Hyperbolic Curves over Solv-
ably Closed Galois Groups). For i = 1, 2, let F̃i/Fi be a solvably closed ex-

tension of a number field Fi; Qi
def= Gal(F̃i/Fi); Σi a nonempty set of prime

numbers; Xi a hyperbolic curve over Fi with which Qi is Σi-compatible;
1 → ∆Xi → ΠXi → Qi → 1 the resulting exact sequence of profinite groups
[cf. Definition 2]; X̃i → Xi the pro-finite étale covering of Xi deter-
mined by ΠXi [regarded as a quotient of the étale fundamental group of Xi].
Then passing to the induced morphism on fundamental groups determines a
bijection between the set of isomorphisms of topological groups

ΠX1

∼→ ΠX2

and the set of compatible pairs of isomorphisms of schemes X̃1
∼→ X̃2,

X1
∼→ X2.

Proof. By Proposition 3.3, any isomorphism ΠX1

∼→ ΠX2 induces an isomor-
phism Q1

∼→ Q2, hence, by Theorem 3.1, a compatible pair of isomorphisms
of fields F̃1

∼→ F̃2, F1
∼→ F2. Thus, we may apply “Theorem A” of [6] to the

isomorphism ΠX1

∼→ ΠX2 to conclude that this isomorphism arises from a
unique compatible pair of isomorphisms of schemes X̃1

∼→ X̃2, X1
∼→ X2, as

desired. ¤

4. Some Examples

Finally, we conclude by observing that in various situations, Σ-compatible
solvably closed extensions which are, moreover, “relatively small” [e.g., by
comparison to the entire absolute Galois group of a number field] exist in
substantial abundance.
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Proposition 4.1 (The Case of a Single Prime Number). Let Σ def= {r},
where r is a prime number.

(i) Let ∆ be a topologically finitely generated pro-r group. [Thus,
since ∆ is topologically finitely generated, its topology admits a base of char-
acteristic open subgroups, which determine a natural profinite topology on
Out(∆).] Write ∆ ³ ∆ab for the abelianization of ∆. Then the kernel of
the natural morphism of profinite groups

Out(∆) → Aut(∆ab ⊗ Fr)

is a pro-r [hence, in particular, pro-solvable!] group.

(ii) Let X be a hyperbolic curve over F . Then there exists a finite Ga-
lois extension F1 over F such that the maximal solvable extension [which
is solvably closed — cf. Remark 2] F̃

def= F sol
1 of F1 is Σ-compatible with

X.

Proof. First, we consider assertion (i). Since ∆ admits a base of charac-
teristic open subgroups, it suffices to verify assertion (i) when ∆ is a finite
group of order a power of r. But then consideration of the [manifestly char-
acteristic!] lower central series of ∆ reveals that any automorphism α of ∆
that induces the identity on ∆ab ⊗ Fr is “unipotent upper triangular” with
respect to the filtration given by the lower central series; thus, the order of
α is a power of r. This completes the proof of assertion (i). Assertion (ii)
follows formally from assertion (i) and the definitions. ¤
Proposition 4.2 (Basic Properties of Special Linear Groups). Let l be a
prime number. Write SL2(Fl) for the special linear group of 2 by 2
matrices with coefficients in Fl, PSL2(Fl)

def= SL2(Fl)/{±1}.
(i) Suppose that l ≥ 5. Then PSL2(Fl) is a simple finite group.

(ii) No proper subgroup of SL2(Fl) surjects onto PSL2(Fl).

(iii) PSL2(F2), PSL2(F3), as well as every proper subgroup of PSL2(Fl)
[for arbitrary l], is either solvable or isomorphic to PSL2(F5).

Proof. Assertions (i), (ii), (iii) are well-known — cf., e.g., [10], Chapter IV,
§3.4, Lemmas 1, 2; [1], §1.2. ¤
Remark 5. The proper subgroups H of SL2(Fl) may be analyzed as follows:
If H is of order divisible by l, then H contains a subgroup U of order l.
Since F×

l , F×
l2

are of order prime to l, such a subgroup U is generated by
a unipotent matrix; thus, [by possibly replacing H with a conjugate of H]
we may assume that U is generated by a matrix

(
1 1
0 1

)
. In particular, [as is

well-known or easily computed] the normalizer of U is given by the solvable
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subgroup of upper triangular matrices of SL2(Fl). Thus, if U fails to be
normal in H, the fact that SL2(Fl) is generated by

(
1 1
0 1

)
,
(
1 0
1 1

)
implies that

H = SL2(Fl), in contradiction to our assumption that H is proper. That
is to say, since H is proper, we conclude that H is solvable, as desired. On
the other hand, if the order of H is prime to l, then H may be classified
by applying the Hurwitz formula to the tamely ramified Galois covering
P1

Fl
→ P1

Fl
/H [arising from the natural action of SL2 on P1

Fl
, where Fl is an

algebraic closure of Fl], which gives rise to fairly restrictive conditions on the
ramification indices of this covering. In particular, if H is non-abelian, then,
by taking an appropriate isomorphism of P1

Fl
/H with P1

Fl
, one concludes

that this covering is ramified over the three points “0”, “1”, and “∞” of
P1

Fl
, with ramification index 2 at “0”, ramification index ∈ {2, 3} at “1”,

and ramification index ∈ {3, 4, 5} (respectively, arbitrary, ≥ 2) at “∞” if
the ramification index at “1” is equal to 3 (respectively, 2). Now it is an
elementary exercise to classify the possible groups H that may occur. For
instance, by considering modular curves, it follows immediately that the case
H = PSL2(F5) corresponds to the case where the ramification indices are
(2, 3, 5).

Proposition 4.3 (Linear Disjointness I). Let l > 5 be a prime number; r a
prime number 6= l; Σ def= {r}; X a once-punctured elliptic curve over a
number field F . Suppose further that F contains an l-th root of unity,
and that the resulting homomorphism

GF → SL2(Fl)

determined by the action of the absolute Galois group GF of F on the l-
torsion points of the elliptic curve E compactifying X is surjective. Then
there exists a solvably closed extension F̃ /F which is Σ-compatible
with X, and, moreover, linearly disjoint [over F ] from the extension K of
F determined by the kernel of the homomorphism GF → SL2(Fl).

Proof. Write L ⊆ K for the extension of F determined by the kernel of
the homomorphism GF → PSL2(Fl) [obtained by composing the homomor-
phism GF → SL2(Fl) with the natural surjection SL2(Fl) ³ PSL2(Fl)].
Then it follows immediately from Proposition 4.2, (ii), that any Galois ex-
tension of F is linearly disjoint from K if and only if it is linearly disjoint
from L. Now observe that Gal(L/F ) ∼= PSL2(Fl) is simple [cf. Proposition
4.2, (i)] and non-abelian. Thus, by Proposition 4.1, (i), it suffices to show
that the finite Galois extension R of F determined by the kernel of the ho-
momorphism GF → GL2(Fr) arising from the Galois action on the r-torsion
points of E is linearly disjoint from L. On the other hand, again since
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Gal(L/F ) is simple and non-abelian, this linear disjointness property fol-
lows from the fact [cf. Proposition 4.2, (iii); our assumption that r 6= l > 5]
that no subquotient of GL2(Fr) [or, equivalently, PSL2(Fr), since PSL2(Fl)
is simple and nonabelian] is isomorphic to PSL2(Fl). This completes the
proof of Proposition 4.3. ¤

Proposition 4.4 (Linear Disjointness II). Let l > 5 be a prime number; Σ a
nonempty set of prime numbers such that l /∈ Σ; X a once-punctured
elliptic curve over a number field F with stable reduction over the
ring of integers OF of F ; Fµ the extension of F obtained by adjoining an
l-th root of unity. Suppose further that l ≥ [F : Q] + 2; that [Fµ : F ]
divides (l − 1)/2 [which implies that the homomorphism

GF → PGL2(Fl)
def= GL2(Fl)/F×

l

determined by the action of the absolute Galois group GF of F on the l-
torsion points of the elliptic curve E compactifying X factors through the
image of PSL2(Fl) in PGL2(Fl)]; that the resulting homomorphism GF →
PSL2(Fl) is surjective; and that, for each prime l of F lying over l at
which E has bad reduction, the following condition is satisfied:

Write Fl for the completion of F at l. Thus, the elliptic
curve E ×F Fl is a Tate curve, hence has a well-defined
“q-parameter” ql in the ring of integers OFl

. Then the
valuation of ql is prime to l.

Then:

(i) There exists an extension F̃ /F which is Σ-compatible with X, and,
moreover, linearly disjoint [over F ] from the extension K of F determined
by the kernel of the homomorphism GF → PSL2(Fl).

(ii) Write Kµ for the extension of F determined by the kernel of the
homomorphism GF → GL2(Fl) [arising from the Galois action on the l-
torsion points of E]. Thus, Fµ ⊆ Kµ; write F̃µ

def= Fµ · F̃ for the composite
extension [over F ]. Then the maximal solvable extension F̃ sol

µ of F̃µ forms
a solvably closed extension of Fµ which is Σ-compatible with X and,
moreover, linearly disjoint over Fµ from the extension Kµ of Fµ.

Proof. First, we consider assertion (i). Let F̃ /F be the extension determined
by the kernel of the homomorphism GF → Out(∆X) [cf. Definition 2]. Let
l be a prime of F lying over l. Since PSL2(Fl) is simple [cf. Proposition
4.2, (i)], to complete the proof of assertion (i), it suffices to show that the
composite [i.e., over F ] field extension K ·F̃ is not equal to F̃ . Thus, suppose
that K · F̃ = F̃ . Since l /∈ Σ, if E has good reduction at l, then it follows
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that F̃ /F is unramified at l; similarly, if E has bad reduction at l, then the
fact that l 6∈ Σ implies that F̃ /F is tamely ramified at l. On the other
hand, if E has good reduction at l, then the fact that K ⊆ K · F̃ = F̃ is
unramified at l implies, by applying, for instance, results of Raynaud on
the “fully faithfulness of restriction to the generic fiber” for finite flat group
schemes over moderately ramified discrete valuation rings [cf. [9], Corollaire
3.3.6, (1); our assumption that l ≥ [F : Q] + 2, which implies that the
ring of integers OFl

is indeed “moderately ramified”], that, if we write E for
the stable model of the elliptic curve E over OFl

and E [l] for the kernel of
multiplication by l on E , then E [l] may be written as a direct product

E [l] ∼= G × G

of two copies of some finite flat group scheme G over OFl
[which implies, for

instance, that the tangent space of E [l], hence also of E , is even-dimensional!]
— a contradiction. Finally, if E has bad reduction at l, then the fact that
K ⊆ K ·F̃ = F̃ is tamely ramified at l contradicts our assumption concerning
the “valuation of the q-parameter” [which implies that K is wildly ramified
at l]. This completes the proof of assertion (i).

To verify assertion (ii), let us first observe that by Proposition 4.2, (i) [cf.
our assumption that l > 5], (ii), and the surjectivity assumption in the state-
ment of the present Proposition 4.4, we have Gal(Kµ/Fµ) ∼= SL2(Fl). Now,
by applying Proposition 4.2, (ii), as in the proof of Proposition 4.3, assertion
(ii) follows immediately from assertion (i), together with the simplicity [and
non-solvability] of PSL2(Fl). ¤
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