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ON REGULAR RINGS SATISFYING WEAK CHAIN
CONDITION

Mamoru KUTAMI

Abstract. In this paper, we shall study regular rings satisfying weak
chain condition. As main results, we show that regular rings satisfying
weak chain condition are unit-regular, and show that these rings have
the unperforation and power cancellation properties for the family of
finitely generated projective modules.

1. Introduction

There is an important problem for studying regular rings: When are
directly finite regular rings unit-regular? For some comments on the history
of the above problem, we can refer [7]. We notice that not all directly finite
regular rings are unit-regular, as Goodearl’s book [3, Example 5.10] and
Ara et al. [2, Example 3.2] showed. On the other hand, Open Problem
3 in Goodearl’s book [3] asks if a directly finite simple regular ring must
be unit-regular. For the problem, O’Meara [7] gave the notion of weak
comparability and proved that directly finite simple regular rings satisfying
weak comparability are unit-regular.

In this paper, we treat a problem concerning when a directly finite regular
rings is unit-regular. As a notion related with the idea of weak comparability,
we newly define the notion of weak chain condition for regular rings, that is,
a regular ring R satisfies weak chain condition if R cannot contain a chain
J1 ≥ J2 ≥ · · · of nonzero principal right ideals such that nJn . RR for all
positive integers n. And, we shall investigate properties for regular rings
satisfying weak chain condition and give some interesting results for these
rings, as follows.

First, we show that regular rings satisfying weak chain condition are unit-
regular (Theorem 6). Next, we give the result that these rings have the un-
perforation (resp. the power cancellation) property for the family of finitely
generated projective modules, i.e., if nA . nB (resp. nA ∼= nB) for some
positive integer n and some finitely generated projective R-modules A and
B, then A . B (resp. A ∼= B) (Theorem 10). We also prove that the prop-
erty of weak chain condition for regular rings is Morita invariant (Theorem
13). Finally, we show that regular rings satisfying weak chain condition
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have the property that nP is directly finite for any positive integer n and
any directly finite projective R-module P (Theorem 14).

Throughout this paper, R is a ring with identity and R-modules are uni-
tary right R-modules. We begin with some notations and definitions.

Notation. For two R-modules M and N , we use M . N (resp. M .⊕ N)
to mean that there exists an isomorphism from M to a submodule of N
(resp. a direct summand of N). For a submodule M of an R-module N ,
M ≤⊕ N means that M is a direct summand of N . For a cardinal number
k and an R-module M , kM denotes the direct sum of k-copies of M .

Definition. An R-module M is directly finite provided that M is not iso-
morphic to a proper direct summand of itself. If M is not directly finite, then
M is said to be directly infinite. Note that every direct summand of a di-
rectly finite module is directly finite, and that every directly infinite module
contains an infinite direct sum of nonzero pairwise isomorphic submodules
([3, Corollary 5.6]). A ring R is directly finite (resp. directly infinite) if the
R-module RR is directly finite (resp. directly infinite). It is well-known
from [3, Lemma 5.1] that an R-module M is directly finite if and only if
so is EndR(M). A ring R is said to be (von Neumann) regular if for each
x ∈ R, there exists an element y of R such that xyx = x, and R is said to be
unit-regular if for each x ∈ R, there exists a unit element (i.e. an invertible
element) u of R such that xux = x. It is well-known that a regular ring R
is unit-regular if and only if RR = A ⊕ B = A′ ⊕ C with A ∼= A′ implies
B ∼= C ([3, Theorem 4.1]).

We shall recall well-known elementary properties for regular rings and
unit-regular rings:
(1) EndR(P ) is a regular ring for each finitely generated projective module
P over a regular ring ([3, Theorem 1.7]).
(2) Let R be a regular ring, and let P be a projective R-module. Then

(a) Every finitely generated submodules of P is a direct summand of P
([3, Theorem 1.11]).

(b) P is a direct sum of cyclic submodules, each of which is isomorphic
to a principal right ideal of R.

(c) P satisfies the exchange property, where an R-module M satisfies the
exchange property if for every R-module A and any decompositions A =
M ′ ⊕N = ⊕i∈IAi with M ′ ∼= M , there exist submodules A′

i ≤ Ai such that
A = M ′ ⊕ (⊕i∈IA

′
i).

(3) Let R be a unit-regular ring, and let A be a finitely generated projective
R-module. If B and C are any right R-modules such that A ⊕ B ∼= A ⊕ C,
then B ∼= C ([3, Theorem 4.14]). Therefore any finitely generated projective
R-module is directly finite.
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All basic results concerning regular rings can be found in Goodearl’s book
[3].

2. Regular rings satisfying weak chain condition

We give a new definition as follows.

Definition. A regular ring R satisfies weak chain condition if R cannot
contain a chain J1 ≥ J2 ≥ · · · of nonzero principal right ideals such that
nJn . RR for all positive integers n.

We recall the following well-known result.

Lemma 1. Let R be a ring, and let e, f be idempotents in R. Then the
following conditions are equivalent:

(a) eRR
∼= fRR.

(b) There exist x ∈ eRf and y ∈ fRe such that xy = e and yx = f .
(c) RRe ∼= RRf .

Moreover, assume that R is a regular ring. Then the following conditions
are equivalent:

(a’) eRR . fRR.
(b’) There exist x ∈ eRf and y ∈ fRe such that xy = e.
(c’) RRe . RRf .

By Lemma 1, we see that the notion of weak comparability for regu-
lar rings is right-left symmetric. We also notice that every regular ring R
satisfying weak chain condition is directly finite. Because, if R is directly
infinite, then there exists a nonzero principal right ideal X of R such that
ℵ0X . RR. Put Jn = X for each positive integer n, and hence nJn . RR,
which contradicts the assumption of weak chain condition for R. In partic-
ular, we see that every simple regular ring satisfying weak chain condition
is artinian, as Lemma 2 below shows.

Lemma 2 ([1, Lemma 1.1]). Let R be a non-artinian simple regular ring.
Then, for each nonzero finitely generated projective R-module P and for
all positive integers k, there exists a nonzero finitely generated projective
R-module Q such that kQ . P .

We shall investigate properties for regular rings satisfying weak chain
condition. By Lemma 1, we obtain the following lemma.

Lemma 3. Let {Ri}i∈I be a family of regular rings, and set R =
∏

i∈I Ri.
Let e = (ei), f = (fi) be idempotents of R. Then

(1) e and f are orthogonal if and only if so are ei and fi for all i ∈ I.
(2) eR ∼= fR as an R-module if and only if eiRi

∼= fiRi as an Ri-module
for all i ∈ I.
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(3) eR . fR as an R-module if and only if eiRi . fiRi as an Ri-module
for all i ∈ I.

From Lemma 3 and the definition of weak chain condition, we can easily
prove the following proposition.

Proposition 4. The class of regular rings satisfying weak chain condition
is closed under finite direct products.

Remark 1. We note that infinite direct products of regular rings satisfying
weak chain condition do not satisfy weak chain condition in general. For
example, take a field F , and for each positive integer n, let Rn = Mn!(F )
with the standard n! × n! matrix units eij (for i, j = 1, · · ·n!). Then Rn

is simple artinian, whence Rn satisfies weak chain condition, and Xn(s) :=
e1,1Rn + · · · + en!/s!,1Rn (1 ≤ s ≤ n) is a principal right ideal of Rn. Put
R =

∏∞
n=1 Rn, and set Ji = (

∏i−1
k=1 0)×(

∏∞
k=i Xk(i)) for each positive integer

i. Then R contains a chain J1 ≥ J2 ≥ · · · of nonzero principal right ideals
such that nJn . R for all positive integers n. Therefore R does not satisfy
weak chain condition, as desired.

We show that every regular ring satisfying weak chain condition is unit-
regular. To see this, we need the following lemma.

Lemma 5. Let R be a regular ring, and let A ⊕ C ′ ≤⊕ B ⊕ C with an
isomorphism f from C to C ′ for some finitely generated projective R-modules
B and C. Then there exist decompositions B = B1 ⊕ B∗

1 and B∗
n = Bn+1 ⊕

B∗
n+1(n ≥ 1);C = C1 ⊕ C∗

1 and C∗
n = Cn+1 ⊕ C∗

n+1(n ≥ 1) such that
A ∼= B1 ⊕ C1, Cn

∼= Bn+1 ⊕ Cn+1(n ≥ 1) and B ⊕ C = A ⊕ fC1 ⊕ · · · ⊕
fCn ⊕ B∗

n+1 ⊕ C∗
n+1 for each positive integer n.

Proof. Using the exchange property for A, there exist decompositions B =
B1 ⊕ B∗

1 and C = C1 ⊕ C∗
1 such that B ⊕ C = A ⊕ B∗

1 ⊕ C∗
1 , and hence

A ∼= B1 ⊕ C1. Since A ⊕ fC1 ≤⊕ B ⊕ C = A ⊕ B∗
1 ⊕ C∗

1 , there exist
decompositions B∗

1 = B2 ⊕ B∗
2 and C∗

1 = C2 ⊕ C∗
2 such that B ⊕ C =

A⊕fC1⊕B∗
2 ⊕C∗

2 , and hence C1
∼= fC1

∼= B2⊕C2. Note that C1∩C2 = 0,
and so we have that A ⊕ fC1 ⊕ fC2 ≤⊕ B ⊕ C = A ⊕ fC1 ⊕ B∗

2 ⊕ C∗
2 .

Then there exist decompositions B∗
2 = B3 ⊕ B∗

3 and C∗
2 = C3 ⊕ C∗

3 such
that B ⊕ C = A ⊕ fC1 ⊕ fC2 ⊕ B∗

3 ⊕ C∗
3 , and hence C2

∼= fC2
∼= B3 ⊕ C3.

Continuing the above procedure, we have decompositions B∗
n = Bn+1⊕B∗

n+1

and C∗
n = Cn+1⊕C∗

n+1 such that B⊕C = A⊕fC1⊕· · ·⊕fCn⊕B∗
n+1⊕C∗

n+1

and Cn
∼= Bn+1 ⊕ Cn+1. The proof is complete. ¤

Theorem 6. Every regular ring satisfying weak chain condition is unit-
regular.
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Proof. Let RR = A⊕C ′ = B⊕C with C ′ ∼= C, and let f be an isomorphism
from C to C ′. We claim that A ∼= B. We may assume with no loss of
generality that A 6= 0, by the direct finiteness of R. Since A⊕C ′ ≤⊕ B⊕C,
using Lemma 5, there exist decompositions B = B1 ⊕B∗

1 and B∗
n = Bn+1 ⊕

B∗
n+1(n ≥ 1); C = C1 ⊕ C∗

1 and C∗
n = Cn+1 ⊕ C∗

n+1(n ≥ 1) such that
A ∼= B1 ⊕ C1 and Cn

∼= Bn+1 ⊕ Cn+1 for each positive integer n. Hence
R has a sequence C1, C2, · · · of principal right ideals such that Cn+1 . Cn

and nCn . C ≤ RR for all positive integers n. Since R satisfies weak chain
condition, there exists a positive integer m such that Cm = 0. Then we have
that A ∼= B1 ⊕ C1

∼= B1 ⊕ B2 ⊕ C2
∼= · · · ∼= B1 ⊕ · · · ⊕ Bm−1 ⊕ Cm−1

∼=
B1 ⊕ · · · ⊕ Bm ≤ B, whence A . B. Similarly, we have B . A. Hence
A ∼= B by the direct finiteness of A and B. Therefore R is unit-regular as
desired. ¤

Definition. A regular ring R is said to satisfy that its primitive factor rings
are artinian if R/P is artinian for all right (or left) primitive ideals P of R,
or equivalently, R/P is artinian for all prime ideals P of R ([3, Theorem
6.2]).

From the proof of [3, Theorem 6.6], we see that every regular ring whose
primitive factor rings are artinian satisfies weak chain condition. Hence we
have the following corollary.

Corollary 7 ([3, Theorem 6.10]). Every regular ring whose primitive factor
rings are artinian is unit-regular.

We also recall the definition of weak comparability for regular rings.

Definition ([7]). A regular ring R satisfies weak comparability if for each
nonzero x ∈ R, there exists a positive integer n = n(x) such that n(yR) . R
implies yR . xR for all y ∈ R.

Remark 2. Every regular ring whose primitive factor rings are artinian
satisfies weak chain condition as above, but it does not satisfy weak compa-
rability in general, using [7, Proposition 2] and [3, Example 6.5]. Also, there
exists a directly finite simple regular ring with weak comparability which
does not satisfy weak chain condition, by [7, Corollary 2], [3, Example 8.1]
and the statement before Lemma 2. Therefore we see that, for a regular ring,
weak chain condition does not imply weak comparability, and vice versa.

Next, we shall show that regular rings satisfying weak chain condition have
the unperforation property for the family of finitely generated projective
modules. To see this, we need the following lemmas.

Lemma 8 ([1, Lemma 3.3]). Let R be a regular ring, and let P,Q be finitely
generated projective R-modules with P . nQ for some positive integer n.
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Then there exists a decomposition P = P1 ⊕ P2 ⊕ · · · ⊕ Pn such that Pn .
· · · . P1 . Q.

Lemma 9. Let R be a unit-regular ring, and let A, B be finitely generated
projective R-modules such that nA . nB for some positive integer n (≥ 2).
Assume that kC . kD implies C . D for any positive integer k (< n)
and any finitely generated projective R-modules C and D. Then we have
decompositions ¯̄Ai = Āi+1 ⊕ ¯̄Ai+1 and ¯̄Bi = B̄i+1 ⊕ ¯̄Bi+1 such that Āi+1

∼=
B̄i+1, 2 ¯̄Ai+1 . ¯̄Ai, ¯̄Ai+1 . (n − 1)Āi+1 and n ¯̄Ai+1 . n ¯̄Bi+1 for each i =
0, 1, 2, · · · , where ¯̄A0 = A and ¯̄B0 = B.

Proof. Let A,B be finitely generated projective R-modules such that nA .
nB for some positive integer n (≥ 2). First, we claim that there exist
decompositions A = ¯̄A0 = Ā1 ⊕ ¯̄A1 and B = ¯̄B0 = B̄1 ⊕ ¯̄B1 such that
Ā1

∼= B̄1, 2 ¯̄A1 . ¯̄A0,
¯̄A1 . (n − 1)Ā1 and n ¯̄A1 . n ¯̄B1. Since A . nB, we

have a decomposition A = A11 ⊕ · · · ⊕ A1n such that A1n . · · · . A11 . B
by Lemma 8. Setting that A∗

1 = A11 and A∗∗
1 = A12 ⊕ · · · ⊕ A1n, we

have A = A∗
1 ⊕ A∗∗

1 . Noting that A∗
1 .⊕ B, we have a decomposition

B = B∗
1 ⊕ B∗∗

1 such that A∗
1
∼= B∗

1 , A∗∗
1 . (n − 1)A∗

1 and nA∗∗
1 . nB∗∗

1 ,
because note that nA . nB and nA∗

1 is finitely generated projective, and
hence nA∗∗

1 . nB∗∗
1 using Theorem 6. Next, since nA∗∗

1 . nB∗∗
1 , we have

that A∗∗
1 . nB∗∗

1 , and hence there exists a decomposition A∗∗
1 = A21 ⊕

· · · ⊕ A2n such that A2n . · · · . A21 . B∗∗
1 . Setting that A∗

2 = A21 and
A∗∗

2 = A22 ⊕ · · · ⊕ A2n, we have that A∗∗
1 = A∗

2 ⊕ A∗∗
2 and A∗

2 .⊕ B∗∗
1 .

Then we have a decomposition B∗∗
1 = B∗

2 ⊕ B∗∗
2 such that A∗

2
∼= B∗

2 , A∗∗
2 .

(n − 1)A∗
2 and nA∗∗

2 . nB∗∗
2 . Continuing the above procedure (n − 2)

times, we have decompositions A∗∗
n−1 = A∗

n ⊕ A∗∗
n and B∗∗

n−1 = B∗
n ⊕ B∗∗

n

such that A∗
n
∼= B∗

n, A∗∗
n . (n − 1)A∗

n and nA∗∗
n . nB∗∗

n , where A∗
n = An1

and A∗∗
n = An2 ⊕ · · · ⊕ Ann. Now we put Ā1 = A∗

1 ⊕ · · · ⊕ A∗
n, ¯̄A1 =

A∗∗
n , B̄1 = B∗

1 ⊕ · · · ⊕ B∗
n and ¯̄B1 = B∗∗

n . Then we see that A = Ā1 ⊕ ¯̄A1

and B = B̄1 ⊕ ¯̄B1 such that Ā1
∼= B̄1, ¯̄A1 = A∗∗

n . (n − 1)A∗
n . (n − 1)Ā1

and n ¯̄A1 . n ¯̄B1. Also, we have that 2 ¯̄A1 . A. To see this, we notice that
(n−1) ¯̄A1 = (n−1)A∗∗

n . A∗∗
1 ⊕· · ·⊕A∗∗

n−1 . (n−1)(A∗
1⊕· · ·⊕A∗

n−1). Using
the assumption for k = n − 1, we have that ¯̄A1 = A∗∗

n . A∗
1 ⊕ · · · ⊕ A∗

n−1,
and so 2 ¯̄A1

∼= ¯̄A1 ⊕ ¯̄A1 . (A∗
1 ⊕ · · · ⊕ A∗

n−1) ⊕ ¯̄A1 . Ā1 ⊕ ¯̄A1 = ¯̄A0 = A.
Therefore the first claim is proved.

Secondly, noting that n ¯̄A1 . n ¯̄B1, from the above claim, we have decom-
positions ¯̄A1 = Ā2 ⊕ ¯̄A2 and ¯̄B1 = B̄2 ⊕ ¯̄B2 such that Ā2

∼= B̄2, 2 ¯̄A2 . ¯̄A1,
¯̄A2 . (n − 1)Ā2 and n ¯̄A2 . n ¯̄B2. Continuing the above procedure, we have
desired decompositions. The proof is complete. ¤
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Using Theorem 6 and Lemma 9, we can prove that regular rings satis-
fying weak chain condition have the unperforation property and the power
cancellation property for the family of finitely generated projective modules,
as follows.

Theorem 10. Let R be a regular ring satisfying weak chain condition, and
let A,B be finitely generated projective R-modules.

(1) If nA . nB for some positive integer n, then A . B.
(2) If nA ∼= nB for some positive integer n, then A ∼= B.

Proof. (1) We shall prove the result using induction on n. Let n (≥ 2) be
a positive integer, and let A,B be finitely generated projective R-modules
such that nA . nB. Then we may assume with no loss of generality that A
is nonzero cyclic. Because, let A = A1 ⊕ · · · ⊕Am be a cyclic decomposition
of A. Since nA . nB, we have that nA1 . nB. Noting that A1 is cyclic
projective, we see that A1 . B by the assumption, and so there exists a
decomposition B = B1 ⊕ B∗

1 such that A1
∼= B1. Since n(A1 ⊕ · · · ⊕ Am) .

n(B1 ⊕B∗
1) and nA1

∼= nB1 are finitely generated projective R-modules, we
have that n(A2 ⊕ · · · ⊕ Am) . nB∗

1 by Theorem 6. Continuing the above
procedure, there exists a decomposition B∗

1 = B2 ⊕ B∗
2 such that A2

∼= B2

and n(A3 ⊕ · · · ⊕ Am) . nB∗
2 . Therefore we have that nAm . nB∗

m−1, and
so Am . B∗

m−1 by the assumption. Then we have a decomposition B∗
m−1 =

Bm⊕B∗
m such that Am

∼= Bm. Thus A = A1⊕· · ·⊕Am
∼= B1⊕· · ·⊕Bm ≤ B,

as desired.
Since nA . nB, by the induction hypothesis and Lemma 9, there exist

decompositions ¯̄Ai = Āi+1 ⊕ ¯̄Ai+1 and ¯̄Bi = B̄i+1 ⊕ ¯̄Bi+1 such that Āi+1
∼=

B̄i+1 and 2 ¯̄Ai+1 . ¯̄Ai for each i = 0, 1, 2, · · · , where ¯̄A0 = A and ¯̄B0 = B.
Note that (i + 1) ¯̄Ai+1 . 2i+1 ¯̄Ai+1 . 2i ¯̄Ai . · · · . ¯̄A0 = A. Hence we have
a chain ¯̄A1 ≥ ¯̄A2 ≥ · · · of cyclic submodules of A such that A . RR and
n ¯̄An . A for all positive integers n. Since R satisfies weak chain condition,
there exists a positive integer k such that ¯̄Ak = 0. Then A = ¯̄A0 = Ā1⊕ ¯̄A1 =
· · · = Ā1 ⊕ · · · ⊕ Āk

∼= B̄1 ⊕ · · · ⊕ B̄k ≤ B. Therefore A . B.
(2) follows from (1) and Theorem 6. ¤

Remark 3. Goodearl [4] constructed simple unit-regular rings R which
do not have the power cancellation property for the family of finitely gen-
erated projective R-modules, i.e., there exist finitely generated projective
R-modules A,B and a positive integer n such that nA ∼= nB and A 6∼= B.
Hence Theorem 10(2) does not hold for simple unit-regular rings in general,
from which Theorem 10(1) also does not hold for these rings in general.

Now we study the endomorphism rings of finitely generated projective
modules over regular rings satisfying weak chain condition. For the purpose
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of this, we need a more general definition of weak chain condition for finitely
generated projective modules over regular rings, as follows.

Definition. A finitely generated projective module P over a regular ring
satisfies weak chain condition if P cannot contain a chain P1 ≥ P2 ≥ · · · of
nonzero finitely generated submodules such that nPn . P for all positive
integers n. Clearly, weak chain condition for finitely generated projective
modules over regular rings is inherited by direct summands. Also, we note
that a regular ring R satisfies weak chain condition if and only if so does the
R-module RR.

Proposition 11. Let R be a regular ring. Then the following conditions
(a) through to (d) are equivalent:

(a) R satisfies weak chain condition.
(b) Every finitely generated projective R-module satisfies weak chain con-

dition.
(c) nR satisfies weak chain condition for all positive integers n.
(d) nR satisfies weak chain condition for some positive integer n.

Proof. (b) ⇒ (d) is obvious.
(c) ⇒ (b) and (d) ⇒ (a) follow from the definition of weak chain condition.
(a) ⇒ (c). Let P1 ≥ P2 ≥ · · · be a chain of finitely generated submodules

of nR such that kPk . nRR for all positive integers k. Then, we see from
Theorem 10 that mnPmn . nRR implies mPmn . RR for each positive
integer m. Also, we notice that Pmn . RR. Since R satisfies weak chain
condition, we have that Pmn = 0 for some positive integer m. Therefore nR
satisfies weak chain condition. The proof is complete. ¤

For an R-module MR, we put add(MR) = {an R-module N | N .⊕
nM for some positive integer n}. Then, the following lemma follows from
equivalences of the Hom and Tensor functors by HomR(SMR,−) and −⊗S

SMR between the categories add(MR) and add(SS), where S = EndR(M)
(see [8, 46.7]).

Lemma 12. Let M be a finitely generated projective R-module over a regular
ring R, and set S = EndR(M). Hence M is an (S,R)-bimodule, and M is
flat as a left S-module. Then M satisfies weak chain condition if and only
if so does S as an S-module.

Using Proposition 11 and Lemma 12, we see that the property of weak
chain condition for regular rings is inherited by matrix rings, as follows.

Theorem 13. Let R be a regular ring. Then the following conditions (a)
through to (e) are equivalent:

(a) R satisfies weak chain condition.
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(b) For each finitely generated projective R-module P , EndR(P ) satisfies
weak chain condition.

(c) Every ring S which is Morita equivalent to R satisfies weak chain
condition.

(d) For all positive integers n, Mn(R) satisfies weak chain condition.
(e) There exists a positive integer n such that Mn(R) satisfies weak chain

condition.

Finally, we give a theorem about the direct finiteness of projective mod-
ules over regular rings satisfying weak chain condition, as follows.

Theorem 14. Let R be a regular ring satisfying weak chain condition.
Then
(1) For a projective R-module P , the following conditions (a) through to (c)
are equivalent:

(a) P is directly infinite.
(b) There exists a nonzero R-module X such that ℵ0X . P .
(c) There exists a nonzero R-module X such that ℵ0X .⊕ P .

(2) If P is a directly finite projective R-module, then so is nP for each
positive integer n.

Proof. (1) follows from a similar proof of one of [6, Theorem 1.3], using
Theorem 6 and Proposition 11.

(2) follows from [5, Theorem 1.5], using Theorems 6 and 10. ¤

From Theorem 14(1), we have the following corollary.

Corollary 15. Let R be a regular ring satisfying weak chain condition, and
let P be a projective R-module. Then P is directly finite if and only if all
submodules of P are directly finite.
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