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MUTUALLY ORTHOGONAL LATIN SQUARES
AND

SELF-COMPLEMENTARY DESIGNS

Hiroyuki NAKASORA

Abstract. Suppose that n is even and a set of n
2
− 1 mutually orthog-

onal Latin squares of order n exists. Then we can construct a strongly
regular graph with parameters (n2, n

2
(n−1), n

2
(n

2
−1), n

2
(n

2
−1)), which

is called a Latin square graph. In this paper, we give a sufficient condi-
tion of the Latin square graph for the existence of a projective plane of
order n. For the existence of a Latin square graph under the condition,
we will introduce and consider a self-complementary 2-design (allowing
repeated blocks) with parameters (n, n

2
, n

2
(n

2
− 1)). For n ≡ 2 (mod 4),

we give a proof of the non-existence of the design.

1. Introduction

A Latin square of order n is an n × n array with entries 1, . . . , n having
the property that each element of {1, . . . , n} occurs exactly once in each
row and column. Two Latin squares A = (aij), B = (bij) of order n are
said to be orthogonal if, for any x, y ∈ {1, . . . , n}, there exists a unique
position (i, j) such that aij = x and bij = y. Latin squares are said to
be mutually orthogonal if every two of them are orthogonal. Let N(n)
denote the maximum number of mutually orthogonal Latin squares of order
n (n ≥ 2).

The value of N(n) has been studied by many mathematicians, and the
following three theorems are well-known.

Theorem 1.1. N(6) = 1. If n 6= 2, 6, then N(n) ≥ 2.

Theorem 1.2. N(n) ≤ n − 1, with equality if and only if there exists a
projective plane of order n.

Theorem 1.3. N(n) = n − 1, if n is a prime power number.

In 1900, Tarry showed N(6) = 1 by a systematic enumeration. Also in
1984, Stinson [9] gave a short proof of the fact. In 1960, Bose, Shikhande and
Parker [3] proved N(n) ≥ 2 for all n > 6, demolishing Euler’s conjecture.
Theorem 1.1 is obtained from their results.
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The Bruck-Ryser-Chowla theorem shows that if a projective plane of order
n ≡ 1 or 2 (mod 4) exists, then n is the sum of two squares. As noted above,
this theorem dose not preclude the existence of a projective plane of order
10. In 1989, the non-existence of such a plane was shown by Lam, Swiercz
and Thiel [8].

If n is not a prime power number, then there is no known example of a
projective plane of order n. We consider the existence of a projective plane
of order non-prime power number. We use the following theorem, (see Bose
and Shrikhande [2], Cameron and Lint [6, Chapter 7 and 8]).

Theorem 1.4. The existence of k− 2 mutually orthogonal Latin squares of
order n is equivalent to the existence of:

(1) a transversal 2-design of order n, block size k, namely a TD(k, n),
(2) a Latin square graph, namely an Lk(n)-graph.

In this paper, we give a sufficient condition of the Latin square graph
for the existence of a projective plane of order n. If n is an even integer,
we show that a 2-(n, n

2 , n
2 (n

2 − 1)) design D (allowing repeated blocks) such
that D ∼= D̄ is obtained from the Latin square graph under the condition,
where D̄ denotes the complementary design of D and D ∼= D̄ means that
two designs D, D̄ are isomorphic (Theorem 4.7).

As a special case, we consider the existence of a self-complementary 2-
design (D = D̄) with parameters (n, n

2 , n
2 (n

2−1)). In the case n ≡ 0 (mod 4),
an n

2 -repeated design of a Hadamard 3-(n, n
2 , n

4 − 1) design is an example
of a self-complementary design. If n ≡ 2 (mod 4), there exists no self-
complementary design.

2. Transversal 2-designs

Definition 2.1. Let k ≥ 2, n ≥ 1. A transversal 2-design of order n, block
size k, is a triple (X,G,B) satisfying the following three conditions, and is
denoted by TD(k, n).

(1) X is a set of kn points.
(2) G = {G1, G2, . . . , Gk} is a partition of X into k subsets Gi (called

groups), each containing n points.
(3) B is a class of subsets of X (called blocks) such that each block B ∈ B

contains precisely one point from each group and each pair x, y of
points not contained in the same group occur together in precisely
one block B.

Proposition 2.2. Let (X,G,B) be a TD(k, n). Then the followings hold.
(1) Each block contains k points.
(2) Each point occurs in n blocks.



LATIN SQUARES AND SELF-COMPLEMENTARY DESIGNS 23

(3) For any B,B′ ∈ B (B 6= B′), |B ∩ B′| = 0 or 1.
(4) |B| = n2.

The following theorem is due to Bose and Shirikhande [2] (also see R. M.
Wilson [12]). By this theorem, we have 2 ≤ k ≤ n + 1.

Theorem 2.3. (Bose-Shrikhande) The existence of a set of k − 2 mutu-
ally orthogonal Latin squares of order n is equivalent to the existence of a
TD(k,n).

Now, we will make preparations for the normalized incidence matrix of a
TD(k, n). At first we give a normalized Latin square.

Let A = (aij) be a Latin square of order n, and set Ω = {1, 2, . . . , n}.
Take a bijection σ : Ω → Ω, and define σ(a1i) = i, for i = 1, 2, . . . , n. Then,

(2.1) σ(A) =

1 2 · · · n
· · · · · ·
· · · · · ·

 .

Lemma 2.4. Let A and B be mutually orthogonal Latin squares of order n.
For any permutations σ, τ on Ω, σ(A) and τ(B) also are orthogonal.

By (2.1) and Lemma 2.4, we can put the first rows of mutually orthogonal
Latin squares the integers 1, 2, . . . , n.

Definition 2.5. Let (X,G,B) be a TD(k, n) with

X = {x1, x2, . . . , xkn},B = {B1, B2, . . . , Bn2}.
The incidence matrix of a TD(k, n) is the n2 × kn matrix A = (aij) defined
by

aij =

{
1 if xi ∈ Bj

0 if xi /∈ Bj .

Then we have the following proposition.

Proposition 2.6. The incidence matrix of a TD(k, n) can be normalized
as 

H1 I I . . . I
H2 I
...

... . . .
Hn I

 ,

where I is the identity matrix of size n, and Hi (1 ≤ i ≤ n) is an n × n
matrix with every entry 1 of i th column, otherwise 0.
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Example 2.7. The following pair (A,B) is an example of the pair of mu-
tually orthogonal Latin squares of order 3:

A =

1 2 3
2 3 1
3 1 2

 , B =

1 2 3
3 1 2
2 3 1

 .

The incidence matrix of the corresponding TD(4, 3) is given by

1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 0 0 1 0 1 0 1 0 0


.

3. Latin square graphs

Definition 3.1. Let (X,G,B) be a TD(k, n). The Latin square graph Γ =
(V,E) is defined as follows and is denoted by an Lk(n)-graph.

(1) V = B.
(2) Two vertices B,B′ ∈ B are adjacent if and only if |B ∩ B′| = 1.

The following proposition is well-known, (see Cameron and Lint [6, Chap-
ter 8]).

Proposition 3.2. Let Γ be an Lk(n)-graph. Then
(a) If n + 1 > k ≥ 2, then Γ is a strongly regular graph with parameters(

n2, (n − 1)k, n + k(k − 3), k(k − 1)
)
;

(b) If k = n + 1, then Γ is isomorphic to Kn2, where Kn2 is a complete
graph with n2 vertices.

Definition 3.3. For n+1 > k ≥ 1, a pseudo Latin square graph is a strongly
regular graph with parameters

(
n2, (n − 1)k, n + k(k − 3), k(k − 1)

)
. Such

a graph is denoted by a PLk(n)-graph.

It is well-known that the complement of a strongly regular graph is
strongly regular (see Cameron and Lint [6, Chapter 2]). Therefore, we have
the following propositon.

Proposition 3.4. The complement of a PLk(n)-graph is a PLn+1−k(n)-
graph.
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Clearly, an Lk(n)-graph is a PLk(n)-graph. However the converse does
not hold. We will give a criterion whether a PLk(n)-graph is an Lk(n)-
graph or not. Let Γ be a PLk(n)-graph. By the definition of the Latin
square graph, we can easily see that if Γ is an Lk(n)-graph, then every edge
is contained in a clique of size n, where a clique is an induced complete
subgraph with n vertices and is denoted by Cn. The following lemma is due
to Bruck [4].

Lemma 3.5. (Bruck) Let Γ be a PLk(n)-graph, and (n − 1)k ≤ n2

2 . Then
Γ is an Lk(n)-graph if and only if every edge is contained in a unique clique
of size n.

Example 3.6. Let Γ be the Hall-Janko graph such that Aut Γ = Aut J2.
Then Γ and the complementary graph Γ̄ are pseudo Latin square graphs (a
PL4(10)-graph and a PL7(10)-graph) with parameters (100, 36, 14, 12) and
(100, 63, 38, 42), respectively. In 1968, M. Suzuki [10] stated that Γ and Γ̄
are not Latin square graphs. Here, we will give a simple proof.

Claim 1. Γ is not an L4(10)-graph.

Proof. Let ∞ be a vertex of Γ. Set V (Γ) = {∞} ∪ X ∪ Y ,
X = {x ∈ V (Γ) : (∞, x) ∈ E(Γ)},
Y = {y ∈ V (Γ) : (∞, y) /∈ E(Γ)},

where V (Γ) is the vertex set of Γ and E(Γ) is the edge set of Γ.
Suppose that Γ is an L4(10)-graph. Then, for any (a, b) ∈ E(Γ), (a, b) ∈

C10. Therefore

(3.1) X ⊃ C9.

Here, we use a construction of the Hall-Janko graph. The following
chain of groups is called the Suzuki chain. These groups are the full auto-
morphism groups of strongly regular graphs.

S4 ⊂ PGL(2, 7) ⊂ G2(2) ⊂ Aut J2 ⊂ Aut G2(4) ⊂ Aut Sz

It is known that Aut X = G2(2) and X is a strongly regular graph with
parameters (n, k, λ, µ) = (36, 14, 4, 6). By (3.1), we have 7 ≤ λ = 4, a
contradiction. ¤

Claim 2. Γ̄ is not an L7(10)-graph.

Proof. Suppose that Γ̄ is an L7(10)-graph. Then Γ̄ must have a pair of
cliques C10, C′

10 such that |C10 ∩ C′
10| = 1 (see Bruck [4]). It is known that

|C10 ∩ C′
10| = 0 or 2, for any distinct cliques C10, C′

10 (see Chigira-Harada-
Kitazume [7]), a contradiction. ¤
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Thus, the above claims complete a proof of the fact that Γ and Γ̄ are not
Latin square graphs.

Proposition 3.7. Suppose that 3 ≤ k ≤ n+1. Let (X,G,B) be a TD(k, n).
For 1 ≤ i ≤ k, define a triple (X ′,G′,B′) by

X ′ = X \ Gi

G′ = {G1, G2, . . . , Gk} \ Gi

B′ = {B \ (B ∩ Gi) : B ∈ B}.
Then (X ′,G′,B′) is a TD(k − 1, n).

Proof. Suppose that 3 ≤ k ≤ n + 1. The following facts are easily verified.
(1) X ′ is a set of (k − 1)n points.
(2) G′ = {G1, G2, . . . , Gk} \ Gi is a partition of X ′ into k − 1 groups,

each containing n points.
(3) B′ = {B \ (B∩Gi) : B ∈ B} is a class of subsets of X ′ such that each

block B′ ∈ B′ contains precisely one point from each group and each
pair x, y of points not contained in the same group occur together
in precisely one block B′.

So, the triple (X ′,G′,B′) is a TD(k − 1, n). ¤
Proposition 3.8. (1) Let n be an odd integer.

Suppose that an Ln+1
2

(n)-graph Γ exists. If Γ̄ ∼= Γ, then N(n) =
n − 1.

(2) Let n be an even integer.
Suppose that an Ln+2

2
(n)-graph Γ exists. Then Γ has a subgraph

C which is a disjoint union of n cliques of size n. (We denote such
a subgraph by n · Cn.)

Moreover, if Γ̄ ∼= Γ \ E(C), then N(n) = n − 1.

Proof. (1) Let Γ = (V,E) be an Ln+1
2

(n)-graph. We have (n − 1)n+1
2 < n2

2

and by Lemma 3.5, for any edge (x, y) ∈ E, there exists a unique clique
Cn such that (x, y) ∈ Cn. Suppose that Γ̄ = (V, Ē) and Γ ∼= Γ̄. Then
there exists a bijection σ : V → V such that any edge (x, y) ∈ E implies
(σ(x), σ(y)) ∈ Ē. Thus, for any edge of Γ̄, there exists a unique clique.
By Propositon 3.4, Γ̄ is a PLn+1

2
(n)-graph. Also by Lemma 3.5, Γ̄ is an

Ln+1
2

(n)-graph.
Thus the union of Γ and Γ̄ gives a set of complete mutually orthogonal

Latin squares of order n. So, N(n) = n − 1.

(2) Let Γ be an Ln+2
2

(n)-graph. Then there exists a TD(n+2
2 , n). Let

(X,G,B) be a TD(n+2
2 , n). By Proposition 3.7, (X ′,G′,B′) is a TD(n

2 , n).
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So, there exists an Ln
2
(n)-graph Γ′. For (B,B′) ∈ E(Γ), if B ∩B′ = x ∈ Gi,

then (B,B′) /∈ E(Γ′). By Proposition 2.2 (2) and |Gi| = n, we have E(Γ) \
E(Γ′) = E(C), where C = n · Cn. Also, we have V (Γ) \ V (C) = B′ = V (Γ′).
It follows that Γ′ = Γ \ E(C). By Propositon 3.4, Γ̄ is a PLn

2
(n)-graph.

Suppose that Γ̄ ∼= Γ \ E(C). Lemma 3.5 and the fact (n − 1)n
2 < n2

2 show
that Γ̄ is an Ln

2
(n)-graph by using the similar argument of the proof in (1).

Hence, N(n) = n − 1. ¤

4. Latin square graphs and self-complementary 2-designs

In this section, we consider the normalized incidence matrix of a TD(k, n).
Let (X,G,B) be a TD(k, n) and G = {G1, G2, . . . , Gk}. For (i, j) ∈ G1 ×
G2 = {1, . . . , n} × {1, . . . , n}, we put B = {Bi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

The following two propositions are easily seen by the definition of transver-
sal 2-designs and Latin square graphs.

Proposition 4.1. (1) |Bi,j ∩ Bi,j′ | = 1, (j 6= j′).
(2) |Bi,j ∩ Bi′,j | = 1, (i 6= i′).
(3) For Bi,j ∈ B, there are k − 2 blocks Bi′,j′ such that |Bi,j ∩ Bi′,j′ | =

1 (i 6= i′, j 6= j′).

Proposition 4.2. Let Γ be an Lk(n)-graph and let A(Γ) be the adjacency
matrix of Γ. Then

A(Γ) =



J − I A1,2 A1,3 · · · · · · A1,n

A2,1 J − I A2,3 · · · · · · A2,n

A3,1 A3,2 J − I
...

...
...

. . .
...

...
...

. . . An−1,n

An,1 An,2 · · · · · · An,n−1 J − I


,

where I is the identity matrix of size n, J is the n × n all-1 matrix, Ai,j is
an n × n matrix whose k − 1 entries are equal to 1 in each row or column
and satisfies Ai,j = A>

j,i where A>
j,i denotes the transposed matrix of Aj,i.

Definition 4.3. Let Γ = (B, E) be an Lk(n)-graph. We define the incidence
structure D = (P,Q) as follows.

(1) P = {B1,h ∈ B : 1 ≤ h ≤ n} is a set of points,
(2) Q = {Bi,j ∈ B : 2 ≤ i ≤ n, 1 ≤ j ≤ n} is a set of blocks,
(3) B1,h ∈ P and Bi,j ∈ Q are incident if and only if (B1,h, Bi,j) ∈ E.
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By this definition, the incidence matrix of D is
A2,1

A3,1
...

An,1

 .

Example 4.4. The following matrix is an example of the adjacency matrix
of L3(4)-graphs.

0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1
1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0
1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0
1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1
1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0
1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1
0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0
0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0
0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0
1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1
0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1
1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1
0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1
0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1
1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0



.

The incidence matrix of D obtained from the example of L3(4)-graphs is
given by 

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1



.

Proposition 4.5. The pair D = (P,Q) is a 2-(n, k−1, (k−1)(k−2)) design
(allowing repeated blocks).
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Proof. By Definiton 4.3, we have |P | = n. By Proposition 4.1 (2) and (3), Q
is a collection of (k − 1)-element subsets of P . Here, Γ is a strongly regular
graph with parameters

(
n2, (n − 1)k, n + k(k − 3), k(k − 1)

)
. Since any two

vertices B1,h, B1,h′ ∈ P (h 6= h′) are adjacent, the number of common neigh-
bours of B1,h and B1,h′ in the sets of Q is n+k(k−3)−(n−2) = (k−1)(k−2).
It follows that the pair (P,Q) is a 2-(n, k − 1, (k − 1)(k − 2)) design. ¤
Remark. In this paper, we normally allow repeated blocks. An isomorphism
from (P,Q) to (P ′, Q′) is a pair of bijections from P to P ′ and from Q to
Q′, preserving incidence and non-incidence.

Here, we introduce a self-complementary 2-design.

Definition 4.6. A 2-design D = (X,B) is called self-complementary, and
denoted by D = D̄ if, for any B ∈ B,∣∣{B′ ∈ B : B = B′ as a set}

∣∣ =
∣∣{B′′ ∈ B : B′′ = X \ B as a set}

∣∣.
In particular, B ∈ B if and only if X \ B ∈ B.

Let D = (X,B) be a self-complementary 2-design. It is clear that |X| is
even and the block size is |X|

2 . In Example 4.4, we give a self-complementary
2-(4, 2, 2) design obtained from an L3(4)-graph.

Theorem 4.7. Let Γ be an Ln+2
2

(n)-graph and C be a disjoint union of n

cliques of size n. If Γ̄ ∼= Γ \ E(C), then there exists a 2-(n, n
2 , n

2 (n
2 − 1))

design D such that D ∼= D̄.

Proof. By Definition 4.3 and Proposition 4.5, D = (P,Q) is a 2-(n, n
2 , n

2 (n
2 −

1)) design. Suppose that Γ̄ ∼= Γ \ E(C) and we put Γ′ = Γ \ E(C). Then
there exists a bijection σ : V (Γ̄) → V (Γ′) such that (x, y) ∈ E(Γ̄) implies
(σ(x), σ(y)) ∈ E(Γ′).

Set

P ′ = {σ(B1,h) : 1 ≤ h ≤ n} ⊂ B,

Q′ = {σ(Bi,j) : 2 ≤ i ≤ n, 1 ≤ j ≤ n} ⊂ B.

Define the incidence structure D′ = (P ′, Q′) by σ(B1,h) ∈ P ′ and σ(Bi,j) ∈
Q′ are incident if and only if (σ(B1,h), σ(Bi,j)) ∈ E(Γ′).

For Bi,j ∈ Q, there are n
2 vertices B1,t ∈ P such that (B1,t, Bi,j) ∈ E(Γ̄).

If (B1,t, Bi,j) ∈ E(Γ̄), then (σ(B1,t), σ(Bi,j)) ∈ E(Γ′). Therefore, σ is a
pair of bijections from P to P ′ and from Q̄ to Q′, preserving incidence and
non-incidence. Hence, we have D′ ∼= D̄.

For any h and h′ (1 ≤ h, h′ ≤ n), since (B1,h, B1,h′) /∈ E(Γ̄), then we have
(σ(B1,h), σ(B1,h′)) /∈ E(Γ′). Here, we have E(Γ′) ∪ E(C) ∪ E(Γ̄) = E(Kn2).
Thus, we have (σ(B1,h), σ(B1,h′)) ∈ E(C), hence (σ(B1,h), σ(B1,h′)) ∈ E(Γ),
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for any h and h′ (1 ≤ h, h′ ≤ n). So, there exists a bijection τ : Γ → Γ
such that τ(P ′) = P . Also, since (σ(B1,h), σ(Bi,j)) /∈ E(C), we have
(σ(B1,h), σ(Bi,j)) ∈ E(Γ′) if and only if (σ(B1,h), σ(Bi,j)) ∈ E(Γ). For
σ(Bi,j) ∈ Q′, there are n

2 vertices σ(B1,s) ∈ P ′ such that (σ(B1,s), σ(Bi,j)) ∈
E(Γ′). If (σ(B1,s), σ(Bi,j)) ∈ E(Γ′), then (τσ(B1,s), τσ(Bi,j)) ∈ E(Γ).
Therefore, τ is a pair of bijections from P ′ to P and from Q′ to Q, pre-
serving incidence and non-incidence.

So, we have D′ ∼= D. Hence, D ∼= D̄.
¤

We consider the special case that σ : P → P ′ is given by σ(B1,h) = B1,h.
Then we get a self-complementary design D = D̄. If n = 2e (e > 1), there
exists an example of a self-complementary 2-(n, n

2 , n
2 (n

2 −1)) design obtained
from an Ln+2

2
(n)-graph Γ such that Γ̄ ∼= Γ \ E(C). Therefore, we introduce

a self-complementary design and consider the existence of the design.

The following theorem is known [11, Theorem 1.7.14. of Chapter 1]

Theorem 4.8. If D is a t-(2k, k, λ) design with an even integer t and self-
complementary (D = D̄), then D is also a (t + 1)-(2k, k, µ) design with
µ = λ(k − t)/(2k − t).

Let D be a self-complementary 2-design with parameters (n, n
2 , n

2 (n
2 −1)).

In the case n ≡ 0 (mod 4), we give an example.

Proposition 4.9. The 2m-repeated design of a Hadamard 3-(4m, 2m,m−1)
design is a self-complementary 2-(4m, 2m, 2m(2m − 1)) design.

Proof. Since a Hadamard 3-(4m, 2m,m− 1) design is a self-complementary
2-design with parameters (4m, 2m, 2m − 1), the 2m-repeated of the design
is also a self-complementary design. ¤

Remark. It is known that there exists a Hadamard matrix of order 4m if
and only if there exists a Hadamard 3-(4m, 2m, m − 1) design.

In the case n ≡ 2 (mod 4), we give the following proposition.

Proposition 4.10. There exists no self-complementary 2-(4m + 2, 2m +
1, 2m(2m + 1)) design.

Proof. By Theorem 4.8, if D is a self-complementary 2-design with param-
eters (4m + 2, 2m + 1, 2m(2m + 1)), then D is also a 3-(4m + 2, 2m + 1, µ)
design. Since µ = 2m(2m + 1)(2m− 1)/4m = (2m + 1)(2m− 1)/2 is not an
integer number, there is no 3-(4m + 2, 2m + 1, µ) design.

¤
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