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STICKELBERGER IDEALS AND NORMAL BASES OF
RINGS OF p-INTEGERS

Humio ICHIMURA

1. INTRODUCTION

Let p be an odd prime number, K = Q(({,) the p-cyclotomic field, and
A = Gal(K/Q). Kummer [16] discovered that the Stickelberger ideal Sa of
the group ring Z[A] annihilates the ideal class group of K. In [7, Theorem
136], Hilbert gave an alternative proof of this important theorem. A new
ingredient of his proof is that it uses the theorem of Hilbert and Speiser on
the ring of integers of a tame abelian extension over Q. This connection be-
tween the Stickelberger ideal and rings of integers were pursued by Frohlich
2], McCulloh [17, 18], Childs [1], etc (cf. Frohlich [3, Chapter VI]). Let Fpr
be the finite field with p" elements, and let G, = F;@ and C, = F;r be the
additive group and the multiplicative group of Fr, respectively. Thus, G,
is an elementary abelian group of exponent p and rank r, and C, is a cyclic
group of order p” — 1. For a number field F', denote by Cl = Cl(Of|G,]) and
R = R(Or|G,]) the locally free class group of the group ring Or[G,] and the
subset of classes realized by rings of integers of tame G-Galois extensions
over F| respectively. Here, O is the ring of integers of F'. As the group C,
naturally acts on G, the group ring Z[C;] acts on Cl. McCulloh [17, 18]
characterized the realizable classes R by the action on Cl of a naturally
defined Stickelberger ideal S, of Z[C,].

In this paper, we introduce another Stickelberger ideal Sy of Z[H] for
each subgroup H of F. Let F be a number field, K = F((,) and A =
Gal(K/F). We naturally identify A with a subgroup H = Hp of F; through
the Galois action on (,. Thus, the ideal Sp acts on several objects associ-
ated with K. As a consequence of a p-integer version of McCulloh’s result,
it follows that a number field F' has the Hilbert-Speiser type property for
the rings of p-integers of cyclic extensions of degree p if and only if Sy anni-
hilates the p-ideal class group of K (Theorem 1). The purpose of this paper
is to give a direct and simpler proof of this assertion. In place of McCulloh’s
theorem, we use a theorem of Gémez Ayala [5] on normal integral basis and a
Galois descent property of p-NIB ([11, Theorem 1]). The Stickelberger ideal
Sy is a “H-part” of McCulloh’s Sy (C Z[F]), and when H = F;, it equals
S and the classical Stickelberger ideal for the extension Q((p)/Q. In some
cases, it is more useful than McCulloh’s one since it depends on H (or the
extension K/F). In a subsequent paper [13] with Hiroki Sumida-Takahashi,
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10 H. ICHIMURA

we study some properties of the ideal Sy and check whether or not a subfield
of Q(¢p) has the above mentioned Hilbert-Speiser type property.

This paper is organized as follows. In Section 2, we define the Stickel-
berger ideal Sy and give the main result (Theorem 1). In Section 3, we show
some corollaries. In Section 5, we prove Theorem 1 after some preliminaries
in Section 4.

2. THEOREM

In all what follows, we fix an odd prime number p. We begin with the
definition of the Stickelberger ideal for a subgroup of F;. Let H be a
subgroup of F;. For an integer i € Z, let i be the class in F, represented

by i. For an element i € H, we often write o; = i. We define an element 0
of Q[H] by

1y
0=0n=>)_ o' (€QH]).
P
Here, in the sum Z;, 1 runs over the integers such that 1 <¢ < p—1 and
1 € H. For an integer r € Z, let

Tl
Op =brp =) [p} ot (€ Z[H)).
i
Here, for a rational number z, [z] denotes the largest integer < x. For an
integer z € Z, let (x), be the unique integer such that (z), = 2 mod p and

0 < (x)p <p—1. Then, we have

(1) x = [z/plp+ ()
For an integer r with 7 € H, we easily see by using (1) that
(2) (r—o,)0 =0,

(cf. Washington [19, page 94]). Let Sg be the submodule of Z[H] generated
by the elements 6, over Z :

Using (1), we easily see that o460, = 05, — 1, for s with § € H. Hence,
Sy is an ideal of Z[H]. Let I = Iy be the ideal of Z[H] generated by the
elements r — o, for all integers r with ¥ € H. Then, we have

(3) Z|H|NOZ[H] =16 C Sy.

The equality can be shown similarly to [19, Lemma 6.9], and the inclusion
holds by (2).



STICKELBERGER IDEALS AND NORMAL BASES OF RINGS OF p-INTEGERS 11

Let F be a number field, Op the ring of integers, and O = Op[1/p] the
ring of p-integers of F. Let Clp and Cl} be the ideal class groups of the
Dedekind domains Op and O, respectively. Letting P be the subgroup
of Clp generated by the classes containing a prime ideal of Op over p, we
naturally have Cl}; = Clp/P. We put by, = |Cl)z|. A finite Galois extension
N/F with group G has a normal p-integral basis (p-NIB for short) when O
is free of rank one over the group ring O%[G]. We say that a number field
F' satisfies the condition (A},) when any cyclic extension N/F of degree p
has a p-NIB, and that it satisfies (A}, ,,) when any abelian extension N/F'
of exponent p has a p-NIB. Let K = F((p) and A = Ap = Gal(K/F). We
naturally identify A with a subgroup H = Hp of F; so that o; € H is the
automorphism of K over F' sending ¢, to CZ,. The group ring Z[A] = Z[H]|
and the ideal SA = Sy naturally act on several objects associated with K.

Theorem 1. Let p be an odd prime number and F a number field. Let
K =F(¢) and A = Ap = Gal(K/F). Then, the following three conditions
are equivalent.

(I) F' satisfies the condition (A}).

(IT) F satisfies the condition (Aj, ).

(IIT) The Stickelberger ideal Sa annihilates Cl), .
In particular, F satisfies (A, o) if M = |Cli| = 1.

Remark 1. As we mentioned in Section 1, the equivalence (I) < (III)
in Theorem 1 is a consequence of a p-integer version of the theorem of
McCulloh. In [13, Appendix|, we explain how to derive this equivalence
from the p-integer version.

3. COROLLARIES

We use the same notation as in Section 2. As the conditions (A}) and
(A}, ) are equivalent by Theorem 1, we only refer to (A}).

Corollary 1. When (, € F*, F satisfies (A) if and only if hp = 1.

Corollary 2. Under the setting of Theorem 1, assume that [K : F] = 2.
Then, the following two conditions are equivalent.

(i) F satisfies (Aj).

(ii) K satisfies (A}).

Proof. When (, € F'* and A = {1}, we have SA = Z from the definition.
Hence, the assertion Corollary 1 follows from Theorem 1. When [K : F] =
|A] =2, we have

1 p—1
g=-+P2" 6 | and Gy=o0_,.

p
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Hence, it follows that Sa = Z[A]. Therefore, I' satisfies (A7) if and only
h% =1 by Theorem 1, and the assertion of Corollary 2 follows from Corol-
lary 1. O

Let £ > 3 be a prime number and g > 2 an integer. Assume that p =
(¢ = 1)/(g — 1) is a prime number. Let F be a number field and K =
F((p). Assume further that 2¢ divides the degree [K : F|. Then, there are
intermediate fields Ky and Ky of K/F with [K : K3] =2 and [K : K/ = ¢,
respectively.

Corollary 3. Under the above setting and assumptions, the following three
conditions are equivalent.

(i) K¢ satisfies (A7).

(ii) Ko satisfies (Aj,).

(iil) K satisfies (Aj,).

Proof. Let A = Gal(K/Ky), and H the corresponding subgroup of F of
order ¢. Namely, H is the subgroup of F; generated by the class g. As
p = (¢" —1)/(g — 1), we easily see that 2¢° < p for 0 < i < £ — 2 and
p < 2¢°71 < 2p. Hence, it follows that
-1 g
On =0y = —0;2 and 0y =0
i=0
Hence, we see that Sa = Z[A], and that K, satisfies (A4}) if and only if
b =1 from Theorem 1. Therefore, the assertion follows from Corollaries

—(€=1)
9 .

1 and 2. O
Let p, F', K be as in Theorem 1. We say that F' satisfies the condition
(B}’wo) when for any » > 1 and any aq,--- ,a, € F'*, the abelian extension

K(a;/p ’ 1 <4 <r)over K has a p-NIB. When (;, ¢ F*, the conditions (4})
and (B, ,) appear, superficially, to be irrelevant to each other. However,
we can show the following relation between them.

Corollary 4. Let p, F, K be as in Theorem 1. Assume that the morm
map Cly — Cl is surjective. Then, F' satisfies (Aj) only when it satisfies

(By,o0)-
The following assertion on the condition (B, ;) was shown in [10].

Theorem 2. Let p, F', K be as in Theorem 1. Then, F' satisfies the condi-
tion (B), o) if and only if the natural map Cly — Cll is trivial.

p7oo

Proof of Corollary 4. We see that Ny /p = Z; 0, = —0_1 € SA. Assume
that F' satisfies (A}). Then, the element ¢_; annihilates Cl}; by Theorem
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1. From this, it follows that the natural map Cly — Cl) is trivial since the
norm map Ng p : Clyy — Cl is surjective. Hence, I satisfies (B, ;) by
Theorem 2. O

Remark 2. In [14, 15|, Kawamoto proved that for any a € Q*, the cyclic
extension Q((p, a'/?)/Q((,) has a normal integral basis (in the usual sense)
if it is tame. The condition (B, ,,) comes from this result. A Kawamoto type
property was also studied in [9]. An assertion coresponding to Corollary 4
for the usual integer rings was given in [8, 12] under some condition on the
Stickelberger ideal associated with H = Gal(K/F).

4. SOME RESULTS ON p-NIB

In this section, we recall a theorem of Gémez Ayala on normal integral
basis of a Kummer extension of prime degree, and a descent property of
normal integral bases shown in [11].

Let K be a number field. Let 2 be a p-th power free integral ideal of O7.
Namely, PP 1 2 for any prime ideal P of O% . Then, we can uniquely write

p—1
2A=]]
=1

for some square free integral ideals 2; of O relatively prime to each other.
The associated ideals 98, of A are defined by

p—1
(4) B, =[] 2" (0<r<p-1).

i=1
Clearly, we have By = B, = O). The following is a p-integer version of a
theorem of Gémez Ayala [5, Theorem 2.1]. For this, see also [11, Theorem 3].

Theorem 3. Let K be a number field with (, € K*. A cyclic Kummer
extension L/ K of degree p has a p-NIB if and only if there exists an integer
a€ Oy with L = K (al/?) satisfying the following two conditions ;

(i) the principal integral ideal aO% is p-th power free,

(ii) the ideals of O associated with aO% by (4) are principal.

The following is an immediate consequence of Theorem 3.

Corollary 5. Let K be a number field with {, € K*, and let a € O} be
an integer such that the integral ideal aO% is square free. Then, the cyclic
extension K (a'/?)/K has a p-NIB.

When a is a unit of O, this assertion is classically known (cf. Greither
[6, Proposition 0.6.5]).
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Lemma 1. Let K be a number field, and a € O an integer satisfying the
conditions (1) and (ii) in Theorem 3. For any integer s with 1 < s <p—1,
we can write a® = bxP for some integers b, x € O with b satisfying the
conditions (i) and (ii) in Theorem 3.

Proof. By the assumption on a, we can write

r_ = i
aOy = H A
i=1

for some square free integral ideals 2; of O relatively prime to each other.
Further, the ideals B, associated with aOQ’ by (4) are principal. By (1), we

see that ‘
@O =[] 2@ =[] 24 - 2.

7

As B, is principal, we can write a® = bz for some integers b, x € O% with

b0 = [T 2.

In particular, the integral ideal bO’; is p-th power free. Let €, be the ideals
of O} associated with bO' by (4). Namely,

pd r(is)

¢ =[] with ni—[ ”}
» b
i=1

Using (1), we see that
r(is)p = ris —rp [21 =i(rs)y, + ip [rs] —rp [} ,
b

and hence,

Therefore, we obtain
¢, = %(rs)p ’ (aO/K)[TS/p] ’ %;r
Hence, the associated ideals €, of bO’ are principal. 0

Let F' be a number field. Let m = p® be a power of p, and (,, a primi-
tive m-th root of unity. It is classically known that a cyclic extension N/F
of degree m unramified outside p has a p-NIB if and only if the Kummer
extension N ((pm)/F((n) has a p-NIB (cf. [6, Theorem I.2.1]). For the ram-
ified case, we showed the following assertion in [11, Theorem 1] with an
elementary way.
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Theorem 4. Let m = p° be a power of p. Let F' be a number field with
Cm & F*, and K = F((y). Assume that p 1 [K : F|, or equivalently that
[K : F| divides p—1. Then, a cyclic extension N/F of degree m has a p-NIB
if and only if NK/K has a p-NIB.

Remark 3. An inexplicit version of the Gémez Ayala theorem already
appeared in [17, (3.2.2)].

5. PROOF OF THEOREM 1

In the following, let p, F'; K, A be as in Theorem 1, and let H = Hp be
the subgroup of F; corresponding to A. We use the same notation as in
Section 2. It suffices to prove the implications (I) = (III) and (III) = (II).

Let us recall some properties of the element

/
e:=pd=20 :Z io; (€ Sa).
i
Let Z, be the ring of p-adic integers, and let w : A — Z; be the Z,-
valued character of A representing the Galois action on (,. Namely, we

have (2 = Cw(g) for ¢ € A. Denote by
D P

1 -1
€w =7 ZU: w(o)o

the idempotent of Z,[A] corresponding to w. Here, d = |A|, and o runs
over A. It is easy to see and well-known that
ei =e, and euo=w(0)e,
for o € A (cf. [19, page 100]). From the definition, we have
(5) e = de, mod p,
and hence e? = de mod p. Therefore, we see from (3) and e = pf that
(6) e’ =de+pS with S=(pf—d)f € Sa.
It follows from (2) that
(7) eo, = re mod pSa

for an integer r with 7 € H.
The following lemma is an exercise in Galois theory (and is a consequence
of the congruence (5) or (7)).

Lemma 2. Let p, F, K be as in Theorem 1, and let L/K be a cyclic
extension of degree p. Then, there exists a cyclic extension N/F of degree
p with L = NK if and only if L = K((a®)V/?) for some a € K*.
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Proof of the implication (I) = (IIT). Assume that F' satisfies the condition
(A}). It suffices to show that the element ¢, annihilates Cl} for any integer
r with r # 0. Let C € Cl} be an arbitrary ideal class. For an integer
r % 0, choose prime ideals 8 € C™" and Q € C of relative degree one over
F with (Ng/p'B, Ng/pQ) = 1, where N/ denotes the norm map. The
condition that 3 is of relative degree one over F' means that the prime ideal
p =P N OE of O splits completely in K. We have PQ" = a0’ for some
a € K*. We put b= a® and L = K(b'/?). Using (1), we see that

(8) bOf = [T %7 - IT 27 '@ - (2.

Here, in the product H;, 1 runs over the integers with 1 < ¢ < p—1 and
i € H. We have B || b as p splits completely in K. Hence, the cyclic
extension L/K is of degree p. By Lemma 2, there exists a cyclic extension
N/F of degree p with L = NK. As F satisfies (A},), N/F has a p-NIB.
Hence, L/ K has a p-NIB by a classical result on rings of integers in Frohlich
and Taylor [4, III (2.13)]. Therefore, there exists an integer ¢ € O with
L = K(c'/P) satisfying the conditions (i) and (ii) in Theorem 3. Clearly,
we have b = ¢®zP for some 1 < s < p—1and z € K*. By Lemma 1, we
can write ¢® = dyP for some integers d, y € O such that the integral ideal
dO% is p-th power free. Therefore, as b = d(zy)P, it follows from (8) that
Q% = 2yO’;. Hence, 6, kills the class C for any 7. O

To prove the implication (III) = (II), we need to prepare some lemmas.
For an element x € K*, let [z]x be the class in K*/(K*)P represented by
x. For a subgroup X of K*, we put

Xk = {[z]x € K*/(K*)P | v € X}.
Let Bl = (O%)* be the group of units of Q). From now on, we assume
that Sa annihilates Cl}.. For a while, we fix a prime ideal B of Of. As
e = 6, € Sa, we can choose an integer ap € O with apO) = P€. Let
bqg = a%.
Lemma 3. Under the above setting, assume that B is of relative degree one
over F. Then, the cyclic extension K(b%/p)/K is of degree p, ramified at P,

and unramified at all prime ideals of O outside Ng/pB. Further, it has a
p-NIB.

Lemma 4. Under the above setting, assume that B is not of relative degree
one over F. Then, we have [by|x € [Ey s

Proof of Lemma 3. For simplicity, we write a = agp, b = a® = by, and
L = K(b!/?). Let Ly = K(a'/P). First, we show that Lo/K is of degree p
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and has a p-NIB. From the definition, we have
/ —1.
O = ¢ =[] $7 "
i

As P is of relative degree one over F', we see that

(9) PllaOk
and that aO) is p-th power free. In particular, Ly/K is of degree p. Let
B, be the ideals of O’ associated with aO% by ( ). It follows that

B, — H g /el —

Hence, the associated ideals 9B, are principal as Sa annihilates Cl}. There-
fore, Lo/ K has a p-NIB by Theorem 3.

Let us show the assertions on L = K (b*/P). We see from (6) and € =
a0 that

bO) = a€0 = P = a0 - (P°)P with § € Sa,

where d = |A|. As PB° is principal, it follows that [b]x = [na?|x for some unit
n € E}.. Therefore, by (9), the extension L/K is of degree p and ramified
at . Clearly, it is unramified outside Ng/pPB. Let L, = K(n'/?). Then,
L,/K has a p-NIB by Corollary 5. As we have seen above, Ly = K (a'/?)/K
has a p-NIB. As is easily seen, the extensions L, /K and Ly/K are linearly
disjoint and their relative discriminants with respect to O are relatively

prime to each other. Therefore, the composite L,Lo/K has a p-NIB by [4,
IIT (2.13)]. Hence, L/K has a p-NIB as L C L, Ly. O

Proof of Lemma 4. Let D (C A) be the decomposition group of P at K/F.
Let r = [A: D] and t = |D| = d/r where d = |A]. As P is not of degree
one over F, we have D # {1} and ¢t > 2. Choose an integer g € Z so that
p = o4 generates A. Then, it follows that D = (p") and

r—1t—1
_ >\+m .o (A+r)
e=> 2 (9
A=0 7=0
As PP =P, we see that
r—1
pe =TT Hm™
A=0

with
t—1

my = Z (M, = ¢ Z w(o) = 0 mod p.

7=0 oeD
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Here, the last congruence holds as D # {1}. Therefore, we obtain € = 2P
for some ideal A of O . Hence, it follows that

bpOlc = P& = (A°)".
As € is principal, we see that [by|x € [Ef|x. By (6) and by = ag, we
have [b%] K= [b‘;/ip] k- As p1d, we obtain the assertion. O

Proof of the implication (III) = (II). We are assuming that Sa annihilates
Cly. Let N/F be an abelian extension of exponent p, and L = NK. By
Lemma 2 and (6), we have

(10) L=K((a®)'?[1<i<r)=K(@E)/"|1<i<r)

for some integers a; € O For each prime ideal o of O, we choose and fix
a prime ideal B of O} over p. Let a, € O} be an integer with P€ = a,0%,
and b, = ag. Let

a;Ox = H B
o

be the prime decomposition of a;O%. Here, p runs over the prime ideals
of 0% dividing Ng/p(a;), and X, is an element of Z[A] with non-negative
coefficients. We see from (7) that
af Ofc = [T (B (B%) =[] a5 O (%)
P P
for some integers z, > 0 and some Stickelberger elements S, € Sa. Since
B is principal and b, = ag, it follows that

(11) ] = [nf : Hb?é“]
® K

for some unit 7; € E. Let T be the set of prime ideals p of O dividing
Ng/p(a;) for some i such that o splits completely in K. Let €1,--- , €5 be
a set of units of O such that the classes [€€],- -, [€€] form a basis of the
vector space [Ef-®]k over F,. Then, it follows from (10), (11) and Lemma

4 that L is contained in

M:K((ef)l/p, P 1<) <s, pGT).
By Lemma 2, there uniquely exists a cyclic extension N;/F' (resp. N,/F)
of degree p with N;K = K((ef)l/p) (resp. NoK = K(b}p/p)). We see that
N is contained in the composite M of N; and N, with 1 < j < s and
o € T. By Corollary 5 and Lemma 3, the extensions N;K and N,K over

K have a p-NIB. Hence, by Theorem 4, N;/F and N,/F have a p-NIB.
From the choice of ¢; and Lemma 3, we see that these extensions over F' are
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linearly disjoint over F' and their relative discriminants with respect to O’
are relatively prime to each other. Therefore, their composite M/F has a
p-NIB by [4, IIT (2.13)]. Hence, N/F has a p-NIB as N C M. O
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