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STICKELBERGER IDEALS AND NORMAL BASES OF
RINGS OF p-INTEGERS

Humio ICHIMURA

1. Introduction

Let p be an odd prime number, K = Q(ζp) the p-cyclotomic field, and
∆ = Gal(K/Q). Kummer [16] discovered that the Stickelberger ideal S∆ of
the group ring Z[∆] annihilates the ideal class group of K. In [7, Theorem
136], Hilbert gave an alternative proof of this important theorem. A new
ingredient of his proof is that it uses the theorem of Hilbert and Speiser on
the ring of integers of a tame abelian extension over Q. This connection be-
tween the Stickelberger ideal and rings of integers were pursued by Fröhlich
[2], McCulloh [17, 18], Childs [1], etc (cf. Fröhlich [3, Chapter VI]). Let F pr

be the finite field with pr elements, and let Gr = F +
pr and Cr = F×

pr be the
additive group and the multiplicative group of F pr , respectively. Thus, Gr

is an elementary abelian group of exponent p and rank r, and Cr is a cyclic
group of order pr−1. For a number field F , denote by Cl = Cl(OF [Gr]) and
R = R(OF [Gr]) the locally free class group of the group ring OF [Gr] and the
subset of classes realized by rings of integers of tame Gr-Galois extensions
over F , respectively. Here, OF is the ring of integers of F . As the group Cr

naturally acts on Gr, the group ring Z[Cr] acts on Cl. McCulloh [17, 18]
characterized the realizable classes R by the action on Cl of a naturally
defined Stickelberger ideal Sr of Z[Cr].

In this paper, we introduce another Stickelberger ideal SH of Z[H] for
each subgroup H of F×

p . Let F be a number field, K = F (ζp) and ∆ =
Gal(K/F ). We naturally identify ∆ with a subgroup H = HF of F×

p through
the Galois action on ζp. Thus, the ideal SH acts on several objects associ-
ated with K. As a consequence of a p-integer version of McCulloh’s result,
it follows that a number field F has the Hilbert-Speiser type property for
the rings of p-integers of cyclic extensions of degree p if and only if SH anni-
hilates the p-ideal class group of K (Theorem 1). The purpose of this paper
is to give a direct and simpler proof of this assertion. In place of McCulloh’s
theorem, we use a theorem of Gómez Ayala [5] on normal integral basis and a
Galois descent property of p-NIB ([11, Theorem 1]). The Stickelberger ideal
SH is a “H-part” of McCulloh’s S1 (⊆ Z[F×

p ]), and when H = F×
p , it equals

S1 and the classical Stickelberger ideal for the extension Q(ζp)/Q. In some
cases, it is more useful than McCulloh’s one since it depends on H (or the
extension K/F ). In a subsequent paper [13] with Hiroki Sumida-Takahashi,
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10 H. ICHIMURA

we study some properties of the ideal SH and check whether or not a subfield
of Q(ζp) has the above mentioned Hilbert-Speiser type property.

This paper is organized as follows. In Section 2, we define the Stickel-
berger ideal SH and give the main result (Theorem 1). In Section 3, we show
some corollaries. In Section 5, we prove Theorem 1 after some preliminaries
in Section 4.

2. Theorem

In all what follows, we fix an odd prime number p. We begin with the
definition of the Stickelberger ideal for a subgroup of F×

p . Let H be a
subgroup of F×

p . For an integer i ∈ Z, let ī be the class in F p represented
by i. For an element ī ∈ H, we often write σi = ī. We define an element θ
of Q[H] by

θ = θH =
∑

i

′ i

p
σ−1

i (∈ Q[H]).

Here, in the sum
∑′

i, i runs over the integers such that 1 ≤ i ≤ p − 1 and
ī ∈ H. For an integer r ∈ Z, let

θr = θr,H =
∑

i

′
[
ri

p

]
σ−1

i (∈ Z[H]).

Here, for a rational number x, [x] denotes the largest integer ≤ x. For an
integer x ∈ Z, let (x)p be the unique integer such that (x)p ≡ x mod p and
0 ≤ (x)p ≤ p − 1. Then, we have

(1) x = [x/p]p + (x)p.

For an integer r with r̄ ∈ H, we easily see by using (1) that

(2) (r − σr)θ = θr

(cf. Washington [19, page 94]). Let SH be the submodule of Z[H] generated
by the elements θr over Z :

SH =
〈
θr

∣∣ r ∈ Z
〉
Z .

Using (1), we easily see that σsθr = θsr − rθs for s with s̄ ∈ H. Hence,
SH is an ideal of Z[H]. Let I = IH be the ideal of Z[H] generated by the
elements r − σr for all integers r with r̄ ∈ H. Then, we have

(3) Z[H] ∩ θZ[H] = Iθ ⊆ SH .

The equality can be shown similarly to [19, Lemma 6.9], and the inclusion
holds by (2).
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Let F be a number field, OF the ring of integers, and O′
F = OF [1/p] the

ring of p-integers of F . Let ClF and Cl′F be the ideal class groups of the
Dedekind domains OF and O′

F , respectively. Letting P be the subgroup
of ClF generated by the classes containing a prime ideal of OF over p, we
naturally have Cl′F

∼= ClF /P . We put h′
F = |Cl′F |. A finite Galois extension

N/F with group G has a normal p-integral basis (p-NIB for short) when O′
N

is free of rank one over the group ring O′
F [G]. We say that a number field

F satisfies the condition (A′
p) when any cyclic extension N/F of degree p

has a p-NIB, and that it satisfies (A′
p,∞) when any abelian extension N/F

of exponent p has a p-NIB. Let K = F (ζp) and ∆ = ∆F = Gal(K/F ). We
naturally identify ∆ with a subgroup H = HF of F×

p so that σi ∈ H is the
automorphism of K over F sending ζp to ζi

p. The group ring Z[∆] = Z[H]
and the ideal S∆ = SH naturally act on several objects associated with K.

Theorem 1. Let p be an odd prime number and F a number field. Let
K = F (ζp) and ∆ = ∆F = Gal(K/F ). Then, the following three conditions
are equivalent.

(I) F satisfies the condition (A′
p).

(II) F satisfies the condition (A′
p,∞).

(III) The Stickelberger ideal S∆ annihilates Cl′K .
In particular, F satisfies (A′

p,∞) if h′
K = |Cl′K | = 1.

Remark 1. As we mentioned in Section 1, the equivalence (I) ⇔ (III)
in Theorem 1 is a consequence of a p-integer version of the theorem of
McCulloh. In [13, Appendix], we explain how to derive this equivalence
from the p-integer version.

3. Corollaries

We use the same notation as in Section 2. As the conditions (A′
p) and

(A′
p,∞) are equivalent by Theorem 1, we only refer to (A′

p).

Corollary 1. When ζp ∈ F×, F satisfies (A′
p) if and only if h′

F = 1.

Corollary 2. Under the setting of Theorem 1, assume that [K : F ] = 2.
Then, the following two conditions are equivalent.

(i) F satisfies (A′
p).

(ii) K satisfies (A′
p).

Proof. When ζp ∈ F× and ∆ = {1}, we have S∆ = Z from the definition.
Hence, the assertion Corollary 1 follows from Theorem 1. When [K : F ] =
|∆| = 2, we have

θ =
1
p

+
p − 1

p
σ−1 and θ2 = σ−1.
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Hence, it follows that S∆ = Z[∆]. Therefore, F satisfies (A′
p) if and only

h′
K = 1 by Theorem 1, and the assertion of Corollary 2 follows from Corol-

lary 1. ¤
Let ` ≥ 3 be a prime number and g ≥ 2 an integer. Assume that p =

(g` − 1)/(g − 1) is a prime number. Let F be a number field and K =
F (ζp). Assume further that 2` divides the degree [K : F ]. Then, there are
intermediate fields K2 and K` of K/F with [K : K2] = 2 and [K : K`] = `,
respectively.

Corollary 3. Under the above setting and assumptions, the following three
conditions are equivalent.

(i) K` satisfies (A′
p).

(ii) K2 satisfies (A′
p).

(iii) K satisfies (A′
p).

Proof. Let ∆ = Gal(K/K`), and H the corresponding subgroup of F×
p of

order `. Namely, H is the subgroup of F×
p generated by the class ḡ. As

p = (g` − 1)/(g − 1), we easily see that 2gi < p for 0 ≤ i ≤ ` − 2 and
p < 2g`−1 < 2p. Hence, it follows that

θ∆ = θH =
`−1∑
i=0

gi

p
σ−i

g and θ2 = σ−(`−1)
g .

Hence, we see that S∆ = Z[∆], and that K` satisfies (A′
p) if and only if

h′
K = 1 from Theorem 1. Therefore, the assertion follows from Corollaries

1 and 2. ¤
Let p, F , K be as in Theorem 1. We say that F satisfies the condition

(B′
p,∞) when for any r ≥ 1 and any a1, · · · , ar ∈ F×, the abelian extension

K(a1/p
i

∣∣ 1 ≤ i ≤ r) over K has a p-NIB. When ζp 6∈ F×, the conditions (A′
p)

and (B′
p,∞) appear, superficially, to be irrelevant to each other. However,

we can show the following relation between them.

Corollary 4. Let p, F , K be as in Theorem 1. Assume that the norm
map Cl′K → Cl′F is surjective. Then, F satisfies (A′

p) only when it satisfies
(B′

p,∞).

The following assertion on the condition (B′
p,∞) was shown in [10].

Theorem 2. Let p, F , K be as in Theorem 1. Then, F satisfies the condi-
tion (B′

p,∞) if and only if the natural map Cl′F → Cl′K is trivial.

Proof of Corollary 4. We see that NK/F =
∑′

i σi = −θ−1 ∈ S∆. Assume
that F satisfies (A′

p). Then, the element θ−1 annihilates Cl′K by Theorem
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1. From this, it follows that the natural map Cl′F → Cl′K is trivial since the
norm map NK/F : Cl′K → Cl′F is surjective. Hence, F satisfies (B′

p,∞) by
Theorem 2. ¤

Remark 2. In [14, 15], Kawamoto proved that for any a ∈ Q×, the cyclic
extension Q(ζp, a1/p)/Q(ζp) has a normal integral basis (in the usual sense)
if it is tame. The condition (B′

p,∞) comes from this result. A Kawamoto type
property was also studied in [9]. An assertion coresponding to Corollary 4
for the usual integer rings was given in [8, 12] under some condition on the
Stickelberger ideal associated with H = Gal(K/F ).

4. Some results on p-NIB

In this section, we recall a theorem of Gómez Ayala on normal integral
basis of a Kummer extension of prime degree, and a descent property of
normal integral bases shown in [11].

Let K be a number field. Let A be a p-th power free integral ideal of O′
K .

Namely, Pp - A for any prime ideal P of O′
K . Then, we can uniquely write

A =
p−1∏
i=1

Ai
i

for some square free integral ideals Ai of O′
K relatively prime to each other.

The associated ideals Br of A are defined by

(4) Br =
p−1∏
i=1

A
[ri/p]
i (0 ≤ r ≤ p − 1).

Clearly, we have B0 = B1 = O′
K . The following is a p-integer version of a

theorem of Gómez Ayala [5, Theorem 2.1]. For this, see also [11, Theorem 3].

Theorem 3. Let K be a number field with ζp ∈ K×. A cyclic Kummer
extension L/K of degree p has a p-NIB if and only if there exists an integer
a ∈ O′

K with L = K(a1/p) satisfying the following two conditions ;
(i) the principal integral ideal aO′

K is p-th power free,
(ii) the ideals of O′

K associated with aO′
K by (4) are principal.

The following is an immediate consequence of Theorem 3.

Corollary 5. Let K be a number field with ζp ∈ K×, and let a ∈ O′
K be

an integer such that the integral ideal aO′
K is square free. Then, the cyclic

extension K(a1/p)/K has a p-NIB.

When a is a unit of O′
K , this assertion is classically known (cf. Greither

[6, Proposition 0.6.5]).
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Lemma 1. Let K be a number field, and a ∈ O′
K an integer satisfying the

conditions (i) and (ii) in Theorem 3. For any integer s with 1 ≤ s ≤ p − 1,
we can write as = bxp for some integers b, x ∈ O′

K with b satisfying the
conditions (i) and (ii) in Theorem 3.

Proof. By the assumption on a, we can write

aO′
K =

p−1∏
i=1

Ai
i

for some square free integral ideals Ai of O′
K relatively prime to each other.

Further, the ideals Br associated with aO′
K by (4) are principal. By (1), we

see that
asO′

K =
∏

i

Ais
i =

∏
i

A
(is)p

i · Bp
s.

As Bs is principal, we can write as = bxp for some integers b, x ∈ O′
K with

bO′
K =

∏
i

A
(is)p

i .

In particular, the integral ideal bO′
K is p-th power free. Let Cr be the ideals

of O′
K associated with bO′

K by (4). Namely,

Cr =
p−1∏
i=1

Ani
i with ni =

[
r(is)p

p

]
.

Using (1), we see that

r(is)p = ris − rp

[
is

p

]
= i(rs)p + ip

[
rs

p

]
− rp

[
is

p

]
,

and hence,

ni =
[
r(is)p

p

]
=

[
i(rs)p

p

]
+ i

[
rs

p

]
− r

[
is

p

]
.

Therefore, we obtain

Cr = B(rs)p
· (aO′

K)[rs/p] · B−r
s .

Hence, the associated ideals Cr of bO′
K are principal. ¤

Let F be a number field. Let m = pe be a power of p, and ζm a primi-
tive m-th root of unity. It is classically known that a cyclic extension N/F
of degree m unramified outside p has a p-NIB if and only if the Kummer
extension N(ζm)/F (ζm) has a p-NIB (cf. [6, Theorem I.2.1]). For the ram-
ified case, we showed the following assertion in [11, Theorem 1] with an
elementary way.
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Theorem 4. Let m = pe be a power of p. Let F be a number field with
ζm 6∈ F×, and K = F (ζm). Assume that p - [K : F ], or equivalently that
[K : F ] divides p−1. Then, a cyclic extension N/F of degree m has a p-NIB
if and only if NK/K has a p-NIB.

Remark 3. An inexplicit version of the Gómez Ayala theorem already
appeared in [17, (3.2.2)].

5. Proof of Theorem 1

In the following, let p, F , K, ∆ be as in Theorem 1, and let H = HF be
the subgroup of F×

p corresponding to ∆. We use the same notation as in
Section 2. It suffices to prove the implications (I) ⇒ (III) and (III) ⇒ (II).

Let us recall some properties of the element

e := pθ = θp =
∑

i

′
iσ−1

i (∈ S∆).

Let Zp be the ring of p-adic integers, and let ω : ∆ → Z×
p be the Zp-

valued character of ∆ representing the Galois action on ζp. Namely, we
have ζσ

p = ζ
ω(σ)
p for σ ∈ ∆. Denote by

eω =
1
d

∑
σ

ω(σ)σ−1

the idempotent of Zp[∆] corresponding to ω. Here, d = |∆|, and σ runs
over ∆. It is easy to see and well-known that

e2
ω = eω and eωσ = ω(σ)eω

for σ ∈ ∆ (cf. [19, page 100]). From the definition, we have

(5) e ≡ deω mod p,

and hence e2 ≡ de mod p. Therefore, we see from (3) and e = pθ that

(6) e2 = de + pS with S = (pθ − d)θ ∈ S∆.

It follows from (2) that

(7) eσr ≡ re mod pS∆

for an integer r with r̄ ∈ H.
The following lemma is an exercise in Galois theory (and is a consequence

of the congruence (5) or (7)).

Lemma 2. Let p, F , K be as in Theorem 1, and let L/K be a cyclic
extension of degree p. Then, there exists a cyclic extension N/F of degree
p with L = NK if and only if L = K((ae)1/p) for some a ∈ K×.
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Proof of the implication (I) ⇒ (III). Assume that F satisfies the condition
(A′

p). It suffices to show that the element θr annihilates Cl′K for any integer
r with r 6= 0. Let C ∈ Cl′K be an arbitrary ideal class. For an integer
r 6= 0, choose prime ideals P ∈ C−r and Q ∈ C of relative degree one over
F with (NK/F P, NK/F Q) = 1, where NK/F denotes the norm map. The
condition that P is of relative degree one over F means that the prime ideal
℘ = P ∩ O′

F of O′
F splits completely in K. We have PQr = aO′

K for some
a ∈ K×. We put b = ae and L = K(b1/p). Using (1), we see that

(8) bO′
K =

∏
i

′
Pσ−1

i i ·
∏

i

′
Qσ−1

i (ir)p · (Qθr)p.

Here, in the product
∏′

i, i runs over the integers with 1 ≤ i ≤ p − 1 and
ī ∈ H. We have P ‖ b as ℘ splits completely in K. Hence, the cyclic
extension L/K is of degree p. By Lemma 2, there exists a cyclic extension
N/F of degree p with L = NK. As F satisfies (A′

p), N/F has a p-NIB.
Hence, L/K has a p-NIB by a classical result on rings of integers in Fröhlich
and Taylor [4, III (2.13)]. Therefore, there exists an integer c ∈ O′

K with
L = K(c1/p) satisfying the conditions (i) and (ii) in Theorem 3. Clearly,
we have b = csxp for some 1 ≤ s ≤ p − 1 and x ∈ K×. By Lemma 1, we
can write cs = dyp for some integers d, y ∈ O′

K such that the integral ideal
dO′

K is p-th power free. Therefore, as b = d(xy)p, it follows from (8) that
Qθr = xyO′

K . Hence, θr kills the class C for any r. ¤
To prove the implication (III) ⇒ (II), we need to prepare some lemmas.

For an element x ∈ K×, let [x]K be the class in K×/(K×)p represented by
x. For a subgroup X of K×, we put

[X]K = {[x]K ∈ K×/(K×)p
∣∣ x ∈ X}.

Let E′
K = (O′

K)× be the group of units of O′
K . From now on, we assume

that S∆ annihilates Cl′K . For a while, we fix a prime ideal P of O′
K . As

e = θp ∈ S∆, we can choose an integer aP ∈ O′
K with aPO′

K = Pe. Let
bP = ae

P.

Lemma 3. Under the above setting, assume that P is of relative degree one
over F . Then, the cyclic extension K(b1/p

P )/K is of degree p, ramified at P,
and unramified at all prime ideals of O′

K outside NK/F P. Further, it has a
p-NIB.

Lemma 4. Under the above setting, assume that P is not of relative degree
one over F . Then, we have [bP]K ∈ [E′

K
e]K .

Proof of Lemma 3. For simplicity, we write a = aP, b = ae = bP, and
L = K(b1/p). Let L0 = K(a1/p). First, we show that L0/K is of degree p
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and has a p-NIB. From the definition, we have

aO′
K = Pe =

∏
i

′
Pσ−1

i i.

As P is of relative degree one over F , we see that

(9) P‖aO′
K

and that aO′
K is p-th power free. In particular, L0/K is of degree p. Let

Br be the ideals of O′
K associated with aO′

K by (4). It follows that

Br =
∏

i

′
Pσ−1

i [ri/p] = Pθr .

Hence, the associated ideals Br are principal as S∆ annihilates Cl′K . There-
fore, L0/K has a p-NIB by Theorem 3.

Let us show the assertions on L = K(b1/p). We see from (6) and Pe =
aO′

K that

bO′
K = aeO′

K = Pe2
= adO′

K · (PS)p with S ∈ S∆,

where d = |∆|. As PS is principal, it follows that [b]K = [ηad]K for some unit
η ∈ E′

K . Therefore, by (9), the extension L/K is of degree p and ramified
at P. Clearly, it is unramified outside NK/F P. Let Lη = K(η1/p). Then,
Lη/K has a p-NIB by Corollary 5. As we have seen above, L0 = K(a1/p)/K
has a p-NIB. As is easily seen, the extensions Lη/K and L0/K are linearly
disjoint and their relative discriminants with respect to O′

K are relatively
prime to each other. Therefore, the composite LηL0/K has a p-NIB by [4,
III (2.13)]. Hence, L/K has a p-NIB as L ⊆ LηL0. ¤
Proof of Lemma 4. Let D (⊆ ∆) be the decomposition group of P at K/F .
Let r = [∆ : D] and t = |D| = d/r where d = |∆|. As P is not of degree
one over F , we have D 6= {1} and t ≥ 2. Choose an integer g ∈ Z so that
ρ = σg generates ∆. Then, it follows that D = 〈ρr〉 and

e =
r−1∑
λ=0

t−1∑
j=0

(gλ+rj)p · ρ−(λ+rj).

As Pρr
= P, we see that

Pe =
r−1∏
λ=0

(Pρ−λ
)mλ

with

mλ =
t−1∑
j=0

(gλ+rj)p ≡ gλ
∑
σ∈D

ω(σ) ≡ 0 mod p.
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Here, the last congruence holds as D 6= {1}. Therefore, we obtain Pe = Ap

for some ideal A of O′
K . Hence, it follows that

bPO′
K = Pe2

= (Ae)p.

As Ae is principal, we see that [bP]K ∈ [E′
K ]K . By (6) and bP = ae

P, we
have [beP]K = [bd

P]K . As p - d, we obtain the assertion. ¤

Proof of the implication (III) ⇒ (II). We are assuming that S∆ annihilates
Cl′K . Let N/F be an abelian extension of exponent p, and L = NK. By
Lemma 2 and (6), we have

(10) L = K((ae
i )1/p

∣∣ 1 ≤ i ≤ r) = K((ae2

i )1/p
∣∣ 1 ≤ i ≤ r)

for some integers ai ∈ O′
K . For each prime ideal ℘ of O′

F , we choose and fix
a prime ideal P of O′

K over ℘. Let a℘ ∈ O′
K be an integer with Pe = a℘O′

K ,
and b℘ = ae

℘ . Let

aiO′
K =

∏
℘

PX℘

be the prime decomposition of aiO′
K . Here, ℘ runs over the prime ideals

of O′
F dividing NK/F (ai), and X℘ is an element of Z[∆] with non-negative

coefficients. We see from (7) that

ae
i O′

K =
∏
℘

(Pe)x℘(PS℘)p =
∏
℘

a
x℘
℘ O′

K(PS℘)p

for some integers x℘ ≥ 0 and some Stickelberger elements S℘ ∈ S∆. Since
PS℘ is principal and b℘ = ae

℘ , it follows that

(11)
[
ae2

i

]
K

=

[
ηe

i ·
∏
℘

b
x℘
℘

]
K

for some unit ηi ∈ E′
K . Let T be the set of prime ideals ℘ of O′

F dividing
NK/F (ai) for some i such that ℘ splits completely in K. Let ε1, · · · , εs be
a set of units of O′

K such that the classes [εe1 ], · · · , [εes ] form a basis of the
vector space [E′

K
e]K over F p. Then, it follows from (10), (11) and Lemma

4 that L is contained in

M̃ = K
(
(εej )1/p, b1/p

℘

∣∣ 1 ≤ j ≤ s, ℘ ∈ T
)

.

By Lemma 2, there uniquely exists a cyclic extension Nj/F (resp. N℘/F )
of degree p with NjK = K((εej )1/p) (resp. N℘K = K(b1/p

℘ )). We see that
N is contained in the composite M of Nj and N℘ with 1 ≤ j ≤ s and
℘ ∈ T . By Corollary 5 and Lemma 3, the extensions NjK and N℘K over
K have a p-NIB. Hence, by Theorem 4, Nj/F and N℘/F have a p-NIB.
From the choice of εj and Lemma 3, we see that these extensions over F are
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linearly disjoint over F and their relative discriminants with respect to O′
F

are relatively prime to each other. Therefore, their composite M/F has a
p-NIB by [4, III (2.13)]. Hence, N/F has a p-NIB as N ⊆ M . ¤
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Théor. Nombres Bordeaux 17 (2005), 779-786.

[12] H. Ichimura, Normal integral bases and ray class groups, II, Yokohama Math. J. in
press.

[13] H. Ichimura and H. Sumida-Takahashi, Stickelberger ideals of conductor p and its
application, J. Math. Soc. Japan 58 (2006), 885-902.

[14] F. Kawamoto, On normal integral bases, Tokyo J. Math. 7 (1984), 221-231.
[15] F. Kawamoto, Remark on “On normal integral bases”, Tokyo J. Math. 8 (1985), 275.
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A. Fröhlich), 561-588, Academic Press, London-New York, 1977.

[18] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra
82 (1983), 102-134.

[19] L. C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, Berlin-
Heidelberg-New York, 1996.



20 H. ICHIMURA

Humio Ichimura
Faculty of Science, Ibaraki University

Bunkyo 2-1-1, Mito, Ibaraki, 310-8512, Japan

(Received March 7, 2005 )


