
Math. J. Okayama Univ. 48 (2006), 1–7

ON EUCLIDEAN ALGORITHM

Kaoru MOTOSE

Recently, using cyclotomic polynomials, Z. Marciniak and S. K. Sehgal
[1] obtained excellent results about units in integral group rings of cyclic
groups. In this paper, we shall give some improvements and alternative
proofs of their results.

For relatively prime polynomials f(x) and g(x) over a field K, it is easy
to compute polynomials u(x), v(x) ∈ K[x] by Euclidean algorithm such that

f(x)u(x) + g(x)v(x) = 1.

However, over Z[x], situation is different from this. Of course we can
compute u(x), v(x) ∈ Q[x] by Euclidean algorithm for relatively prime poly-
nomials f(x), g(x) ∈ Z[x]. Thus we have

f(x)u0(x) + g(x)v0(x) = a

where u0(x), v0(x) ∈ Z[x] and 0 6= a ∈ Z.
For example, we obtain for cyclotomic polynomials Φ3(x) =

x2 + x + 1 and Φ6(x) = x2 − x + 1,

Φ3(x)(1 − x) + Φ6(x)(x + 1) = 1 − x3 + 1 + x3 = 2

and we can easily show there is no polynomials u(x), v(x) ∈ Z[x] such that

Φ3(x)u(x) + Φ6(x)v(x) = 1.

In fact 1 = Φ6(ω)v(ω) = −2ωv(ω) = −2ω̄v(ω̄) for two roots ω, ω̄ of Φ3(x).
We have a contradiction such that 1 = 4 · v(ω)v(ω̄) and v(ω)v(ω̄) is an
integer.

Thus it is natural to consider the next problem.
For given polynomials f(x), g(x) ∈ Z[x], does there exist polynomials
u(x), v(x) ∈ Z[x] such that

f(x)u(x) + g(x)v(x) = 1 ?

It is easy for f(x) = x and g(x) = xn − 1. But in general, it seems to be
difficult for me because the ring Z[x] is not Euclidean though it is a unique
factorization ring. In this paper, we shall answer to this problem in case
f(x) and g(x) are cyclotomic polynomials.

First, we start from

This paper was financially supported by Fund for the Promotion of International Sci-
entific Research B-2, 2004, Aomori, Japan.

1



2 K. MOTOSE

Lemma 1. If monic polynomials f(x) and g(x) ∈ Z[x] are relatively prime,
then there exist polynomials u(x), v(x) ∈ Z[x] and a positive integer a such
that

f(x)u(x) + g(x)v(x) = a.

Moreover, we have the following facts.
(1) there exist unique polynomials u0(x), v0(x) ∈ Z[x] such that

deg u0(x) < deg g(x), deg v0(x) < deg f(x) and

f(x)u0(x) + g(x)v0(x) = a.

(2) An integer a in (1) is divided by the smallest positive integer b
satisfying

f(x)u(x) + g(x)v(x) = b.

Proof. The first statement is clear from Euclidean algorithm in Q[x].
(1) We set u(x) = g(x)q1(x) + u0(x) and v(x) = f(x)q2(x) + v0(x) where

deg u0(x) < deg g(x) and deg v0(x) < deg f(x). Then we have

s(x) := f(x)g(x)(q1(x) + q2(x)) = a − (f(x)u0(x) + g(x)v0(x)).

If s(x) is not zero, then we have a contradiction by comparing degrees of
both sides in the above equation. Uniqueness is almost clear.

(2) is easy to see using division algorithm about a and b. ¤
We need the following well known results for our purpose about cyclotomic

polynomials (see [2, p. 82]).

Lemma 2. We obtain the next equations
(1) Let p be a prime. In case p | m, Φmp(x) = Φm(xp) and in case

p 6 | m, Φm(x)Φmp(x) = Φm(xp). Moreover, Φs(xt) =
∏

d|t Φsd(x)
for (s, t) = 1.

(2) Φn(1) =

 0 if n = 1,
p if n is a power of the prime p,
1 if n has at least two prime divisors.

Proof. (1) Classifying divisors d of mp by p | d or not, we have the next
equation from the definition of µ.

Φmp(x) =
∏
d|mp

(xd − 1)µ(mp
d

)

=
∏
d|m

(xpd − 1)µ(m
d

) ·
∏
d|m

(xd − 1)µ(p m
d

)

= Φm(xp) or
Φm(xp)
Φm(x)

.

according as p | m or not.
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Thus, we can prove the last equation on induction t. In case t = 1, it is
trivial. Setting t = t1p

e where p is a prime and (t1, p) = 1, we obtain

Φs(xt) = Φsp((xt1)pe−1
)Φs((xt1)pe−1

) = Φspe(xt1)
∏

d|pe−1

Φsd(xt1)

=
∏
d|pe

Φsd(xt1) =
∏
d|t

Φsd(x).

(2) In case n = 1, it is trivial because Φ1(x) = x − 1.
In case n = pr, it is also trivial because

Φpr(x) = Φp(xpr−1
) and Φp(x) = xp−1 + xp−2 + · · · + x + 1.

Clearly, Φn(1) 6= 0 for n > 1 from the definition of cyclotomic polynomials.
Thus if n = spe, where p is prime, s > 1 and (s, p) = 1, then we have the
next equation from (1) and so, using Φs(1) 6= 0, we obtain our assertion.

Φspe(x) = Φsp(xpe−1
) =

Φs(xpe
)

Φs(xpe−1)
.

¤

If m 6= n, then we have Φm(x)u(x) + Φn(x)v(x) = 1 in Q[x] since
Φm(x), Φn(x) are distinct irreducible polynomials in Q[x]. Over Z[x], we
can see the next theorem.

Theorem 1. Assume n > m ≥ 1. Then we have

(1) If m is not a divisor of n, then there exist u(x), v(x) ∈ Z[x] such
that

Φm(x)u(x) + Φn(x)v(x) = 1.

(2) If m is a divisor of n, then we set n = mk and k0 is the product of
all distinct prime divisors of k. There exist u(x), v(x) ∈ Z[x] such
that

Φm(x)u(x) + Φn(x)v(x) = Φk0(1).

Proof. (1) If we set n = mq + r, 0 < r < m, then we have easily

xn − 1 = (xm − 1) · (x
mq − 1

xm − 1
· xr) + xr − 1.

Hence, we can use Euclidean algorithm in Z[x] for the polynomials xn − 1
and xm − 1, and so

(xn − 1)u(x) + (xm − 1)v(x) = xd − 1, for some u(x), v(x) ∈ Z[x]
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where d = (n,m). In fact, there exists integers s and t such that ns+mt = d.
We can see t 6= 0. In case t > 0, we have s < 0 since m > d, and

(xn − 1) · (−xd)
x−ns − 1
(xn − 1)

+ (xm − 1) · xmt − 1
(xm − 1)

= xd − 1.

Similarly, in case t < 0, we have s > 0 and

(xn − 1) · xns − 1
(xn − 1)

+ (xm − 1) · (−xd)
x−mt − 1
(xm − 1)

= xd − 1.

Thus we have
xn − 1
xd − 1

u(x) +
xm − 1
xd − 1

v(x) = 1.

Therefore, we obtain the next equation excluding case m|n.

Φn(x)u(x) + Φm(x)v(x) = 1 for some u(x), v(x) ∈ Z[x].

(2) Since x − 1 divides Φk0(x) − Φk0(1) in Z[x], we have xhm − 1 and so
Φm(x) divides Φk0(x

hm) − Φk0(1) where h = k
k0

. Let n0 be the product of
all distinct prime divisors of n. We set n0 = `k0 and

u(x) =
Φk0(1) − Φk0(x

hm)
Φm(x)

and v(x) =
∏
d|`
d6=`

Φk0d(x
n

n0 )

where we consider as v(x) = 1 in case ` = 1. Then u(x) and v(x) ∈ Z[x].
Noting n

n0
` = k

k0
m = hm and (`, k0) = 1, we have from Lemma 2 (1)

Φm(x)u(x) + Φn(x)v(x) = Φm(x)u(x) + Φn0(x
n

n0 )
∏
d|`
d6=`

Φk0d(x
n

n0 )

= Φk0(1) − Φk0(x
hm) + Φk0((x

n
n0 )`)

= Φk0(1).

¤
Let m be a natural number and let q be a power of a prime p. Then we

can see from Theorem 1 (2) that there exist u(x), v(x) ∈ Z[x] such that

Φm(x)u(x) + Φmq(x)v(x) = p.

However, the next proposition shows that p is the smallest positive integer
satisfying the above equation.

Proposition 1. The ideal Im,n = (Φm(x), Φn(x)) of Z[x] generated by
Φm(x) and Φn(x) (m < n) can be calculated as follows:

Im,n =
{

(p,Φm(x)) if n = mq and q is a power of a prime p,
Z[x] otherwise.



ON EUCLIDEAN ALGORITHM 5

In particular, there exist no s(x), t(x) ∈ Z[x] such that

Φm(x)s(x) + Φmq(x)t(x) = 1

where q > 1 is a power of a prime p.

Proof. Our assertion is trivial from Theorem 1 excluding case n = mq and q
is a power of a prime p. In this case, Im,n contains (p,Φm(x)) from Theorem
1 (2). We have from Lemma 2 (1) that

Φmq(x) = Φm(xq) or Φmq(x)Φm(x
q
p ) = Φm(xq),

according as p | m or not. Therefore, in any case,

Φmq(x) ≡ Φm(x)k mod pZ[x] for some integer k.

Thus we obtain

Im,n ≡ (Φm(x), Φm(x)k) ≡ 0 mod (p,Φm(x)) and so Im,n = (p,Φm(x)).

Assume Im,mq = Z[x], equivalently, that Φm(x)s(x) + Φmq(x)t(x) = 1
where s(x), t(x) ∈ Z[x] and q > 1 is a power of a prime p. Then we have
(p,Φm(x)) = Z[x] from the above, namely, 1 = pu(x)+Φm(x)v(x) for some
u(x), v(x) ∈ Z[x] and so we have

1 ≡ Φm(η)v(η) = 0 mod pZ[η] for η ∈ ∆

where ∆ is the set of all roots of Φm(x). Thus pZ[η] = Z[η] and so we have
a contradiction such that 1

p is an algebraic integer. ¤

Remark 1. Using elementary number theory, we can prove the last part of
Proposition 1 in case p 6 | m (see [3]).

In the remainder of this paper, we consider our problem about xn−1 and
Φm(x).

Theorem 2. Let m0 be the product of all distinct prime divisors of m.
If m0 is not a divisor of n, then there exist u(x), v(x) ∈ Z[x] such that

(xn − 1)u(x) + Φm(x)v(x) =
∏

d|(m0,n)

Φm0
d

(1).

Proof. We may assume that m = m0 from

Φm(x) = Φm0(x
m

m0 ) and (x
m

m0 )n − 1 = (xn − 1) · (xn)
m

m0 − 1
xn − 1

.

We assume d is a divisor of n. If d is not a divisor of m, there exist
ud(x), vd(x) ∈ Z[x] from Theorem 1 (1) such that

Φd(x)ud(x) + Φm(x)vd(x) = 1.
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If d is a divisor of m, there exist ud(x), vd(x) ∈ Z[x] from Theorem 1 (2)
such that

Φd(x)ud(x) + Φm(x)vd(x) = Φm
d
(1).

Thus we have from xn − 1 =
∏

d|n Φd(x),

(xn − 1)u(x) + Φm(x)v(x) =
∏

d|(m,n)

Φm
d
(1).

¤

Theorem 3 (Marciniak and Sehgal [1] ). Let m0 be the product of all distinct
prime divisors of m. If t = m0

(n,m0) > 1 is not a prime, there exist integral
polynomials u(x), v(x) ∈ Z[x] such that

Φm(x)u(x) + (xn − 1)v(x) = 1.

Proof. We may assume m = m0 from the same reason as we assumed m =
m0 in the proof of Theorem 2.

Proof 1. Since t is the order of ζn
m, where ζm is a root of Φm(x), we have

Φt(1) =
∏
k

(1 − ζnk
m ) = (1 − ζn

m) ·
∏
k>1

(1 − ζnk
m )

where k runs over 1 ≤ k < t and (k, t) = 1. Thus the following polynomial
z(x) has a root ζm and is divided by Φm(x).

z(x) = (1 − xn) ·
∏
k>1

(1 − xnk) − Φt(1)

where k runs over 1 < k < t and (k, t) = 1.
Proof 2. If t is not a prime, we have Φm

d
(1) = 1 for all d | (m,n) because

m
d = m

(m,d) is not a prime since t = m
(m,n) is a divisor of m

(m,d) = m
d . ¤

Remark 2. If t is a prime p, then we have from Proof 1 and Lemma 2 (2).

Φm(x)u(x) + (xn − 1)v(x) = Φt(1) = p.

It is easy to see that the product of polynomials with the same equations
as Φn(x) in Theorem 3 also satisfy the same condition. Thus we have a
corollary.

Corollary 1. Let f(x) be a product of some x and some cyclotomic poly-
nomials Φ`(x) such that `0

(`0,n) > 1 is not a prime where `0 is the product of
all distinct prime divisors of `. Then we have f(x)sn(x)+(xn −1)tn(x) = 1
where sn(x), tn(x) ∈ Z[x].
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