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SOME METRIC INVARIANTS OF SPHERES AND
ALEXANDROV SPACES II

Nobuyuki SOCHI

Abstract. A metric invariant ak is defined, and we have that ak(X) ≤
ak(Sn) holds in an Alexandrov space X with curvature ≥ 1([So]). And
the borderline case when a2p−1(X) = a2p−1(S

n) and ak(Sn) are studied.

1. Introduction

In the previous paper([So]) we introduced a metric invariant ak(X) for
a compact metric space X, and studied the explicit value of ak(Sn) for an
n-dimensional round sphere Sn with radius 1. Furthermore, we studied the
behavior of ak(X) for an Alexandrov space X with curvature ≥ 1. In the
present paper we continue to study the above invariant ak and give answers
to some problems that are conjectured in [So]. We begin with recalling the
definition of ak and results obtained in [So]. The distance between x, y ∈ X
will be denoted by dist(x, y).

Definition 1.1. For a positive integer k, we define the metric invariant
ak(X) of X as follows:

(1.1) ak(X) = min
x1,...,xk∈X

max
x∈X

1
k

k∑
i=1

dist(x, xi).

In the previous paper we were concerned with ak(Sn) and got the explicit
value of ak(S1). A k-tuple (x1, · · · , xk) of points xi(i = 1, · · · , k) of S1

located in counterclockwise order is called a configuration, where each xi is
called a vertex of the configuration.

Theorem 1.1. (1) For k = 2p − 1, we have

(1.2) ak(S1) =
2p2 − 2p + 1

(2p − 1)2
π.

ak(S1) is realized if and only if a configuration (x1, · · · , xk) of k points is
equally spaced in S1, and maxx∈S1(1/k)

∑k
i=1 dist(x, xi) is attained exactly

at the antipodal points of xi(1 ≤ i ≤ k).

(2) For k = 2p, we have

(1.3) ak(S1) =
1
2
π.
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ak(S1) is realized if and only if (x1, · · · , x2p) consists of pairs of antipodal
points, and in the case we have (1/k)

∑k
i=1 dist(x, xi) ≡ π/2.

Now in this paper we complete the following theorem for general dimen-
sion n.

Theorem 1.2. (1) For k = 2p − 1, we have

(1.4) ak(Sn) = ak(S1) =
2p2 − 2p + 1

(2p − 1)2
π.

a2p−1(Sn) is realized if and only if {x1, · · · , x2p−1} is located on a great circle
S1 and gives an equally spaced configuration after rearranging the order of
{x1, · · · , x2p−1}, and maxx∈Sn(1/k)

∑k
i=1 dist(x, xi) is attained exactly at

the antipodal points of xi(1 ≤ i ≤ k).
(2) For k = 2p, we have

(1.5) ak(Sn) =
1
2
π.

Moreover, ak(Sn) is realized if and only if the set {x1, · · · , x2p} consists of
pairs of antipodal points, and in the case we have (1/k)

∑k
i=1 dist(x, xi) ≡

π/2.

Theorem 1.2(2) is already proved in section 4 of [So]. Theorem 1.2(1)
for k = 3 is also proved in section 3 of [So]. We give a proof of Theorem
1.2(1) for all k = 2p − 1 in section 2 of this paper. In our proof another
metric invariant k-extent xtk(X) introduced by Grove and Markvorsen plays
an important role. Recall that for an integer k ≥ 2, xtk(X) is defined as
follows:

(1.6) xtk(X) = max
x1,··· ,xk∈X

(
k

2

)−1 ∑
i<j

dist(xi, xj).

Now we give some results of [G-M] on xtk(Sn) which are necessary for our
proof.

Theorem 1.3 (Grove-Markvorsen). For all n ≥ 1 and k ≥ 2 we have

(1.7) xtk(Sn) = xtk(S1) = π/

(
2 −

[
k + 1

2

]−1
)

.

Those points that realize xtk(Sn) all lie on a great circle except for antipodal
pairs.

More specifically, xtk(S1) is given as follows:

(1.8) xt2p(S1) =
p

2p − 1
π,
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(1.9) xt2p−1(S1) =
p

2p − 1
π.

xt2p(S1) is realized if and only if {x1, · · · , x2p} consists of pairs of antipodal
points.

Now we explain the separation condition as follows. A configuration
(x1, · · · , xk) in S1 which dose not contain any pair of antipodal points is
said to satisfy the separation condition if the following is satisfied: For any
xi the line through xi and the origin separates (x1, · · · , xk) \ {xi} into sets
of equal cardinality. Note that k is odd in this case. Then xt2p−1(S1) is
realized if and only if {x1, · · · , x2p−1} consists of pairs of antipodal points
together with a configuration of points satisfying the separation condition.

For k = 2p − 1, ak(Sn) is related to xtk(Sn) by an inequality

(1.10) ak(Sn) ≥ π − 2k−2

(
k

2

)
xtk(Sn) =

2p2 − 2p + 1
(2p − 1)2

π,

as is shown in section 2.
Our proof of Theorem 1.2 depends also on a theorem of K. Kiyohara in

[K] : For an equally spaced configuration (x1, · · · , xn) of a great circle S1

of S2, a function fx1,··· ,xk
(x) =

∑k
i=1 dist(x, xi) on S2 attains its maximum

when and only when x = x̄l(l = 1, · · · , k).
Let X be an Alexandrov space with curvature ≥ 1 and we want to compare

ak(X) with ak(Sn). In the previous paper we got the following theorem by
using the generalized Toponogov comparison theorem([Pe]).

Theorem 1.4. Let X be an n-dimensional Alexandrov space with curvature
≥ 1, then we have

(1.11) ak(X) ≤ ak(Sn).

Especially, we have

(1.12) a2p(X) ≤ a2p(Sn) =
π

2
.

In the case where equality holds in (1.11) for k = 3 we showed that X is
isometric to a double spherical suspension, where the generalized Toponogov
comparison theorem played an important role(see section 5 of [So]). In the
present paper we improve Theorem 1.4 and show the following theorem.

Theorem 1.5. Let X be an n-dimensional Alexandrov space with curvature
≥ 1. Suppose a2p−1(X) = a2p−1(Sn). Then X is isometric to the unit sphere
Sn.
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2. Proof of Theorem1.2(1)

In this section we give a proof of Theorem 1.2(1). First we will show for
k = 2p − 1

(2.1) ak(Sn) ≥ 2p2 − 2p + 1
(2p − 1)2

π.

In the proof we apply a result of Grove-Markvorsen on k-extent xtk(Sn)
of the sphere(see Theorem 1.3). Recall that for k = 2p − 1 the k-extent
xtk(Sn) = 1/

(
k
2

)
maxy1,··· ,yk∈Sn

∑
i<j dist(yi, yj) of the sphere is equal to

p(p− 1)π/
(
2p−1

2

)
= pπ/(2p− 1). Let x1, · · · , xk be points on Sn that realize

ak(Sn), i.e., ak(Sn) = maxx∈Sn 1/k
∑k

i=1 dist(x, xi). We denote by x̄ the
antipodal point of x ∈ Sn. Then for any x̄j(1 ≤ j ≤ k) we have

(2.2) kak(Sn) ≥
k∑

i=1

dist(xi, x̄j).

Adding (2.2) with respect to j we obtain

k2ak(Sn) ≥
k∑

j=1

k∑
i=1

dist(xi, x̄j)

= k2π − 2
∑
i<j

dist(xi, xj)

≥ k2π − 2 max
y1,··· ,yk∈Sn

∑
i<j

dist(yi, yj)

= k2π − 2
(

k

2

)
xtk(Sn) = (2p2 − 2p + 1)π.

(2.3)

Hence we have (2.1). To complete the proof of Theorem 1.2(1) we have to
show the following assertions:

(1) ak(Sn) = (2p2 − 2p + 1)π/(2p − 1)2.
(2) If {x1, · · · , xk} realizes ak(Sn), then {x1, · · · , xk} is located on

a great circle S1 and a configuration obtained by rearranging
{x1, · · · , xk} is equally spaced on S1.

(3) For an equally spaced configuration (x1, · · · , xk), fx1,··· ,xk
(x) =∑k

i=1 dist(x, xi), x ∈ Sn takes the maximum exactly at x = x̄j for
all j.

To show these assertions we need the following theorem.

Theorem 2.1. Let (x1, · · · , xk) be an equally spaced configuration on a great
circle S1 in Sn. The function f(x) =

∑k
i=1 dist(x, xi) takes its maximum at

x ∈ Sn when and only when x = x̄l(1 ≤ l ≤ k = 2p − 1).
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Indeed, making use of Theorem 2.1 we may show (1), (2), and (3) as
follows. First consider a configuration (x1, · · · , xk) as in Theorem 2.1, then
we have maxx∈Sn fx1,··· ,xk

=
∑k

i=1 dist(xi, x̄l) = (2p2 − 2p+1)π/(2p− 1). It
follows that ak(Sn) ≤ (2p2 − 2p + 1)π/(2p− 1)2 and the assertion (1) holds.
Next we show the assertion (2). Suppose {x1, · · · , xk} realizes ak(Sn), i.e.,
maxx∈Sn fx1,··· ,xk

= (2p2 − 2p + 1)π/(2p − 1). Then equality holds in the
above inequalities (2.3), {x1, · · · , xk} also realizes xtk(Sn), i.e., they are
lying on a great circle S1 except for some antipodal pairs by Theorem 1.3.
Note, however, that a2p−1(Sn) cannot be realized if {x1, · · · , xk} contains
an antipodal pair. Indeed, suppose that {x1, · · · , x2m−1}(1 ≤ m < p) is on
S1 and {x2m, · · · , x2p−1} consists of (p−m) antipodal pairs. Then we have

max
x∈Sn

fx1,··· ,x2p−1(x) ≥ max
x∈S1

fx1,··· ,x2p−1(x)

≥ (p − m)π + (2m − 1)a2m−1(S1)

= (p − m)π +
2m2 − 2m + 1

2m − 1
π

=
(2p − 1)m + 1 − p

2m − 1
π

>
2p2 − 2p + 1

2p − 1
π.

It follows that {x1, · · · , xk} is located on a great circle S1. We may also
assume that (x1, · · · , xk) is a configuration in S1. Then fx1,··· ,xk

(x) attains
the maximum kak(S1) = 2p2−2p+1

2p−1 π at x = x̄j ∈ S1 by (2.3). By restricting
fx1,··· ,xk

to S1 we see that (x1, · · · , xk) is equally spaced in S1 by Theorem
1.1. Then assertion (3) also follows from Theorem 2.1.

Now we give some remarks about a proof of Theorem 2.1. It suffices to
consider the case n = 2 to prove Theorem 2.1. By virtue of Theorem 1.1
we need only to show that fx1,··· ,xk

(x) cannot take a maximum at a point
x ∈ S2\S1. For k = 3 we gave a proof of the theorem by showing that
fx1,··· ,xk

(x) admits no critical points in S2\S1(see section 3 of [So]). But
for k = 2p − 1 > 3 the behavior of critical points of fx1,··· ,xk

(x) is rather
complicated and it is not so clear whether the above approach works for
general k = 2p− 1. Then K. Kiyohara gave a simple and ingenious proof of
theorem 2.1 which will be presented in the appendix.

3. proof of theorem 1.5

Let X be an n-dimensional Alexandrov space with curvature ≥ 1. Recall
that we have an inequality
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(3.1) a2p−1(X) ≤ a2p−1(Sn) =
2p2 − 2p + 1

(2p − 1)2
π

by Theorem 1.2 and Theorem 1.4. In this section we show that X is isometric
to the round sphere Sn of radius 1 when equality holds in (3.1). First we
recall the notion of the spherical suspension and the spherical join([B-G-P]).

Definition 3.1. The spherical suspension of a metric space Y is the quotient
space

(3.2) Σ1Y = Y × [0, π]/ ∼,

where the equivalence relation ∼ is given by (x1, a1) ∼ (x2, a2) ⇔ x1 =
x2, 0 < a1 = a2 < π or a1 = a2 = 0 or a1 = a2 = π, and is equipped with
the canonical metric

(3.3) cos dist(x̂1, x̂2) = cos a1 cos a2 + sin a1 sin a2 cos dist(x1, x2),

where we set x̂1 = (x1, a1), x̂2 = (x2, a2).

Definition 3.2. The spherical join of X and Y is defined as

(3.4) X ∗ Y = X × Y × [0, π/2] / ∼,

where (x1, y1, a1) ∼ (x2, y2, a2) ⇐⇒ x1 = x2, y1 = y2, 0 < a1 = a2 < π/2 or
a1 = a2 = 0, x1 = x2 or a1 = a2 = π/2, y1 = y2, and is equipped with the
canonical metric

cos dist((x1, y1, a1), (x2, y2, a2))

= cos a1 cos a2 cos dist(x1, x2) + sin a1 sin a2 cos dist(y1, y2).
(3.5)

Further, we define ΣkY = Σk−1(Σ1Y ) to be the k-times repeated spherical
suspension. Then for an Alexandrov space X with curvature ≥ 1 we have
X = ΣkY for some Alexandrov space Y with curvature ≥ 1 if and only if
Sk−1 is isometrically embedded in X([G-W]). Hence the k-times repeated
spherical suspension ΣkY is isometric to the spherical join Sk−1 ∗ Y .

In the previous paper, in the case of k = 3 we showed that X is isometric
to Σ2Z for some Alexandrov space Z with curvature ≥ 1. First we show
that X is isometric to the spherical suspension Σ1Y in the same manner as
in the case of k = 3 for completeness.

Lemma 3.1. Let X be an n-dimensional Alexandrov space with curvature
≥ 1. Suppose a2p−1(X) = a2p−1(Sn) = 2p2−2p+1

(2p−1)2
π. Then X is isometric to

the spherical suspension Σ1Y , where Y is an (n−1)-dimensional Alexandrov
space with curvature ≥ 1.
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Proof. By the maximal diameter theorem([G-P2]), it suffices to show that
diamX is equal to π. Let x̃1, x̃2, · · · , x̃2p−1 be points on Sn that realize
a2p−1(Sn). We may assume that (x̃1, x̃2, · · · , x̃2p−1) is an equally spaced
configuration in a great circle S1. Take a point p̃ ∈ Sn different from the
antipodals of x̃i(i = 1, 2, · · · , 2p−1). Take a regular point p ∈ X. We denote
by Sp the space of directions of X at p. Then Σ1Sp is isometric to Sn, and
we identify Σ1Sp (resp. Sp) with Sn = Σ1Sp̃ (resp. Sp̃ = Sn−1). Let xi ∈ X
be a point expp c̄vi(dist(p̃, x̃i)) = cvi(dist(p̃, x̃i)), where c̄vi is a minimal
geodesic in Sn emanating from p̃ to x̃i with initial direction vi ∈ Sp̃ = Sp =
Sn−1(i = 1, 2, · · · , 2p − 1) and cvi is a quasigeodesic in X emanating from
p with initial direction vi(see section 5 of [So]). Take a point x0 ∈ X such
that

a2p−1(x1, x2, · · · , x2p−1) : = max
x∈X

1
2p − 1

2p−1∑
i=1

dist(x, xi)

=
1

2p − 1

2p−1∑
i=1

dist(x0, xi).

Let γ0 : [0, dist(p, x0)] −→ X be a minimal geodesic from p to x0, and set
x̃0 = expSn

p̃ (dist(p, x0)γ̇0(0)). Then by the generalized Toponogov compari-
son theorem for 4pxix0 and 4p̃x̃ix̃0([Pe], see also [So]), we have

dist(x0, xi) ≤ dist(x̃0, x̃i) (i = 1, 2, · · · , 2p − 1).

Then we have

a2p−1(X) ≤ a2p−1(x1, x2, · · · , x2p−1) =
1

2p − 1

2p−1∑
i=1

dist(x0, xi)

≤ 1
2p − 1

2p−1∑
i=1

dist(x̃0, x̃i) ≤ a2p−1(x̃1, x̃2, · · · , x̃2p−1)

= a2p−1(Sn) = a2p−1(X).

(3.6)

It follows that

(3.7) a2p−1(X) = a2p−1(Sn) =
1

2p − 1

2p−1∑
i=1

dist(x̃0, x̃i),

and we obtain for any i

(3.8) dist(x0, xi) = dist(x̃0, x̃i) (i = 1, 2, · · · , 2p − 1).

Then from Theorem 1.1 x̃0 is the antipodal point of some x̃i, namely, we have
dist(x̃0, x̃i) = π, and hence dist(x0, xi) = π for some xi(1 ≤ i ≤ 2p− 1). ¤

The following lemma is given in the previous paper([So]).
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Lemma 3.2. Suppose X = Σ1Y , where Y is an (n−1)-dimensional Alexan-
drov space with curvature ≥ 1 and diamY < π and n ≥ 2. Let x1,x2 ∈ X be
the pole points of the spherical suspension X = Σ1Y . Then there is no pair
of points whose distance is π except for x1,x2.

Next we show that X is isometric to Σ2Z if dimX ≥ 2 as in the case of
k = 3. By Lemma 3.2 we have the following lemma.

Lemma 3.3. Let X be an n-dimensional Alexandrov space with curvature
≥ 1 and n ≥ 2. Suppose a2p−1(X) = a2p−1(Sn) = 2p2−2p+1

(2p−1)2
π. Then X is

isometric to Σ2Z, where Z is an (n− 2)-dimensional Alexandrov space with
curvature ≥ 1.

Proof. By Lemma 3.1 we may write X = Σ1Y . Suppose diamY < π. In
the proof of Lemma 3.1 we may take a point p as an arbitrary regular point
of X, and the set of regular points is dense in X. If the base point p ∈ X
is shifted, the points x1, x2, · · · , x2p−1 that realize a2p−1(X) can be moved.
Then there exists another pair of points x0, xi(i = 1, 2, · · · , 2p − 1) whose
distance is equal to π. This contradicts Lemma 3.2. Therefore, we have
diamY = π and X = Σ2Z. ¤

We prepare one more lemma.

Lemma 3.4. Let X be an n-dimensional Alexandrov space with curvature ≥
1. Suppose a2p−1(X) = a2p−1(Sn) = 2p2−2p+1

(2p−1)2
π. If X is isometric to Sk−1 ∗

Y n−k(1 ≤ k ≤ n − 1), where Y n−k is an (n − k)-dimensional Alexandrov
space with curvature ≥ 1, then diamY n−k = π.

Proof. Suppose diamY n−k < π. Take any points (x, y, t1), (x′, y′, t2) ∈
X(x, x′ ∈ Sk−1, y, y′ ∈ Y n−k, 0 ≤ t1, t2 ≤ π/2), and set

l = dist((x, y, t1), (x′, y′, t2)).

Then we will show that l = π holds exactly when t1 = t2 = 0 and dist(x, x′)
= π, namely, (x, y, t1), (x′, y′, t2) are antipodal pair of Sk−1. Indeed, by the
distance formula (3.5) we have

−1 = cos l

= cos t1 cos t2 cos dist(x, x′) + sin t1 sin t2 cos dist(y, y′)

≥ cos(π + t1 − t2) ≥ −1.

(3.9)

Then we have t1 = t2 = 0 because of cos(dist(y, y′)) > −1, and also
dist(x, x′) = π holds.

Now in the proof of Lemma 3.1 we may choose a point p arbitrarily as long
as p is regular. Since radX = a1(X) ≥ a2p−1(X) = (2p2 − 2p + 1)π/(2p −
1)2 > π/2, X is homeomorphic to Sn by the radius sphere theorem, and



SOME METRIC INVARIANTS OF SPHERES AND ALEXANDROV SPACES II 201

the set S of non regular points is a closed set of dimension ≤ n − 2([G-
P1]). Also we may choose identification between Sp and Sp̃ = Sn−1 up to
isometries of Sn−1. If the point p ∈ X is shifted or v1, v2, · · · , v2p−1 are
rotated around p in Sp = Sn−1, the points x1, x2, · · · , x2p−1 that realize
a2p−1(X) can be moved outside of Sk−1. Then there exists another pair of
points x0, xi(i = 1, 2, · · · , 2p − 1) with dist(x0, xi) = π such that they are
not antipodal pair in Sk−1. This contradicts diamY n−k < π. It follows that
diamY n−k = π holds. ¤

Now we show that X is isometric to Sn.

Proof of Theorem 1.5. By Lemma 3.1 and Lemma 3.3 we have X = S0 ∗
Y n−1 = S1 ∗ Y n−2. Next we assume that X = Sk−1 ∗ Y n−k holds for
k(1 ≤ k ≤ n − 1). By Lemma 3.4 we have diamY n−k = π. It follows that
X = Sk∗Y n−k−1. By induction on k we see that X is isometric to Sn−2∗Y 1.
Since radX = rad(Σ1Y

n−1) = radY n−1, we have radY n−1 > π/2(see [G-
P1]). It follows that radY 1 > π/2 and Y 1 is homeomorphic to the circle S1.
By Lemma 3.4 diamY 1 = π and therefore Y 1 is isometric to S1. It follows
that X is isometric to Sn. This completes the proof of Theorem 1.5. ¤
Remark 3.1. If a2p−1(X) is close to a2p−1(Sn) = (2p2−2p+1)π/(2p−1)2 >
π/2, then X is homeomorphic to Sn since radX > π/2.
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