Math. J. Okayama Univ. 47 (2005), 193—202

SOME METRIC INVARIANTS OF SPHERES AND
ALEXANDROV SPACES 11

NoBuyuki SOCHI

ABSTRACT. A metric invariant ay, is defined, and we have that ax(X) <
ar(S™) holds in an Alexandrov space X with curvature > 1([So]). And
the borderline case when asp—1(X) = az,—1(S™) and ax(S™) are studied.

1. INTRODUCTION

In the previous paper([So]) we introduced a metric invariant ay(X) for
a compact metric space X, and studied the explicit value of ax(S™) for an
n-dimensional round sphere S™ with radius 1. Furthermore, we studied the
behavior of ag(X) for an Alexandrov space X with curvature > 1. In the
present paper we continue to study the above invariant a; and give answers
to some problems that are conjectured in [So]. We begin with recalling the
definition of a; and results obtained in [So]. The distance between x,y € X
will be denoted by dist(x,y).

Definition 1.1. For a positive integer k, we define the metric invariant
ar(X) of X as follows:

1 k

1.1 X)= i - dist ).
(1) on(X) = min  max ) dist(rz)
1=
In the previous paper we were concerned with ax(S™) and got the explicit
value of ay(S'). A k-tuple (z1,---,7%) of points x;(i = 1,--- k) of S*
located in counterclockwise order is called a configuration, where each x; is
called a vertex of the configuration.

Theorem 1.1. (1) For k = 2p — 1, we have

2% —2p+ 1
1.2 h_=2 7 -
ar(SY) is realized if and only if a configuration (x1,--- ,x1) of k points is

equally spaced in S*, and max g1 (1/k) Zle dist(x,x;) is attained exactly
at the antipodal points of x;(1 <1i < k).

(2) For k = 2p, we have

(1.3) ar(S) = =



194 N. SOCHI
ay(SY) is realized if and only if (x1, -+ ,x2p) consists of pairs of antipodal
points, and in the case we have (1/k) S| dist(x,z;) = /2.

Now in this paper we complete the following theorem for general dimen-
sion n.

Theorem 1.2. (1) For k =2p — 1, we have

2p° —2p +1
14 S™) = ap(St) = 2~
agp—1(S™) is realized if and only if {x1,--- ,x2p—1} is located on a great circle
S and gives an equally spaced configuration after rearranging the order of
{z1,--- ,x9p—1}, and maxyegn(1/k) Zle dist(xz,x;) is attained exactly at
the antipodal points of x;(1 <i < k).
(2) For k = 2p, we have

1
(1.5) ap(S™) = PE
Moreover, ai(S™) is realized if and only if the set {x1,--- ,x2p} consists of

pairs of antipodal points, and in the case we have (1/k) Ele dist(z,x;) =
/2.

Theorem 1.2(2) is already proved in section 4 of [So|. Theorem 1.2(1)
for kK = 3 is also proved in section 3 of [So|]. We give a proof of Theorem
1.2(1) for all £ = 2p — 1 in section 2 of this paper. In our proof another
metric invariant k-extent xty(X) introduced by Grove and Markvorsen plays
an important role. Recall that for an integer & > 2, xt,(X) is defined as
follows:

-1
(1.6) xtp(X) = max (g) Zdist(xi,a}j).

331"'33€X ¢ ‘
y Utk i<j

Now we give some results of [G-M] on xt(S™) which are necessary for our
proof.

Theorem 1.3 (Grove-Markvorsen). For alln > 1 and k > 2 we have

1
(1.7) 2(S") = aty(S) = 7/ (2 - [k‘?“} ) .

Those points that realize xti,(S™) all lie on a great circle except for antipodal
pairs.

More specifically, zt;(S!) is given as follows:

p
(1.8) wta,(SY) = %1

T,
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p

(19) $t2p,1(51) == 2p_17'('.

wto,(Sh) is realized if and only if {z1,- -+ , 22y} consists of pairs of antipodal
points.

Now we explain the separation condition as follows. A configuration
(x1,--+,x) in S which dose not contain any pair of antipodal points is
said to satisfy the separation condition if the following is satisfied: For any
x; the line through z; and the origin separates (z1,---,x) \ {z;} into sets
of equal cardinality. Note that k is odd in this case. Then zty,_1(S1) is
realized if and only if {xy,--- ,29,—1} consists of pairs of antipodal points
together with a configuration of points satisfying the separation condition.

For k =2p — 1, ax(S™) is related to xt,(S™) by an inequality

2% —2p+1

2p—12 "

(1.10) ap(S™) > 1 — 2k~ <];> xtp(S") =

as is shown in section 2.
Our proof of Theorem 1.2 depends also on a theorem of K. Kiyohara in

[K] : For an equally spaced configuration (z1,---,x,) of a great circle S1
of 2, a function fy, ..., (z) = Zle dist(x,z;) on S? attains its maximum
when and only when z = z;(I =1,--- | k).

Let X be an Alexandrov space with curvature > 1 and we want to compare
ar(X) with ai(S™). In the previous paper we got the following theorem by
using the generalized Toponogov comparison theorem([Pe]).

Theorem 1.4. Let X be an n-dimensional Alexandrov space with curvature
> 1, then we have

(1.11) ar(X) < ag(S™).
Especially, we have

(1.12) agp(X) < agy(S") =

b | 3

In the case where equality holds in (1.11) for £ = 3 we showed that X is
isometric to a double spherical suspension, where the generalized Toponogov
comparison theorem played an important role(see section 5 of [So]). In the
present paper we improve Theorem 1.4 and show the following theorem.

Theorem 1.5. Let X be an n-dimensional Alexandrov space with curvature
> 1. Suppose agp—1(X) = agp—1(S™). Then X is isometric to the unit sphere
S™.



196 N. SOCHI

2. PROOF OF THEOREM1.2(1)

In this section we give a proof of Theorem 1.2(1). First we will show for

k=2p—1
2p° —2p + 1

2.1 SM > =
In the proof we apply a result of Grove-Markvorsen on k-extent xtj(S™)
of the sphere(see Theorem 1.3). Recall that for k¥ = 2p — 1 the k-extent
xtp(S™) = 1/(2) MaXy, ... y,eSn Ei<j dist(y;,y;) of the sphere is equal to
p(p— 1)77/(2p2_1) =pr/(2p—1). Let x1,-- -,z be points on S™ that realize
ap(S™), ie., ap(S") = maxzegn 1/k Zle dist(xz,x;). We denote by = the
antipodal point of x € S”. Then for any z;(1 < j < k) we have

k
(2.2) kap(S™) > dist(x;, 7).
i=1
Adding (2.2) with respect to j we obtain

kK k
ar(S") = > Y dist(w;, z;)

j=1i=1
=k%r —2 Z dist(xi, x;)
(2.3) i<j
> k2r — 2 max Zdzst Yi Yj)

1, 7yk6 Sn

= k% — 2 (g) wtp(S™) = (2p? — 2p + 1)

Hence we have (2.1). To complete the proof of Theorem 1.2(1) we have to
show the following assertions:

(1) ar(S") = (2p* = 2p+ L) /(2p — 1)*.

(2) If {z1, -, 2z} realizes ap(S™), then {xi,---,zx} is located on
a great circle S' and a configuration obtained by rearranging
{x1,--- , 13} is equally spaced on S*.

(3) For an equally spaced configuration (z1,---,2%), [z, 2,(T) =

Zle dist(x,x;),x € S™ takes the maximum exactly at x = z; for
all 5.
To show these assertions we need the following theorem.

Theorem 2.1. Let (x1,--- ,x) be an equally spaced configuration on a great
circle S* in S™. The function f(z) = Zle dist(x,x;) takes its mazimum at
x € S™ when and only when x =7;(1 <1 <k=2p—1).
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Indeed, making use of Theorem 2.1 we may show (1),(2), and (3) as
follows. First consider a configuration (x1,--- ,xy) as in Theorem 2.1, then
we have maxgesn foy . 2y = vy dist(zs, 7)) = (2p° —2p+1)7/(2p—1). Tt
follows that ay(S™) < (2p? —2p +1)m/(2p — 1)? and the assertion (1) holds.
Next we show the assertion (2). Suppose {1, -,z } realizes a;(S™), i.e.,
maxzesn fry o = (2% — 2p + 1)w/(2p — 1). Then equality holds in the
above inequalities (2.3), {z1,---,zx} also realizes xt;(S™), i.e., they are
lying on a great circle S' except for some antipodal pairs by Theorem 1.3.
Note, however, that ag,—1(S™) cannot be realized if {z1,---,x;} contains
an antipodal pair. Indeed, suppose that {z1, -+ ,zom—1}(1 < m < p) is on
St and {zom, -+ ,T2p—1} consists of (p —m) antipodal pairs. Then we have

;}é%{% Sy, T2p—1 (z) > i%%’f Jay T2p—1 ()

> (p—m)m + (2m — 1)agm_1(SY)
2m? — 2m + 1
2m —1
(2p—1)m+1—p7r
2m —1
2p% —2p + 1
2p—1

=(p—m)m+

It follows that {zy,---,2} is located on a great circle S'. We may also
assume that (z1,---,2y) is a configuration in S'. Then f,, .. », (z) attains
the maximum kay(S') = 21722;## at © = z; € S! by (2.3). By restricting
fay 2y, to ST we see that (z1,---, ) is equally spaced in S' by Theorem
1.1. Then assertion (3) also follows from Theorem 2.1.

Now we give some remarks about a proof of Theorem 2.1. It suffices to
consider the case n = 2 to prove Theorem 2.1. By virtue of Theorem 1.1
we need only to show that f;, ... 5, (z) cannot take a maximum at a point
x € S?\S!. For k = 3 we gave a proof of the theorem by showing that
fuy. 2, (z) admits no critical points in S?\S!(see section 3 of [So]). But
for k = 2p — 1 > 3 the behavior of critical points of f;, ... 2, (x) is rather
complicated and it is not so clear whether the above approach works for
general k = 2p — 1. Then K. Kiyohara gave a simple and ingenious proof of

theorem 2.1 which will be presented in the appendix.

3. PROOF OF THEOREM 1.5

Let X be an n-dimensional Alexandrov space with curvature > 1. Recall
that we have an inequality
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2p —2p+ 1
(2p—1)°
by Theorem 1.2 and Theorem 1.4. In this section we show that X is isometric

to the round sphere S™ of radius 1 when equality holds in (3.1). First we
recall the notion of the spherical suspension and the spherical join([B-G-P]).

(3.1) azp-1(X) < agy-1(5") =

Definition 3.1. The spherical suspension of a metric spaceY is the quotient
space

(3.2) %Y =Y x[0,7]/ ~,

where the equivalence relation ~ is given by (xr1,a1) ~ (x2,a2) & 1 =
29,0 <a; =ay <mora; =a3 =0 or ay = as = m, and s equipped with
the canonical metric

(3.3) cos dist(&1, o) = cosaj cos az + sin aj sin ag cos dist(zx1, x2),
where we set &1 = (x1,a1), T2 = (v2,a2).

Definition 3.2. The spherical join of X and Y is defined as

(3.4) X+Y =XxY x[0,7/2]/ ~,

where (x1,y1,a1) ~ (x2,Yy2,a2) <= 1 = x2,y1 = Y2,0 < a3 = ag < 7/2 or
ap =ay =0, x1 =x9 oray = ay = /2, y1 = y2, and is equipped with the
canonical metric

cos dist((x1,y1,a1), (x2, y2,a2))

3.5
(3.5) = cos ay cos ag cos dist(x1, x2) + sinay sin ay cos dist(y1, y2).

Further, we define XY = ¥;_1(31Y) to be the k-times repeated spherical
suspension. Then for an Alexandrov space X with curvature > 1 we have
X = X.Y for some Alexandrov space Y with curvature > 1 if and only if
Sk=1 is isometrically embedded in X ([G-W]). Hence the k-times repeated
spherical suspension XY is isometric to the spherical join S¥~1x Y.

In the previous paper, in the case of kK = 3 we showed that X is isometric
to Y9 Z for some Alexandrov space Z with curvature > 1. First we show
that X is isometric to the spherical suspension »,Y in the same manner as
in the case of k£ = 3 for completeness.

Lemma 3.1. Let X be an n-dimensional Alexandrov space with curvature

> 1. Suppose agp—1(X) = agp—1(S™) = 2’2;;%’1);;177. Then X is isometric to

the spherical suspension ¥1Y, where Y is an (n—1)-dimensional Alexandrov
space with curvature > 1.
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Proof. By the maximal diameter theorem([G-P2]), it suffices to show that
diamX is equal to m. Let Z1,Z2, -+ ,T2p—1 be points on S™ that realize
azp—1(S™). We may assume that (Z1,Z2, -+ ,&2p—1) is an equally spaced
configuration in a great circle S'. Take a point p € S™ different from the
antipodals of z;(i = 1,2,--- ,2p—1). Take a regular point p € X. We denote
by S, the space of directions of X at p. Then X1, is isometric to S™, and
we identify 315, (resp. Sp) with S” = $15; (resp. S; = S"71). Let 2; € X
be a point exp, &, (dist(p, T;)) = cy,(dist(p,T;)), where ¢, is a minimal
geodesic in S™ emanating from p to &; with initial direction v; € S5 = S, =
Snl(i =1,2,---,2p — 1) and ¢,, is a quasigeodesic in X emanating from
p with initial direction v;(see section 5 of [So]). Take a point zyg € X such
that

aop—1(x1, 9, ,Top—1) : = Max g dist(x,x;)
p ( 9 9 ) 5% ) wEsz— z

1 2p—1
= dist ).
2p 1 ; 18 (x();xl)

Let o : [0, dist(p,z9)] — X be a minimal geodesic from p to z¢, and set
To = expgn (dist(p,z0)70(0)). Then by the generalized Toponogov compari-
son theorem for Apz;zo and Apz;zo([Pe], see also [So]), we have

dist(xo, .%'Z) < dist(.f'(), .fl) (Z = 1, 2, s ,2p - 1).

Then we have

2p—1
1 .
azp—1(X) < agp—1(z1, 22, -+, T2p—1) = 51 > dist(wo, ;)
i=1

(3.6) 1 2l
- D dist(io, &) < agpr (@1, Fa, o, Fapa)

= agy-1(S") = azp—1(X).
It follows that
1 2p—1
(3.7) agp—1(X) = agy_1(S™) = T Z; dist(Zo, ),

and we obtain for any ¢
(3.8) dist(xo, z;) = dist(Zo,Z;) (1=1,2,---,2p—1).

Then from Theorem 1.1 Z is the antipodal point of some Z;, namely, we have
dist(Zo,Z;) = m, and hence dist(xg, z;) = 7 for some x;(1 <i<2p—1). O

The following lemma is given in the previous paper([So]).
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Lemma 3.2. Suppose X = 1Y, where Y is an (n—1)-dimensional Alexan-
drov space with curvature > 1 and diamY < m andn > 2. Let x1,x9 € X be
the pole points of the spherical suspension X = X1Y . Then there is no pair
of points whose distance is m except for x1,x2.

Next we show that X is isometric to Y97 if dimX > 2 as in the case of
k = 3. By Lemma 3.2 we have the following lemma.

Lemma 3.3. Let X be an n-dimensional Alexandrov space with curvature

2_ .
> 1 and n > 2. Suppose agp—1(X) = agp—1(S") = %W. Then X is
isometric to YXoZ, where Z is an (n — 2)-dimensional Alezandrov space with

curvature > 1.

Proof. By Lemma 3.1 we may write X = ;Y. Suppose diamY < 7. In
the proof of Lemma 3.1 we may take a point p as an arbitrary regular point
of X, and the set of regular points is dense in X. If the base point p € X
is shifted, the points a1, 22, -+ ,x9,—1 that realize as,—1(X) can be moved.
Then there exists another pair of points zg,z;(i = 1,2,---,2p — 1) whose
distance is equal to w. This contradicts Lemma 3.2. Therefore, we have
diamY = m and X = 3o 7. O

We prepare one more lemma.

Lemma 3.4. Let X be an n-dimensional Alezandrov space with curvature >
2

1. Suppose agp—1(X) = agp—1(S") = %ﬂ'. If X is isometric to SF~1 x

Y k(1 < k <n—1), where Y" % is an (n — k)-dimensional Alexandrov

space with curvature > 1, then diamY™ % = 1.
Proof. Suppose diamY"™ % < 7. Take any points (z,y,t1), (2, t2) €
X(z,2' € S¥ 1y, € Yk 0 <ty,ty < m/2), and set
| = dist((x,y,t1), (2,9, t2)).
Then we will show that [ = 7 holds exactly when t; = to = 0 and dist(z, z')
=, namely, (x,y,t1), (2',y,t2) are antipodal pair of S¥~1. Indeed, by the
distance formula (3.5) we have
—1 =cosl
(3.9) = costy costy cos dist(x, z') + sinty sin to cos dist(y,y')
> cos(m +t; —t2) > —1.

Then we have t; = to = 0 because of cos(dist(y,y’)) > —1, and also
dist(x,2") = 7 holds.

Now in the proof of Lemma 3.1 we may choose a point p arbitrarily as long
as p is regular. Since radX = a1(X) > agp-1(X) = (2p* —2p + )7/(2p —
1)2 > 7/2, X is homeomorphic to S™ by the radius sphere theorem, and
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the set S of non regular points is a closed set of dimension < n — 2([G-
P1]). Also we may choose identification between S, and S; = S"~! up to
isometries of S™~1. If the point p € X is shifted or vy, v, -- ,Vp—1 are
rotated around p in S, = S"~1 the points z1, 9, - , Zop—1 that realize
azp—1(X) can be moved outside of S¥~1. Then there exists another pair of
points g, z;(i = 1,2,---,2p — 1) with dist(zg,z;) = 7 such that they are
not antipodal pair in S¥~1. This contradicts diamY ™% < 7. It follows that
diamY "™ * = 7 holds. O

Now we show that X is isometric to S™.

Proof of Theorem 1.5. By Lemma 3.1 and Lemma 3.3 we have X = S° %
Yyl = 81« Y72 Next we assume that X = S*¥~1 % Y™ holds for
k(1 <k <n-—1). By Lemma 3.4 we have diamY™ % = 7. Tt follows that
X = SkxY" k=1 By induction on k we see that X is isometric to " 2xYL,
Since radX = rad(X1Y"!) = radY"™ !, we have radY™ ! > 7/2(see [G-
P1]). Tt follows that radY! > 7/2 and Y'! is homeomorphic to the circle S*.
By Lemma 3.4 diamY! = 7 and therefore Y! is isometric to S'. It follows
that X is isometric to S™. This completes the proof of Theorem 1.5. (|

Remark 3.1. If agy—1(X) is close to agy—1(S™) = (2p*—2p+1)7/(2p—1)% >
/2, then X is homeomorphic to S™ since radX > /2.
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