APPENDIX TO "SOME METRIC INVARIANTS OF SPHERES AND ALEXANDROV SPACES II"

KAZUYOSHI KIYOHARA

Let S^2 be the unit sphere of $\mathbb{R}^3 = \{(u_1, u_2, u_3)\}$. Let x_1, \dots, x_{2p-1} be the points on $S^1 = \{u_3 = 0\} \cap S^2$ which are equally spaced:

$$x_l = \left(\cos\frac{2(l-1)\pi}{2p-1}, \sin\frac{2(l-1)\pi}{2p-1}, 0\right), \quad 1 \le l \le 2p-1.$$

Define the function f(x) on S^2 by

$$f(x) = \sum_{i=1}^{2p-1} dist(x_i, x), \quad x \in S^2$$

The aim of this appendix is to give a proof to the following theorem, which is Theorem 2.1 in Sochi's paper [So].

Theorem 1. The function f(x) takes its maximum at $x \in S^2$ when and only when $x = \bar{x}_l$ $(1 \le l \le 2p - 1)$.

Here, for any point $x \in S^2$, we denote by \bar{x} its antipodal point. For the proof, we use the following isometries on S^2 :

 ϕ_1 : the rotation with angle $\frac{2\pi}{2p-1}$ around the u_3 -axis.

 ϕ_2 : the rotation with angle π around the u_3 -axis.

 σ : the reflection with respect to the plane $u_2 = 0$.

 τ : the reflection with respect to the plane $u_3 = 0$.

Lemma 1.

(1) $f(\phi_1(x)) = f(x).$ (2) $f(\phi_2(x)) = (2p-1)\pi - f(x).$ (3) $f(\sigma(x)) = f(x), \quad f(\tau(x)) = f(x).$

Proof. Since ϕ_1, σ , and τ preserves the set $\{x_l\}$, (1) and (3) follows. (2) follows from the facts that $\phi_2(x) = \tau(\bar{x})$ and $dist(y, x) + dist(y, \bar{x}) = \pi$ for any $y \in S^2$.

Let Ω be the geodesic triangle whose vertices are x_1, \bar{x}_{p+1} , and N = (0,0,1), which is a fundamental domain of the group generated by ϕ_1, σ , and τ . Let ψ be the rotation around the u_3 -axis with angle $\pi/(2p-1)$. Then clearly $\psi^2 = \phi_1$. Moreover, we have the following

Lemma 2.
$$\psi = \phi_2 \circ \phi_1^p$$
.
Proof. Since $\frac{2p\pi}{2p-1} + \pi \equiv \frac{\pi}{2p-1} \pmod{2\pi}$, the lemma follows. \Box

K. KIYOHARA

The following corollary is an immediate consequence of the lemmas above.

Corollary 1. $f(\psi \circ \sigma(x)) = (2p-1)\pi - f(x)$ for any $x \in S^2$.

Now, suppose that the function f(x) takes its maximum at $x = z \in \Omega$. We shall prove that $z = \bar{x}_{p+1}$. First, we have

(0.1)
$$f(z) = \sum_{i=1}^{2p-1} dist(x_i, z) \ge f(\bar{x}_{p+1}) = \frac{2p^2 - 2p + 1}{2p - 1}\pi$$

by the definition of z. Put $z' = \psi(\sigma(\bar{z}))$. Note that $\psi \circ \sigma$ is the reflection with respect to the great circle passing through N and the midpoint y_1 of x_1 and \bar{x}_{p+1} . Since the distance between z and this great circle is equal to or less than $\pi/2(2p-1)$, so is the distance between \bar{z} and this great circle. Therefore we have

(0.2)
$$dist(z',\bar{z}) \le \frac{\pi}{2p-1}$$

and

(0.3)
$$dist(z',z) = \pi - dist(z',\bar{z}) \ge \frac{2p-2}{2p-1}\pi,$$

and equality holds if and only if $z = x_1$ or \bar{x}_{p+1} . By Corollary 1 we also have

(0.4)
$$f(z') = (2p-1)\pi - f(\bar{z}) = f(z).$$

Now, let us consider the sum of distances of two points in the 2p+1 points $x_1, \dots, x_{2p-1}, z, z'$:

$$\sum_{i < j} dist(x_i, x_j) + \sum_i dist(x_i, z) + \sum_i dist(x_i, z') + dist(z, z')$$

= $p(p-1)\pi + f(z) + f(z) + dist(z, z')$
 $\ge p(p-1)\pi + \frac{4p^2 - 4p + 2}{2p - 1}\pi + \frac{2p - 2}{2p - 1}\pi$ (by (1) and (3))
= $p(p+1)\pi$.

Since the value in the right-hand side in the above inequality is equal to $\binom{2p+1}{2}xt_{2p+1}(S^2)$, where $xt_{2p+1}(S^2)$ is the invariant of Grove-Markvosen (see Theorem 1.3 of [So]). Therefore equality holds in the above inequality, and we have $z = x_1$ or \bar{x}_{p+1} . Since

$$f(x_1) = \frac{2p^2 - 2p}{2p - 1}\pi < f(\bar{x}_{p+1}),$$

We consequently obtain $z = \bar{x}_{p+1}$.

190

APPENDIX

References

[So] N. Sochi. Some metric invariants of spheres and Alexandrov spaces II, to appear in Math. J. Okayama Univ. 47.

> Kazuyoshi Kiyohara Department of Mathematics Faculty of Science Okayama University Okayama, 700-8530, Japan

 $e\text{-}mail\ address:$ kiyohara@math.okayama-u.ac.jp

(Received September 29, 2004)