A LOWER BOUND FOR THE LS CATEGORY OF A FORMAL ELLIPTIC SPACE

Dedicated to the memory of Professor Akie TAMAMURA

YASUSUKE KOTANI AND TOSHIHIRO YAMAGUCHI

ABSTRACT. We give a lower bound for the LS category of a formal elliptic space in terms of its rational cohomology.

1. INTRODUCTION

The Lusternik-Schnirelmann (LS) category, cat X, for a space X is the least integer m such that X can be covered by m + 1 open sets, each contractible in X. The rational LS category, $\operatorname{cat}_0(X)$, is the least integer n such that $X \simeq_0 Y$ and $\operatorname{cat} Y = n$. A simply connected CW complex X is called (rationally) elliptic if dim $H^*(X; \mathbb{Q}) < \infty$ and dim $\pi_*(X) \otimes \mathbb{Q} < \infty$. An elliptic space X has a positive Euler characteristic, i.e., $\sum_i (-1)^i \dim H^i(X; \mathbb{Q}) >$ 0, if and only if it satisfies $\chi_{\pi}(X) = \sum_i (-1)^i \dim \pi_i(X) \otimes \mathbb{Q} = 0$ [6]. Then it is called often an "F₀-space". For example, a homogeneous space G/H, where G is a compact, connected Lie group and H is a closed subgroup of maximal rank, is an F₀-space. The rational cup length of a space Z, $\operatorname{cup}_0(Z)$, is the greatest integer n such that the n-product $H^+(Z; \mathbb{Q}) \cdots H^+(Z; \mathbb{Q}) \neq 0$. Also the rational Toomer invariant of Z, $e_0(Z)$, is given by using the Sullivan minimal model [4] $\mathcal{M}(Z) = (\wedge V, d)$ as $\sup\{n \mid \text{there is an element } \alpha \in \wedge^{\geq n}V$ such that $[\alpha] \neq 0$ in $H^*(Z; \mathbb{Q})\}$. We remark that

(*)
$$\operatorname{cup}_0(Y) \le e_0(Y) = \operatorname{cat}_0(Y) \le \operatorname{cat} Y$$

for an elliptic space Y (see [3]).

There is a problem [9]: If Y is elliptic, then dim $H^*(Y; \mathbb{Q}) \leq 2^{\operatorname{cat} Y}$?. It is true if dim $\pi_{\operatorname{even}}(Y) \otimes \mathbb{Q} \leq 1$ [9].

Lemma. For an F_0 -space X, dim $H^*(X; \mathbb{Q}) \leq 2^{\operatorname{cup}_0(X)}$.

Especially, if X has the homotopy type of the r-product of even dimensional spheres, then dim $H^*(X; \mathbb{Q}) = 2^r = 2^{\operatorname{cup}_0 X} = 2^{\operatorname{cat} X}$.

If an elliptic space Y is formal [4, p.156], roughly speaking, if the Sullivan minimal model [4] is a formal consequence of its rational cohomology, it has the rational homotopy type of the total space of a fibration $X \to E \to S$ in which X is an F_0 -space and S is the product of odd dimensional spheres or the one point space (see [2]). Then we have

Mathematics Subject Classification. 55P62, 55M30.

Key words and phrases. LS category, rationally elliptic space, F_0 -space, formal.

Theorem. If an elliptic space Y is formal, then dim $H^*(Y; \mathbb{Q}) \leq 2^{\operatorname{cup}_0(Y)}$.

From the above remark (*), we deduce a partial answer for our problem.

Corollary. If an elliptic space Y is formal, then dim $H^*(Y; \mathbb{Q}) \leq 2^{\operatorname{cat} Y}$.

In the next section, we give the proofs. In the third section, we compare our results with the *toral rank conjecture* [4, p.516] of Halperin for certain spaces.

The authors thank our referee for his suitable advices.

2. Proofs

Let X be an F_0 -space. Then there is an isomorphism as algebras

$$H^*(X;\mathbb{Q}) \cong \mathbb{Q}[x_1,\ldots,x_p]/(f_1,\ldots,f_p)$$

and there is an equation

$$\dim H^*(X;\mathbb{Q}) = |f_1| \cdots |f_p| / |x_1| \cdots |x_p|$$

where $\{|x_i|\}_i$ are all even and f_1, \ldots, f_p is a regular sequence [6]. Here |*| is the degree of * as an element in a graded algebra and f_i are homogeneous polynomials with no linear terms.

Proof of Lemma. Suppose that $|x_1| \leq \cdots \leq |x_p|$. Let Φ_i denote the set of all monomials occurring in f_i , i.e., $f_i = \sum_j c_{ij}\sigma_{ij}$ for some $c_{ij} \neq 0 \in \mathbb{Q}$ and $\sigma_{ij} \in \Phi_i$. Since dim $\mathbb{Q}[x_1, \ldots, x_p]/(f_1, \ldots, f_p) < \infty$, sets Φ_1, \ldots, Φ_p must satisfy the "polynomial condition" P.C. [5, p.119] due to Friedlander and Halperin: for each s and for each set of s variables x_{i_1}, \ldots, x_{i_s} , there are at least s sets $\Phi_{j_1}, \ldots, \Phi_{j_s}$ containing a monomial in $\mathbb{Q}[x_{i_1}, \ldots, x_{i_s}]$ [5, Theorem 3]. By changing the indexes of Φ_i 's, we can regard Φ_i as an element of $\mathbb{Q}[x_1, \ldots, x_i]$ for any i. Thus we may assume that each f_i contains a term of the form $x_1^{k_{i_1}} \cdots x_i^{k_{i_i}}$ where k_{i_1}, \ldots, k_{i_i} are non-negative integers with $k_{i_1} + \cdots + k_{i_i} \geq 2$. Then, for each $1 \leq i \leq p$, we have

$$|f_i|/|x_i| = (k_{i1}|x_1| + \dots + k_{ii}|x_i|)/|x_i|$$

$$\leq k_{i1} + \dots + k_{ii}$$

$$\leq 2^{k_{i1} + \dots + k_{ii} - 1}$$

$$< 2^{\deg f_i - 1}.$$

where deg f_i is the degree of f_i as a polynomial. Thus

$$\dim H^*(X; \mathbb{Q}) = |f_1| \cdots |f_p| / |x_1| \cdots |x_p| \le 2^{\deg f_1 + \cdots + \deg f_p - p}.$$

Since the Jacobian $\det(\partial f_i/\partial x_j)$ is the fundamental class of the Poincaré duality algebra [8, Proposition 3], we have $\deg f_1 + \cdots + \deg f_p - p \leq \sup_0(X)$.

142

Recall the following Lemma in [9] for the proof of Theorem.

Lemma 2.1 ([9, Lemma 2.1]). Let *E* be the total space of the rational fibration $F \to E \to S^{2n+1}$ with an elliptic space *F* satisfying dim $H^*(F;Q) \leq 2^{e_0(F)}$. Then dim $H^*(E;Q) \leq 2^{e_0(E)}$.

Proof of Theorem. Since a formal elliptic space Y is hyperformal, there is an isomorphism as algebras

$$H^*(Y;\mathbb{Q}) \cong \mathbb{Q}[x_1,\ldots,x_p] \otimes \wedge (y_1,\ldots,y_q)/(h_1,\ldots,h_p) \qquad (p,q \ge 0),$$

where the elements h_i (i = 1, ..., p) are written as $h_i = f_i + g_i$ with a regular sequence $f_1, ..., f_p$ in $\mathbb{Q}[x_1, ..., x_p]$ and elements g_i in the ideal generated by $y_1, ..., y_q$ [2, p.576–577]. We regard the algebra $H^*(Y; \mathbb{Q})$ as the exterior algebra $\wedge (y_1, ..., y_q)$ if p = 0. Thus Y has the rational homotopy type of the total space of a fibration

$$X \to E_q \to S^{|y_1|} \times \cdots \times S^{|y_q|},$$

where X is the F_0 -space with $H^*(X; \mathbb{Q}) \cong \mathbb{Q}[x_1, \ldots, x_p]/(f_1, \ldots, f_p)$ and $S^{|y_i|}$ is the $|y_i|$ -dimensional sphere. If q > 0, by using Lemma 2.1 with [4, p.388, Example 4] inductively for fibrations

$$X \to E_1 \to S^{|y_1|}$$

$$\vdots$$

$$E_i \to E_{i+1} \to S^{|y_{i+1}|}$$

$$\vdots$$

$$E_{q-1} \to E_q \to S^{|y_q|},$$

we have dim $H^*(E_i; \mathbb{Q}) \leq 2^{\operatorname{cup}_0(E_i)}$ for $i = 1, \ldots, q$. Here each E_i is an elliptic space with

$$H^*(E_i; \mathbb{Q}) \cong \mathbb{Q}[x_1, \dots, x_p] \otimes \wedge (y_1, \dots, y_i) / (\overline{h}_1, \dots, \overline{h}_p),$$

where \overline{h}_{j} is the obvious projection of h_{j} .

3. TORAL RANK VS LS CATEGORY

Let X be a simply connected finite cell complex. Recall that the toral rank of a space X, $\operatorname{rk}(X)$, is the largest integer n such that an n-torus can act continuously on X with all its isotropy subgroups finite. In [7], S. Halperin conjectured that $2^{\operatorname{rk}(X)} \leq \dim H^*(X; \mathbb{Q})$, which gives an upper bound for toral rank. We compare the two bounds around formal elliptic spaces in the following table. Refer [4, Part II and Section 32] for the Sullivan minimal model theory.

X: elliptic		$2^{\operatorname{rk}(X)} \le \dim H^*(X;\mathbb{Q})$	$\dim H^*(X;\mathbb{Q}) \le 2^{\operatorname{cat} X}$
$\pi_{\operatorname{even}}(X)\otimes\mathbb{Q}=0$? (a)	yes $([9])$
X: formal	$\chi_{\pi}(X) = 0$	yes (since $rk(X) = 0$)	yes (Lemma)
	$\chi_{\pi}(X) < 0$	yes (b)	yes (Corollary)
X: pure		yes $([7, Proposition 1.5])$? (c)

Here X is called pure [4, p.435] if the differential d satisfies $dV^{\text{even}} = 0$ and $dV^{\text{odd}} \subset \wedge V^{\text{even}}$ for the Sullivan minimal model $\mathcal{M}(X) = (\wedge V, d)$ of X, where $V = \bigoplus_{i>1} V^i$ with $\dim V^i = \dim \pi_i(X) \otimes \mathbb{Q}$. For example, a homogeneous space is pure. Note a pure space with $\dim V^{\text{even}} = \dim V^{\text{odd}}$ is an F_0 -space.

(a) is "yes" if X is a space of two-stage Sullivan minimal model and coformal, i.e., V decomposes as $V \cong U \oplus W$ with dU = 0, $dW \subset \wedge U$ and d is quadratic, respectively [1, Proposition 3.1].

(b) is obtained from $\operatorname{rk}(X) \leq -\chi_{\pi}(X) = -(\dim V^{\operatorname{even}} - \dim V^{\operatorname{odd}}) = q$ [7, Theorem 1.1] and $\dim H^*(X;\mathbb{Q}) \geq 2^q$ when $H^*(X;\mathbb{Q})$ is given by $\mathbb{Q}[x_1,\ldots,x_p] \otimes \wedge (y_1,\ldots,y_q)/(h_1,\ldots,h_p)$, where $\mathcal{M}(X) = (\wedge (x_1,\ldots,x_p,y_1,\ldots,y_q,v_1,\ldots,v_p), d)$ with $dx_i = dy_i = 0, \ dv_i = h_i$.

(c) is "yes" if dim $V^{\text{even}} = 1$, because then there is an isomorphism $H^*(X; \mathbb{Q}) \cong \mathbb{Q}[x]/(x^n) \otimes \wedge (y_1, \ldots, y_q).$

References

- C. ALLDAY AND V. PUPPE, Bounds on the torus rank, Lecture Notes in Math. 1217, 1–10, Springer-Verlag, 1986.
- [2] Y. FÉLIX AND S. HALPERIN, Formal spaces with finite-dimensional rational homotopy, Trans. Amer. Math. Soc. 270 (1982), 575–588.
- [3] Y. FÉLIX, S. HALPERIN AND J.-M. LEMAIRE, The rational LS category of products and of Poincaré duality complexes, Topology 37 (1998), 749-756.
- [4] Y. FÉLIX, S. HALPERIN AND J.-C. THOMAS, *Rational homotopy theory*, Graduate Texts in Mathematics 205, Springer-Verlag, 2001.
- [5] J. B. FRIEDLANDER AND S. HALPERIN, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math. 53 (1979), 117–133.
- [6] S. HALPERIN, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199.
- [7] S. HALPERIN, Rational homotopy and torus actions, London Math. Soc. Lecture Note Series 93, 293–306, Cambridge Univ. Press, 1985.
- [8] L. SMITH, A note on the realization of graded complete intersection algebras by the cohomology of a space, Quart. J. Math. Oxford Ser. (2) 33 (1982), 379–384.
- [9] T. YAMAGUCHI, On a lower bound for the L-S category of a rationally elliptic space, to appear in Bull. Belg. Math. Soc. Simon Stevin 12 (2005).

A LOWER BOUND FOR THE LS CATEGORY OF A FORMAL ELLIPTIC SPACE $\!145$

YASUSUKE KOTANI FACULTY OF SCIENCE KOCHI UNIVERSITY KOCHI 780-8520, JAPAN *e-mail address*: kotani@math.kochi-u.ac.jp

Toshihiro Yamaguchi Faculty of Education Kochi University Kochi 780-8520, Japan *e-mail address*: tyamag@cc.kochi-u.ac.jp

> (Received September 28, 2004) (Revised November 28, 2004)