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CONNECTIVE COVERINGS OF A FEW CELL
COMPLEXES

Kohhei YAMAGUCHI

Abstract. We shall determine the 2-connective coverings of a few cell
complexes of the form S2 ∪f en for n ≥ 4 and 0 6= f ∈ πn−1(S

2).

1. Introduction.

The principal motivation of this paper comes from the work due to J.
Wu [7], who showed that the 2-connective covering of Lm = S2 ∪mη2 e4 is
homotopy equivalent to P4(m)∨S5, where η2 ∈ π3(S2) is the Hopf map map
and Pk+1(m) denotes the Moore space of type (k, Z/m) given by Pk+1(m) =
Sk ∪mιk ek+1. We would like to generalize his result for all 2-cell complexes
X of the form X = S2 ∪f en (n ≥ 4, 0 6= f ∈ πn−1(S2)). Since the induced
homomorphism η2∗ : πk(S3)

∼=→ πk(S2) is an isomorphism for any k ≥ 2,
there is a unique element g ∈ πn−1(S3) such that η2 ◦ g = f . Then the main
purpose of this note is to show the following result.

Theorem 1.1. Let n ≥ 4 be an integer and let X be a 2-cell complex of the
form X = S2∪f en (0 6= f ∈ πn−1(S2)). Then if X̃ denotes the 2-connective
covering of X, there is a homotopy equivalence

(1.1) X̃ ' S3 ∪g en ∨ Sn+1,

where the map g ∈ πn−1(S3) satisfies the condition η2 ◦ g = f .

Corollary 1.2. Under the same assumptions as Theorem 1.1, we have:
(1) If X = S2 ∪mη2 e4, X̃ ' P4(m) ∨ S5.

(2) If X = S2 ∪η2
2

e5, X̃ ' S3 ∪η3 e5 ∨ S6.

(3) If X = S2 ∪η3
2

e6, X̃ ' S3 ∪η2
3

e6 ∨ S7.

(4) If X = S2 ∪η2◦ω e7, X̃ ' S3 ∪ω e7 ∨ S8, where ω ∈ π6(S3) ∼= Z/12
denotes Blackers-Massey element.

Remark. (1) Let q : S2∪f en → Sn be the pinch map and Ff be its homotopy
fiber. It is known that the (n + 2)-skeleton of Ff is homotopy equivalent
to S2 ∨ Sn+1 ([2]). This fact may be closely related to the statement of
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Theorem 1.1 although we cannot explain it clearly. It is also known that
[f1, f2] = 0 for any f1 ∈ πk(S2), f2 ∈ πl(S2) if (k, l) 6= (2, 2) ([3]), and this
fact is a crucial point for our proof of Theorem 1.1.

(2) This result will be used for studying the problem of homotopy type
classifications of m-twisted complex projective spaces in [5]. In fact, if we
use this result, we can extend the dimension that James excision isomor-
phism holds (cf. [4]) and it may be useful for computing higher homotopy
groupsπ∗(S2 ∪f en) without using Gray’s method [2].

2. The case n ≥ 5.

Let n ≥ 4 be an integer and consider the space X = S2 ∪f en (0 6= f ∈
πn−1(S2)). Let ιf ∈ [X, CP∞] ∼= H2(X, Z) ∼= Z be the map which represents
the generator and let X̃ be the homotopy fiber of the map ιf . It is easy to
see that X̃ is a 2-connective covering of X and there is a fibration sequence

(2.1) S1 → X̃
ϕ→ X.

First, we treat the case n ≥ 5. (The case n = 4 will be considered in the
next section.) If we consider the Serre spectral sequence associated to (2.1),
we have

Hk(X̃, Z) ∼=

{
Z if k = 0, 3, n, n + 1
0 otherwise

and we obtain a homotopy equivalence

(2.2) X̃ ' S3 ∪g en ∪θ en+1 = K ∪θ en+1 (g ∈ πn−1(S3), θ ∈ πn(K)),

where we write K = S3 ∪g en. In this case, without loss of generalities, we
may identify X̃ = S3 ∪g en ∪θ en+1 = K ∪θ en+1 and we may also suppose
that ϕ is a cellular map. Then because ϕ(K) ⊂ X, there is a commutative
diagram

K
j−−−−→ X̃

‖ ϕ

y
K

ϕ1−−−−→ X

where j : K = S3 ∪g en → X̃ denotes the inclusion. Furthermore, since the
3-skeleton of X is S2, ϕ(S3) ⊂ S2. Hence, the map ϕ1 also defines the map
ϕ : (K,S3) → (X,S2).

Lemma 2.1. ϕ1∗ : πn(K) → πn(X) is a surjective homomorphism.
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Proof. Since n ≥ 5, (X̃, S3) and (X,S2) are at least 4-connected. Hence, if
we consider the commutative diagram

π3(S3)
∼=−−−−→ π3(X̃)

(ϕ|S3)∗

y ϕ∗

y∼=

π3(S2)
∼=−−−−→ π3(X)

we have that (ϕ|S3)∗ : π3(S3)
∼=→ π3(S2) is an isomorphism. Hence, without

loss of generalities, we may assume that

(2.3) ϕ|S3 = η2 (up to homotopy equivalence).

Consider the commutative diagram

πn(K)
j∗−−−−→ πn(X̃) −−−−→ 0

‖ ϕ∗

y∼=

πn(K)
ϕ1∗−−−−→ πn(X)

where the upper horizontal sequence is exact. Since j∗ is surjective, ϕ1∗ :
πn(K) → πn(X) is also surjective. ¤

Lemma 2.2. The attaching map g satisfies the condition η2 ◦ g = f .

Proof. Consider the commutative diagram

πn(K) −−−−→ πn(K,S3) −−−−→ πn−1(S3) −−−−→ πn−1(K) −−−−→ 0

ϕ1∗

y ϕ∗

y η2∗

y∼= ϕ1
′
∗

y∼=

πn(X) −−−−→ πn(X,S2) −−−−→ πn−1(S2) −−−−→ πn−1(X) −−−−→ 0

where horizontal sequences are exact.
By the dimensional reason, ϕ1

′
∗ is bijective. Then because ϕ1∗ is surjec-

tive, the Five Lemma indicates that ϕ∗ : πn(K,S3) → πn(X,S2) is surjecive.
However, because πn(K,S3) ∼= Z ∼= πn(X,S2), in fact,

(2.4) ϕ∗ : πn(K,S3)
∼=→ πn(X,S2) is bijective.

Let g ∈ πn(K,S3) ∼= Z (resp. f ∈ πn(X,S2)) denote the characteristic maps
of the top cells en of K (resp. of X), and consider the commutative diagram

(2.5)

Z · g = πn(K,S3)
∂′

n−−−−→ πn−1(S3)

ϕ∗

y∼= η2∗

y∼=

Z · f = πn(X,S2) ∂n−−−−→ πn−1(S2)
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Since ϕ∗ is bijective, ϕ∗(g) = ±f . Hence,

η2 ◦ g = η2∗(g) = η2∗ ◦ ∂′
n(g) = ∂n ◦ ϕ∗((g) = ∂n(±f) = ±f.

Because there is a homotopy equivalence S3 ∪g en ' S3 ∪−g en, we may
assume η2 ◦ g = f and this completes the proof. ¤

Since 0 6= f ∈ πn−1(S2) and n ≥ 5, the order of f is finite. Let m ≥ 2 be
the order of the map f ∈ πn−1(S2). Since η2 ◦ g = f , the order of g is also
m. If we consider the homotopy exact sequences of the pairs (K,S3) and
(X,S2), we have isomorphisms

(2.6) Ker ∂′
n = 〈m · g〉 ∼= Z, Ker ∂n = 〈m · f〉 ∼= Z,

where ∂′
n : πn(K,S3) → πn−1(S3) and ∂n : πn(X,S2) → πn−1(S2) denote

the corresponding boundary operators.

Lemma 2.3. ϕ1∗ : πn(K)
∼=→ πn(X) is an isomorphism.

Proof. Since ϕ1∗ is surjective (by Lemma 2.1), it suffices to show that there
is an isomorphism πn(K) ∼= πn(X) as abelian groups. If we consider the

homotopy exact sequence πn(S3)
i′∗→ πn(K) → Ker ∂′

n → 0, we have an
isomorphism πn(K) ∼= Z ⊕ i′∗(πn(S3)), where i′ : S3 → K denotes the
inclusion. Similarly, if we denote by i : S2 → X the inclusion, we have an
isomorphism πn(X) ∼= Z ⊕ i∗(πn(S2)). Hence, it is sufficient to show that
there is an isomorphism

(2.7) i′∗(πn(S3)) ∼= i∗(πn(S3)).

Consider the commutative diagram

πn+1(K,S3)
∂′

n+1−−−−→ πn(S3)
i′∗−−−−→ πn(K)

ϕ∗

y η2∗

y∼= ϕ1∗

y
πn+1(X,S2)

∂n+1−−−−→ πn(S2) i∗−−−−→ πn(X)

where horizontal sequences are exact. Then we have isomorphisms

(2.8)

{
i′∗(πn(S3)) ∼= πn(S3)/∂′

n+1(πn+1(K,S3)),
i∗(πn(S2)) ∼= πn(S2)/∂n+1(πn+1(X,S2)).

It follows from the James’s isomorphism [4] that we have the isomorphisms{
πn+1(K,S3) = g∗πn+1(Dn, Sn−1) = Z/2 · g ◦ η,

πn+1(X,S2) = Z · [f, ι2]r ⊕ f∗πn+1(Dn, Sn−1) = Z · [f, ι2]r ⊕ Z/2 · f ◦ η,
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where η ∈ πn+1(Dn, Sn−1) ∼= Z/2 denotes the generator and [ , ]r is a
relative Whitehead product. If we recall the commutative diagrams

πn+1(K,S3)
∂′

n+1−−−−→ πn(S3)

g∗

x∼= g∗

x
πn+1(Dn, Sn−1) ∂′

−−−−→∼=
πn(Sn−1)

πn+1(X,S2)
∂n+1−−−−→ πn(S2)

f∗

x f∗

x
πn+1(Dn, Sn−1) ∂′

−−−−→∼=
πn(Sn−1)

then we have{
∂′

n+1(g ◦ η) = g ◦ ηn−1, ∂n+1(f ◦ η) = f ◦ ηn−1,

∂n+1([f, ι2]r) = −[f, ι2] = 0. (by [1] and [3])

Hence, by using (2.8) we have the isomorphisms

i′∗(πn(S3)) ∼= πn(S3)/〈g ◦ ηn−1〉 and i∗(πn(S2)) ∼= πn(S2)/〈f ◦ ηn−1〉.

However, because η2∗ : πk(S3)
∼=→ πk(S2) is an isomorphism for any k ≥ 2

and f = η2 ◦ g, the map η2 also induces an isomorphism

πn(S3)/〈g ◦ ηn−1〉 ∼= πn(S2)/〈f ◦ ηn−1〉.

Hence, the isomorphism (2.7) is proved. ¤

Let θ ∈ πn+1(X̃,K) ∼= Z denote the characteristic map of the top cell
en+1 in X̃ and consider the exact sequence of the pair (X̃,K),

Z · θ = πn+1(X̃,K)
∂′′

n+1−→ πn(K)
j∗−→ πn(X̃) −→ 0.

Because j∗ : πn(K) → πn(X̃) is surjective and there are isomorphisms

πn(K)
ϕ1∗−−−−→∼=

πn(X)
ϕ∗←−−−−∼=

πn(X̃),

in fact, j∗ is an isomorphism. Hence, ∂′′
n+1 = 0 and we have θ = ∂′′

n+1(θ) = 0.
So X̃ ' K ∨ Sn+1 and we complete the proof for the case n ≥ 5.

3. The case n = 4.

The proof of the case n = 4 is essentially due to Jie Wu and the author
does not claim its originality. However, for completeness of this paper, we
shall give its proof here.

If we assume n = 4, without loss of generalities we may assume that
X = Lm = S2 ∪mη2 e4 for an integer m ≥ 2. We note that the equality
x2 · x2 = mx4 holds, where x2k ∈ H2k(X, Z) ∼= Z (k = 1, 2) denote the
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corresponding generators. Then, if we compute the Serre spectral sequence
associated to the fibration (2.1), we have

Hk(X̃, Z) ∼=


Z if k = 0, 5,

Z/m if k = 4,
0 otherwise.

So there is a homotopy equivalence

(3.1) X̃ ' P4(m) ∪θ e5 (θ ∈ π4(P4(m)).

It suffices to show that θ = 0. If we use James’s isomorphism [4], we have

(3.2) π4(P4(m)) =

{
Z/2 · i′′∗(η3) if m ≡ 0 (mod 2),
0 if m ≡ 1 (mod 2),

where i′′ : S3 → P4(m) denotes the inclusion. If m ≡ 1 (mod 2), since
θ ∈ π4(P4(m)) = 0, θ = 0 and the assertion follows. Next, consider the case
m ≡ 0 (mod 2). Because θ ∈ π4(P4(m)) = Z/2 · i′′∗(η3), θ = 0 or θ = i′′∗(η3).
Now we suppose that θ = i′′∗(η3) 6= 0. Then let θ ∈ π5(X̃, P4(m)) ∼= Z denote
the characteristic map of the top cell e5 and consider the exact sequence

Z · θ = π5(X̃, P4(m)) ∂5−−−−→ π4(P4(m)) −−−−→ π4(X̃) −−−−→ 0.

Because ∂5(θ) = θ = i′′∗(η3), we have π4(X̃) = 0. However, since π4(X̃) ∼=
π4(X) ∼= Z/2 (by [8]), this is a contradiction. Hence θ = 0. ¤
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