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BELYI FUNCTION WHOSE GROTHENDIECK DESSIN IS
A FLOWER TREE WITH TWO RAMIFICATION INDICES

Toru KOMATSU

Abstract. In this paper we present an explicit construction of Belyi
functions whose dessins are flower trees (i.e., graphs of diameter 4) with
two ramification indices. We also give a method for obtaining Belyi
functions defined over the moduli fields of the dessins.

1. Introduction

For a compact connected Riemann surface R and a finite covering β : R →
P1 one calls β a Belyi function on R if β is unramified outside the three points
0, 1 and ∞ ∈ P1. Belyi [1] shows that for a complete nonsingular algebraic
curve R defined over a field of characteristic zero, R can be defined over Q
if and only if there exists a covering R → P1 with three ramification points.
There are various studies on properties of Belyi functions (cf. [2], [11], [13],
[14], . . . ). The main result in this paper is a unified method for constructing
Belyi functions of a certain family. In the following we assume R = P1 = P1

C
and denote by B the set of Belyi functions β : P1

C → P1
C. One usually

identifies P1
C with C ∪ {∞}. Let [0, 1] ⊂ P1

C be the segment on the real line
with end points 0 and 1 not through ∞, that is, [0, 1] = {z ∈ R|0 ≤ z ≤ 1}.
We denote by Dβ the inverse image β−1([0, 1]) of [0, 1] for β ∈ B, and call
Dβ a dessin due to Grothendieck. Here β is a polynomial in C[X] if and
only if Dβ is a graph of tree type, i.e., a graph with no cycles. It is easily
seen that Dβ is a connected graph. Let A0 and A1 be the sets of points
whose images by β are 0 and 1, respectively. Then A0 q A1 coincides with
the set V of vertices of the graph Dβ . On the graph Dβ one draws • and
× at points of A0 and A1, respectively. Then Dβ is a bipartite connected
graph with two partitions A0 and A1 of V . Let G be the set of bipartite
connected graphs on P1

C with finite edges. We define an equivalence relation
in G such that g1 ∼ g2 if g1 is equivalent to g2 as bipartite graphs on P1

C. On
the other hand, we denote β1∼β2 for β1, β2 ∈ B if there exists ρ ∈ PSL2(C)
such that β2 = β1 ◦ ρ. It is an equivalence relation in B. The following is
known as Grothendieck’s correspondence (cf. [12]). In fact, it follows from
Riemann existence theorem and Weil descent theorem.
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Proposition 1.1. There exists a one-to-one correspondence between two
quotient sets B/ ∼ and G/ ∼ such that β 7→ Dβ. Moreover, we have B/ ∼
= BQ/ ∼ where BQ ⊂ B is the set of Belyi functions defined over Q. In
particular, every graph g ∈ G can be realized as the dessin Dβ of a Belyi
function β defined over Q.

In this paper we study an explicit construction of Belyi functions whose
dessins are graphs in a family of plane trees. For every case we construct a
Belyi function over a number field whose degree is as small as possible, so
called the moduli field.
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Figure 1.2 (flower tree with ramification 〈m1,m2, . . . ,mr〉)

Let us call a tree of diameter 4 a flower tree. The flower tree in the Figure 1.2
above is called a flower tree with ramification 〈m1,m2, . . . ,mr〉; or a flower
tree of type (m1,m2, . . . ,mr) (cf. [20]). Here 〈m1,m2, . . . ,mr〉 is considered
to be a multi-set, that is, a set of numbers up to ordering. We denote
〈m1,m2, . . . ,mr〉 by 〈m1, . . . ,mi〉 + 〈mi+1, . . . ,mr〉. For example, we have
2〈4〉 + 3〈5〉 = 〈4, 4, 5, 5, 5〉. In the Figure 1.2 each point • has mi edges,
respectively. Here the edge connecting to the center point × is also counted
for mi. The center point × has r edges. Schneps [12], Shabat-Zvonkin [17]
and Zapponi [20] study many properties of flower trees. The Belyi functions
for flower trees with ramification 〈2, 3, 4, 5, 6〉 are computed in [12]. Shabat-
Zvonkin [17] calculate the Belyi functions for flower trees with the following
ramifications:
(f.1) i1〈m〉 + i2〈n〉,
(f.2) j1〈m〉 + j2〈n〉 + j3〈p〉,
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for (i1, i2) = (2, 3), (2, 5) and (j1, j2, j3) = (1, 1, 1), (2, 1, 1), (3, 1, 1) where
m,n and p are distinct positive integers. The Belyi function for a flower tree
over a finite field and over a complete field are also studied (cf. [18],[19]).
The main result in this paper is to present a complete solution for the case
(f.1).

Let k, l,m and n ∈ Z be positive integers with m 6= n. Let S be the set
{si|i = 1, 2, . . . , k} of k variables si. We may assume s0 = 1 for convenience’
sake. Let K be the field Q(S) adjoining to Q all of the elements in S, and
O the ring of polynomials in K with Q coefficients, that is, O = Q[S]. For
an s = (s1, s2, . . . , sk) ∈ Ok let f(s)(X) be a polynomial in O[X] such that

f(s)(X) =
k∑

i=0

siX
i

where s0 = 1. Then for each rational number q ∈ Q there exists a unique
power series g(q, s)(X) ∈ K[[X]] such that

g(q, s)(X) = f(s)(X)q

with the branch condition g(q, s) ≡ 1 (mod XK[[X]]). For every non-
negative integer j ∈ Z, j ≥ 0 let cj(q, s) ∈ K denote the coefficient of
Xj in g(q, s), i.e.

g(q, s)(X) =
∞∑

j=0

cj(q, s)Xj .

Here cj(q, s) ∈ O holds for every j ≥ 0 (cf. Lemma 2.1). We define a
polynomial βk,l(m,n; s)(X) ∈ O[X] by

βk,l(m, n; s)(X) =

(
k∑

i=0

siX
i

)m
 l∑

j=0

cj(−m/n, s)Xj

n

.

Let us denote Ck∗ = Ck − {(0, 0, . . . , 0)} and

T = T (k, l,m, n)
= {t ∈ Ck∗|cj(−m/n, t) = 0 for every j ∈ Z with l < j < k + l}.

Theorem 1.3. For each t ∈ T , βk,l(m,n; t)(X) ∈ C[X] is a Belyi function
whose dessin is a flower tree with ramification k〈m〉 + l〈n〉.

For t ∈ T let Dt denote the dessin which is obtained from βk,l(m,n; t).
Let F = F(k, l,m, n) be the set of flower trees with ramification k〈m〉+ l〈n〉
up to the graph equivalence ∼. Proposition 1.1 implies that for a graph
D ∈ F there exists a Belyi function β over Q corresponding to D. The
action on the graph D of an element σ in the absolute Galois group ΓQ of
Q is defined via that on the coefficients of β, that is, Dσ = Dβσ . Let ΓD be
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the subgroup of ΓQ such that ΓD = {σ ∈ ΓQ|Dσ ∼ D}. We denote the fixed
field QΓD by M(D) and call it the moduli field of D.

Theorem 1.4. There exists a finite subest T1 of T satisfying the following
two properties (i) and (ii) :
(i) the map T1 → F , t 7→ Dt gives a bijection,
(ii) for each t ∈ T1, the Belyi function βk,l(m,n; t)(X) is defined over M(Dt).

Remark. See §2 for the explicit definition of the T1. The definition field of
any Belyi function realizing a dessin D is an extension of the moduli field
M(D).

Remark. Main construction in this paper generalizes our construction in [8]
and contains Examples 5.2 and 5.3 in [17] as special cases.

Remark. In Theorems 1.3 and 1.4 we may take l = 0, which yields Belyi
functions for the case with ramification k〈m〉 (see Proposition 3.5).

2. Construction of Belyi functions

Let k, l,m and n ∈ Z be positive integers with m 6= n. We first show that
cj(q, s) ∈ O holds. One can calculate cj(q, s) ∈ K explicitly as follows. The
branch condition implies c0(q, s) = 1. For a positive integer j ∈ Z, j ≥ 1 we
define

Rj = {(r1, r2, . . . , rk) ∈ Zk|ri ≥ 0 and
k∑

i=1

rii = j}.

For r = (r1, r2, . . . , rk) ∈ Rj let sr denote
∏k

i=1 sri
i , and M(q, r) the multi-

nomial coefficient P (q,
∑k

i=1 ri)/
∏k

i=1(ri!) where P (q, r) = q(q − 1) · · · (q −
r + 1).

Lemma 2.1. For a rational number q ∈ Q we have

cj(q, s) =
∑
r∈Rj

M(q, r)sr.

In particular, cj(q, s) ∈ O holds for every j ∈ Z with j ≥ 0.

Proof. One can check that two power series
∑∞

j=0

∑
r∈Rj

M(q, r)srXj and
g(q, s)(X) satisfy a partial differential equation f(s)∂Y/∂X−qY ∂f(s)/∂X =
0. It follows from g(q, s)(X) ≡

∑
r∈R0

M(q, r)sr ≡ 1 (mod XK[[X]]) that
g(q, s)(X) =

∑∞
j=0

∑
r∈Rj

M(q, r)srXj . ¤

Let us fix a t ∈ T = T (k, l,m, n) and denote βk,l(m,n; t) simply by β.
Note that the map β : P1

C → P1
C is non-constant for t ∈ Ck∗. Let ex be

the ramification index of β at x ∈ P1
C. Let Az be the set β−1(z) = {x ∈
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P1
C|β(x) = z} for z = 0, 1 and ∞, and put A = A0 q A1 q A∞. We will

calculate the indices ea for all a ∈ A.

Lemma 2.2. We have 0 ∈ A1 and e0 ≥ k + l. In particular, ]A1 ≤ degβ −
(k + l) + 1.

Proof. It follows from the definitions of β(X) and t ∈ T that

β(X) =
(∑k

i=0 ci(t)X i
)m (∑l

j=0 cj(−m/n, t)Xj
)n

=
(∑k

i=0 ci(t)X i
)m (∑k+l−1

j=0 cj(−m/n, t)Xj
)n

.

This implies

β(X) ≡
(∑k

i=0 ci(t)X i
)m (∑∞

j=0 cj(−m/n, t)Xj
)n

(mod Xk+lC[[X]])
= 1.

Since β(X) ∈ C[X], we have β(X) − 1 ∈ Xk+lC[X] and e0 ≥ k + l. ¤
Proof of Theorem 1.3. Lemma 2.2 implies that

]A0 + ]A1 + ]A∞ ≤ k + l + degβ − (k + l) + 1 + 1
=degβ + 2. (1)

Let us consider the following conditions.
(c.0) (

∑k
i=0 ci(t)Xi)(

∑l
j=0 cj(−m/n, t)Xj) = 0 has k + l distinct roots in C,

(c.1) (β(X) − 1)/Xk+l−1 = 0 has degβ − (k + l) + 1 distinct roots in C.
Then both (c.0) and (c.1) are satisfied if and only if the equality in (1) holds.
It is clear that ∑

x∈P1
C−A

(ex − 1) ≥ 0. (2)

By using (1) and (2) we have∑
x∈P1

C

(ex − 1) =
∑
x∈A

(ex − 1) +
∑

x∈P1
C−A

(ex − 1)

=3degβ − (]A0 + ]A1 + ]A∞) +
∑

x∈P1
C−A

(ex − 1)

≥ 3degβ − (degβ + 2)
=2degβ − 2.

On the other hand, Riemann-Hurwitz formula shows
∑

x∈P1
C
(ex − 1) =

2degβ − 2 since β is a non-constant separable map from P1
C to P1

C. This
means that the inequalities in (1) and (2) are, in fact, equalities. The equal-
ity

∑
x∈P1

C−A(ex − 1) = 0 verifies that β(X) is a Belyi function.
By the above argument we see that both (c.0) and (c.1) hold. It fol-

lows from (c.0) that ck(t) and cl(−m/n, t) are non-zero. Thus we have
degβ = km + ln. Let A0,1 and A0,2 be subsets of A0 such that A0,1 =
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{x ∈ C|
∑k

i=0 ci(t)xi = 0} and A0,2 = {x ∈ C|
∑l

j=0 cj(−m/n, t)xj = 0},
respectively. Then A0 = A0,1 q A0,2. By (c.0) we have ea = vi for ev-
ery a ∈ A0,i where v1 = m and v2 = n. The condition (c.1) means that
e0 = k + l and ea = 1 for each a ∈ A1 − {0}. It is clear that A∞ = {∞}
and e∞ = degβ = km + ln. We now have a complete list of the ramification
indices ea for all a ∈ A. This data concludes that the dessin of β(X) is a
flower tree with ramification k〈m〉 + l〈n〉. ¤

In the above proof, we have shown the following lemma which will be
used later.

Lemma 2.3. For t ∈ T neither ck(t) nor cl(−m/n, t) vanishes.

We define the action of α ∈ C× on t = (t1, t2, . . . , tk) ∈ T by

αt = (αt1, . . . , α
iti, . . . , α

ktk).

In fact, one sees that αt ∈ T since cj(−m/n, αt) = αjcj(−m/n, t) holds for
every positive integer j ∈ Z. Let T denote the quotient C×\T of T by the
action of C×. Now recall that F = F(k, l,m, n) is the set of flower trees
with ramification k〈m〉 + l〈n〉 up to the graph equivalence.

Proposition 2.4. There exists a one-to-one correspondence between T and
F by t 7→ Dt.

Proof. For t ∈ T and α ∈ C× we have βk,l(m,n; αt)(X) = βk,l(m, n; t)(αX).
Thus βk,l(m,n; αt) ∼ βk,l(m,n; t). Proposition 1.1 shows that Dαt = Dt in
F . Thus the map ϕ : T → F , t 7→ Dt is well-defined. We first see that ϕ is
injective. For t1, t2 ∈ T let us denote βk,l(m,n; ti) simply by βi, respectively.
Now assume Dt1 = Dt2 in F . Then Proposition 1.1 implies that there
exists an automorphism ρ ∈ PSL2(C) of P1

C such that β2(X) = β1(ρ(X)).
Here, β−1

1 (∞) = β−1
2 (∞) = {∞}. This means that ρ(X) = α1X + α0

with α1 ∈ C× and α0 ∈ C. By the argument in the proof of Theorem
1.3, it satisfies that {x ∈ P1

C|βi(x) = 1 and ex = k + l} = {0} for each
i = 1 and 2. This implies α0 = 0. Thus we have β2(X) = β1(α1X) and
βk,l(m,n; t2)(X) = βk,l(m,n; t1)(α1X) = βk,l(m, n; α1t1)(X). For m 6= n,
one sees t2 = α1t1. Hence t1 = t2 holds in T .

We next show that ϕ is surjective. Let D be a graph in F = F(k, l,m, n).
Then there exists a Belyi function β ∈ B whose dessin is equivalent to D.
Let y ∈ P1

C be a unique point such that β(y) = 1 and ey = k + l. We denote
β(X + y) by βy(X). Note that Dβ ∼ Dβy . Let A0,1 (resp. A0,2) be the sets
of points x ∈ C such that ex = m (resp. ex = n) and βy(x) = 0. Then

βy(X) = γ1

( ∏
a∈A0,1

(X − a)
)m( ∏

a∈A0,2

(X − a)
)n
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where γ1 is the coefficient of the highest degree in βy(X). Since βy(0) = 1,
we have a 6= 0 for every a ∈ A0 = A0,1 q A0,2. Thus there exists a constant
γ2 ∈ C× satisfying

βy(X) = γ2

( ∏
a∈A0,1

(1 − a−1X)
)m( ∏

a∈A0,2

(1 − a−1X)
)n

.

Indeed, γ2 = 1 from βy(0) = 1. Let ti and uj be complex numbers such that
k∑

i=0

tiX
i =

∏
a∈A0,1

(1 − a−1X) and
l∑

j=0

ujX
j =

∏
a∈A0,2

(1 − a−1X).

Then we have

βy(X) =
( k∑

i=0

tiX
i
)m( l∑

j=0

ujX
j
)n

.

Now put t = (t1, t2, . . . , tk). One notes that t ∈ Ck∗ since a−1 6= 0 for
a ∈ A0,1. It is easily seen that βy(X) ≡ 1 (mod Xk+lC[X]) implies

cj(−m/n, t) =
{

uj if 0 ≤ j ≤ l,
0 if l < j < k + l.

This shows that t ∈ T and βy(X) = βk,l(m,n; t)(X). Hence ϕ is surjective.
¤

We will find a suitable subset of T which is a complete system of repre-
sentatives for T . Let us define the period pd(t) of t ∈ T to be gcd{1 ≤ i ≤
k|ci(t) 6= 0}.

Lemma 2.5. For every t ∈ T the period pd(t) is a common divisor of k
and l.

Proof. By Lemma 2.3 we have ck(t) 6= 0. Thus pd(t) is a divisor of k. Let
ζ be a primitive pd(t)-th root of unity. Then we have ζt = t. This implies
that cj(−m/n, t) = cj(−m/n, ζt) = ζjcj(−m/n, t). Since cl(−m/n, t) 6= 0,
pd(t) is a divisor of l. Hence pd(t) | gcd(k, l) holds. ¤

For an element t ∈ T of period p we define the non-vanishing index set
I(t) of t by

I(t)= {i ∈ Z|1 ≤ i ≤ k, ci(t) 6= 0}
= {i1 < i2 < · · · < iκ}.

Then there exist non-negative integers λj ∈ Z such that λ1i1 −
∑κ

j=2 λjij =
p. The integers λj depending on I(t) can be determined uniquely in the
following way. For an integer j1 ∈ Z with 1 ≤ j1 ≤ κ let µj1 denote
gcd{ij |1 ≤ j ≤ j1−1}. For each integer j1 decreasing from κ to 2, we define
λj1 to be the smallest non-negative integer such that p +

∑κ
j=j1

λjij ≡ 0
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(mod µj1) inductively. Then one puts λ1 = (p +
∑κ

j=2 λjij)/i1. We call
such (λ1, λ2, . . . , λκ) the minimization operator of I(t). Let us define the
direction dir(t) ∈ C× of t ∈ T by

dir(t) = ci1(t)
λ1

κ∏
j=2

cij (t)
−λj ,

where (λ1, λ2, . . . , λκ) is the minimization operator of I(t). Let α be a p-th
root of dir(t), that is, αp = dir(t). We denote α−1t by nom(t), and call
it the normalized element of t. Here ζα is also a p-th root of dir(t) for a
p-th root ζ of unity. Then (ζα)−1t = α−1ζ−1t = α−1t. Thus nom(t) ∈ T
is well-defined. Let us define T1 = {t ∈ T |dir(t) = 1}. Then the following
lemma is easily seen.

Lemma 2.6. There exists a bijective map from T to the direct product of
two sets C× and T1 such that

T ∼→ C× × T1

t 7→ (dir(t),nom(t)).

In particular, every normalized element has direction 1.

Let ψ be the composite map of the canonical inclusion map T1 → T and
the projection T → T .

Lemma 2.7. The map ψ : T1 → T is bijective, that is, T1 is a complete
system of representatives for T .

Proof. For every t ∈ T we have nom(t) ∈ T1 and ψ(nom(t)) = t in T , which
means that ψ is surjective. Now assume ψ(t1) = ψ(t2) for t1, t2 ∈ T1. Then
there exists an α ∈ C× such that t2 = αt1. Here the period p of t1 is equal to
that of t2. It follows from the definition that dir(t2) = dir(αt1) = αpdir(t1).
The assumption t1, t2 ∈ T1 implies that αp = 1. Since pd(t1) = p, one sees
αt1 = t1. Hence we conclude t1 = t2, which shows the injectivity of ψ. ¤

Proposition 2.4 and Lemma 2.7 imply the first assertion of Theorem 1.4.

Corollary 2.8. There exists a one-to-one correspondence between T1 and
F by t 7→ Dβ where β = βk,l(m,n; t).

Remark. For a t ∈ T with c1(t) 6= 0, the condition t ∈ T1 is equivalent to
c1(t) = 1.

Let TQ be the algebraic subset of T , i.e.,

TQ = {t ∈ T |ci(t) ∈ Q for every 0 ≤ i ≤ k}.

Lemma 2.9. We have T1 ⊂ TQ.
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Proof. It follows from Corollary 2.8 that ]T1 = ]F < ∞. Let us fix an
element t1 ∈ T1 and put T2 = {t ∈ T1|I(t) = I(t1)}. For an integer i ∈ Z
with ci(t) 6= 0 we define a polynomial fi(s) ∈ C[S] such that

fi(s) =
∏
t∈T2

(ci(s) − ci(t)) ∈ C[si].

Then fi(t) = 0 holds for all t ∈ T2. Note that T2 is equal to the set of zeros
of simultaneous equations

ci(−m/n, s) = 0 for l < i < k + l,
ci(s) = 0 for 1 ≤ i ≤ k and i 6∈ I(t1),
ci1(s)

λ1 −
∏κ

j=2 cij (s)
λj = 0,

where I(t1) = {i1 < i2 < . . . < iκ} is the non-vanishing index set of t1
and (λ1, λ2, . . . , λκ) is the minimization operator of I(t1). Here the above
simultaneous equations consist of polynomials in Q[S]. Thus Hilbert zero
point theorem implies that fi(s)r ∈ Q[S] for some positive integer r ∈ Z.
Since fi(s)r ∈ Q[S] ∩ C[si] = Q[si], it holds that ci(t) ∈ Q for every t ∈ T2.
Hence we have T1 ⊂ TQ. ¤

Let ΓQ be the absolute Galois group Gal(Q/Q) of Q. The action of σ ∈ ΓQ
on t = (t1, t2, . . . , tk) ∈ TQ is defined by σt = (σt1, σt2, . . . , σtk). For a fixed
t = (t1, t2, . . . , tk) ∈ TQ let us denote by Q(t) the field Q(t1, t2, . . . , tk),
and by Q(β) the definition field of the polynomial β(X) = βk,l(m,n; t)(X).
The moduli field M(D) of the dessin D = Dβ is the fixed field QΓD where
ΓD = {σ ∈ ΓQ|Dσ ∼ D}. Then we have M(D) ⊆ Q(β) ⊆ Q(t) in general.

Proposition 2.10. If t ∈ T1, then M(D) = Q(β) = Q(t).

Proof. Let us note that βk,l(m,n; s)(X) ∈ Q[S][X]. Thus σβk,l(m,n; t)(X)
= βk,l(m,n; σt)(X) for σ ∈ ΓQ and t ∈ T1. Let σ ∈ ΓQ be an element in ΓD,
that is, Dβσ ∼ Dβ . By the same argument as in the proof of Proposition
2.4 we have σβk,l(m,n; t)(X) = βk,l(m,n; t)(αX) for an α ∈ C×. It is
easy to see that σt = αt since m 6= n. It follows from the definition that
dir(σt) = σ(dir(t)) = σ(1) = 1 for t ∈ T1. On the other hand, we have
dir(αt) = αpdir(t) = αp where p = pd(t). This means that αp = 1 and
σt = αt = t. Hence we have Q(t) ⊆ M(D), which concludes M(D) =
Q(β) = Q(t). ¤

Proposition 2.10 verifies the second assertion of Theorem 1.4.

Remark. The notion of the normalized element t ∈ T1 is essentially similar
to that of a normalized model in [20].
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3. Some numerical examples

In this section we calculate some Belyi functions by using Theorem 1.4.
Let us consider the case of the flower tree with ramification 〈m〉 + l〈n〉
where l,m and n are positive integers with m 6= n. Since the set {j ∈
Z|l < j < l + 1} is empty, one sees T (1, l,m, n) = {(t1)|t1 ∈ C×} and
T (1, l,m, n)1 = {(1)}.

Proposition 3.1. We have T (1, l,m, n)1 = {(1)} and

β1,l(m,n; (1))(X) = (1 + X)m(
l∑

j=0

cj(−m/n, (1))Xj)n

where cj(−m/n, (1)) = (−m/n)(−m/n−1) · · · (−m/n−j+1)/(j!) for every
j ∈ Z. In particular, the Belyi function β1,l(m,n; (1))(X) is defined over Q.

We have the following proposition for the case of the flower trees with
ramification 2〈m〉 + l〈n〉 where m 6= n.

Proposition 3.2. If l is odd, then

T (2, l,m, n)1 = {(1, t2)|cl+1(−m/n, (1, t2)) = 0}.

When l is even, we have

T (2, l,m, n)1 = {(1, t2)|cl+1(−m/n, (1, t2)) = 0} ∪ {(0, 1)}.

For each (1, t2) ∈ T (2, l,m, n)1, it holds that

β2,l(m,n; (1, t2))(X) = (1 + X + t2X
2)m(

l∑
j=0

cj(−m/n, (1, t2))Xj)n

where

cj(−m/n, (1, t2)) =
bj/2c∑
i=0

(−m/n)(−m/n − 1) · · · (−m/n − (j − i) + 1)
(j − 2i)!i!

ti2.

In particular, β2,l(m,n; (1, t2))(X) is defined over the moduli field Q(t2). For
(0, 1) ∈ T (2, l,m, n)1 it satisfies β2,l(m,n; (0, 1))(X) = β1,l/2(m, n; (1))(X2).

Proof. Lemma 2.5 implies that pd(t) = 1 for every t ∈ T (2, l,m, n) if l is
odd. This means c1(t) 6= 0 and nom(t) = (1, t2) for some t2 ∈ C. When l
is even, we have (0, t2) ∈ T (2, l,m, n) since cl+1((−1)s) = −cl+1(s). Note
that nom((0, t2)) = (0, 1) ∈ T (2, l,m, n)1. Thus Theorem 1.4 shows the
assertion. ¤
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For the flower trees with ramification 2〈m〉 + 3〈n〉 = 〈m,m, n, n, n〉 we
have T (2, 3,m, n)1 = {(1, t+2 ), (1, t−2 )} where

t±2 =
3(m/n + 2) ±

√
3(m/n + 2)(2m/n + 3)

6
,

respectively.

Corollary 3.3. For every real quadratic field Q(
√

d) there exist infinitely
many flower tree dessins D with ramification 2〈m〉 + 3〈n〉 so that M(D) =
Q(

√
d).

Proof. Let d ∈ Z be a positive integer. Then there exist infinitely many
rational numbers r ∈ Q such that 3/2 < r < 2 and r = du2 for some u ∈ Q.
For such an r ∈ Q not equal to 9/5, let m and n be positive integers with
m/n = −3(r − 2)/(2r − 3). Then we have Q(t+2 ) = Q(t−2 ) = Q(

√
d). ¤

For the flower trees with ramification 2〈4〉+ 3〈1〉 = 〈1, 1, 1, 4, 4〉, we have
T (2, 3, 4, 1)1 = {(1, t−2 ), (1, t+2 )} where t±2 = (6 ±

√
22)/2. The Belyi func-

tions are equal to

β2,3(4, 1; (1, t±2 ))(X)= (1 + X + (6 ±
√

22)/2X2)4

×(1 − 4X − 2(1 ±
√

22)X2 + 10(4 ±
√

22)X3)
≡ 1 + 22(23 ± 5

√
22)X5 (mod X6Q(

√
22)[X]),

respectively. One can check that the dessin of β2,3(4, 1; (1, t+2 ))(X) is the left
graph in Figure 3.4 and that of β2,3(4, 1; (1, t−2 ))(X) is the right one. The
two graphs in Figure 3.4 are conjugate of each other under a Galois action
σ ∈ ΓQ such that σ(

√
22) = −

√
22.
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Figure 3.4 (two flower trees with ramification 2〈4〉 + 3〈1〉)
As a special case we can obtain the flower tree with one ramification index,

that is, the flower tree with ramification k〈m〉 where k,m ∈ Z. In Theorems
1.3 and 1.4 let us take l = 0 and n ≥ 1. Then t = (0, 0, . . . , 0, 1) ∈ Ck∗
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satisfies cj(−m/n, t) = 0 for every 0 < j < k. Here βk,0(m,n; t) = (1+Xk)m

is a Belyi function whose dessin is the flower tree with ramification k〈m〉.
It is clear that there exists only one flower tree with ramification k〈m〉.

Proposition 3.5. The Belyi function for the flower tree with ramification
k〈m〉 is equal to (1 + Xk)m, which is defined over Q.
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