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QUADRATIC TWISTS OF AN ELLIPTIC CURVE AND
MAPS FROM A HYPERELLIPTIC CURVE

Masato KUWATA

Abstract. For an elliptic curve E over a number field k, we look for
a polynomial f(t) such that rank Ef(t)(k(t)) is at least 3. To do so, we
construct a family of hyperelliptic curves C : s2 = f(t) over k of genus 3
such that J(C) is isogenous to E1 × E2 × E3, and we give an example
of C and E such that J(C) is isogenous to E × E × E over Q(

√
−3).

1. Introduction

Let E be an elliptic curve over a number field k given by a Weiererstrass
equation y2 = x3 + ax + b. The quadratic twist of E by d ∈ k×/(k×)2 is
the elliptic curve given by dy2 = x3 + ax + b, which we denote by Ed. For
a given elliptic curve E, it is natural to ask how the rank of the Mordell-
Weil group Ed(k) varies as d changes. In particular, we would like to find d
such that the rank is as large as possible. In order to construct a family of
such d’s we look for a polynomial f(t) ∈ k[t] such that rankEf(t)(k(t)) is as
large as possible, while keeping the degree of f as small as possible. This is
equivalent to look for a hyperelliptic curve C : s2 = f(t) that admits many
independent maps to E, while keeping its genus g(C) as small as possible.

Two maps ϕ1 and ϕ2 from C to E are said to be independent if the pull-
backs of the regular differential ωE = dx/y by ϕ∗

1 and by ϕ∗
2 are independent

in H0(C,ΩC/k). If there are n independent maps from a hyperelliptic curve
C to a given elliptic curve E, then the Jacobian J(C) is isogenous to En×A,
where A is an abelian variety. Curves with splitting Jacobian are of interest
in many different contexts, and many various are known (see for example,
[1], [2], [3], [4], [5], [6], [7], [8], [10]). In particular, Rubin-Silverberg [10]
constructs a hyperelliptic curve of genus 5 whose Jacobian J(C) is isogenous
to E3 × A, where A is an abelian surface. In this paper we constructs
hyperelliptic curves of genus 3 whose Jacobian J(C) is isogenous to the
product of three elliptic curves.

Note in passing that our interests lie not just hyperelliptic curves but
those whose quotient by the hyperelliptic involution is isomorphic to P1

over k. This distinction makes a difference when the genus is greater than 2.
In §2 we gather results for the case where the genus of C is 2. Many of

our constructions are already known; some are classical and explicit, while
others are known only theoretically. Howe-Leprévost-Poonen [5] also treats
this problem systematically in a different context. We make everything as
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explicit as possible. Rubin-Silverberg [10] also gives some explicit results,
some of which are similar to ours.

In §3 we construct hyperelliptic curves of genus 3 that admit maps to
elliptic curves. Given two elliptic curves E1 and E2 with rational 4-torsion
points, we construct a hyperelliptic curve C of genus 3 with two maps ϕi :
C → Ei (i = 1, 2) of degree 2. Then the Jacobian J(C) of C is isogenous
to E1 × E2 × E3 with a third elliptic curve E3. We vary E1 and E2 in
such a way that they are isomorphic, and find the case where E3 is also
isomorphic. Note that there are many examples of nonhyperelliptic curves
of genus 3 whose Jacobian is isogenous to the product E×E×E. However,
the condition that C is hyperelliptic is essential for our application.

The author would like to thank the referee for pointing out the work
of Rubin and Silverberg. He also thank Prof. Kazuo Matsuno for useful
conversations.

2. Curves of genus 2

In this section we consider (hyperelliptic) curves of genus 2 that admit
two independent maps of degree 2 to a given elliptic curve E.

Let C be such a curve of genus 2. If ϕ : C → E is a map of degree 2,
then C admits an automorphism of order 2, which exchanges points in the
inverse image of a point in E. If σ : C → C is such an automorophism,
then C/〈σ〉 ∼= E, and C/〈ι ◦ σ〉, where ι is the hyperelliptic involution, is
once again an elliptic curve. We are particularly interested in the case where
C/〈ι ◦ σ〉 is isomorphic to E itself, or isogenous to E.

2.1. Rational 2-torsion point. Let E be the elliptic curve over k given
by

E : y2 = x(x2 + Ax + B), A,B ∈ Q, AB 6= 0.
If we put x = λt2 + µ, then we obtain a curve of genus 2

C : y2 = (λt2 + µ)
(
(λt2 + µ)2 + A(λt2 + µ) + B

)
.

Let σ be the involution of C given by (t, y) 7→ (−t, y). The map ϕ1 : (t, y) 7→
(λt2 + µ, y) is the quotient map C → C/〈σ〉 ∼= E.

Let ι be the hyperelliptic involution (t, y) 7→ (t,−y). The involution τ ◦ ι
fixes the function t2 and y/t. Letting x′ = 1/t2 and y′ = y/t3, we obtain
from the equation of C

F : y′2 = (λ + µx′)
(
(λ + µx′)2 + Ax′(λ + µx′) + Bx′2).

This is the quotient elliptic curve C/〈τ ◦ ι〉. We look for conditions on λ
and µ such that C/〈τ ◦ ι〉 is isomorphic to E once again. Now we look
for a map from the x-line to the x′-line which sends the three roots of the
right hand side of the above equation to the three roots of x(x2 + Ax + B).
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A straightforward calculation shows that if µ = −B/A, then x 7→ x′ =
A(λ − x)/B gives such a map. Thus, putting µ = −B/A, and simplifying
the formulas as much as possible, we obtain the following

Proposition 2.1. Let E be the elliptic curve given by y2 = x(x2 +Ax+B),
and let Cλ be the family of curves of genus 2 parametrized by λ given by

Cλ : s2 = A(λAt2 − B)
(
λ2A2t4 + λA(A2 − 2B)t2 + B2

)
.

Then Cλ admits the involution σ : (t, s) 7→ (−t, s), and the quotient Cλ/〈σ〉
equals E with the quotient map ϕ1 : Cλ → E given by

ϕ1 : (t, s) 7−→
(

λAt2 − B

A
,

s

A2

)
.

Furthermore, the quotient Cλ/〈σ ◦ τ〉 is E−λA/B, the quadratic twist of E by
−λA/B. The quotient map ϕ2 : Cλ → E−λA/B is given by

ϕ2 : (t, s) 7−→
(
−B(λAt2 − B)

λA2t2
,

B2s

λ2A4t3

)
.

Corollary 2.2 (cf. Rubin-Silverberg[10, Cor. 3.3]). Let f(t) be the polyno-
mial

f(t) = −A(t2 + 1)
(
Bt4 + (2B − A2)t2 + B

)
,

and let Ef(t) be the elliptic cureve over k[t] given by

f(t) y2 = x(x2 + Ax + B).

Then the Mordell-Weil group Ef(t)(k(t)) has two independent points:

P1 =
(
−B(t2 + 1)

A
,

B

A2

)
, P2 =

(
−B(t2 + 1)

At2
,

B

A2t3

)
.

Proof. We put λ = −B/A in the proposition. The image of (t, 1) by ϕi gives
a point in Ef(t). The independence of P1 and P2 follows from the fact that
ϕ1 and ϕ2 are independent maps by construction. ¤

Corollary 2.3. Let E be the elliptic curve given by y2 = x(x2 + Ax + B),
and let d0 be any element in k×/(k×)2. Then there are infinitely many
d ∈ k×/(k×)2 such that both Ed(k) and Edd0(k) have positive rank.

Proof. We put λ = −d0B/A in the proposition. Then two maps in the
proposition give points of infinite order in Ef(t)(k(t)) and Ed0f(t)(k(t)), re-
spectively. It suffices to specialize t to various values in k. ¤
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2.2. Elliptic curves whose 2-torsion points are defined over a cyclic
extension. Let k(E[2]) be the extension of k over which all the 2-torsion
points of E are defined. As is remarked after Corollary 7 in [5], if the Galois
group Gal(k(E[2])/k) is isomorphic to A3(= cyclic group of order 3), then
we can construct a curve C of genus 2 with two independent maps. We give
an explicit family of such curves of genus 2.

Let E be the elliptic curve over k given by

y2 = x3 − ux2 + (u − 3)x + 1, u ∈ Q.

Note that x3 − ux2 + (u − 3)x + 1 is a generic polynomial of cyclic cubic
extensions (see Serre [11, p. 1]). The linear transformation x 7→ 1/(1 − x)
permutes the three roots of x3 − ux2 + (u − 3)x + 1, and it sends 1 to ∞.

So, consider the map ϕ̄1 : t 7→ x = λt2 + 1, which ramifies at the points
over x = 1 and x = ∞. Define Cλ to be the pull-back of E by ϕ̄1:

(1) Cλ : s2 = λ3t6 − λ2(u − 3)t4 − λut2 − 1.

Proposition 2.4. Let Cλ be the family of hyperelliptic curves defined by
(1). Then there are two independent maps ϕ1 : Cλ → E and ϕ2 : Cλ → Eλ

given by

ϕ1 : (t, s) 7→ (λt2 + 1, s), ϕ2 : (t, s) 7−→
(
− 1

λt2
,

s

λ2t3

)
.

Proof. Let σ be the automorphism of Cλ defined by (t, s) 7→ (−t, s). Then
ϕ1 is nothing but the quotient map Cλ → Cλ/〈σ〉. The map ϕ2, which is
obtained by lifting the composition of t 7→ x = λt2 + 1 and x 7→ 1/(x − 1),
is the quotient map Cλ → Cλ/〈σ ◦ ι〉, where ι is the hyperelliptic involution
on Cλ. ¤

Corollary 2.5. Let f(t) be the polynomial

f(t) = t6 − (u − 3)t4 − ut2 − 1,

and let Ef(t) be the elliptic cureve over k[t] given by

f(t) y2 = x3 − ux2 + (u − 3)x + 1.

Then the Mordell-Weil group Ef(t)(k(t)) has two independent points:

P1 = (t2 + 1, 1), P2 =
(
− 1

t2
,

1
t3

)
.

Proof. It suffices to let λ = 1 in Proposition 2.4. ¤



QUADRATIC TWISTS OF AN ELLIPTIC CURVE 89

2.3. Elliptic curves with an isogeny of odd degree. Suppose an elliptic
curve E : y2 = x3 + Ax + B is isogenous over k to another elliptic curve
E′ : Y 2 = X3+A′X +B′ with an isogeny ψ : E → E′ of odd degree. Then ψ
induces an isomorphism E[2](k̄) → E′[2](k̄). As is shown in [5, Corollary 7],
we can construct a curve of genus 2 over k whose Jacobian is (2, 2)-isogenous
to E × E′ under these circumstances.

An explicit construction goes as follows. Once we fix equations of E and
E′ as above, the isomorphism E[2](k̄) → E′[2](k̄) induces an isomorphism
from the x-line to the X-line. To be precise, there is a liniear transformation
h : x 7→ X = (px + q)/(rx + s) over k which maps the three roots of
x3 +Ax+B = 0 to the three roots of X3 +A′X +B = 0. Let α be the point
on the x-line satisfying h(α) = ∞, define ϕ̄1 to be the map t 7→ x = µt2 +α,
and define Cµ to be the pull-back of E by ϕ̄1:

Cµ
ϕ1−−−−→ Ey y

P1
t

ϕ̄1−−−−→ P1
x = E/{±1}.

Cµ is a double cover of the t-line ramifying at the six points which are the
inverse image of the three roots of x3 + Ax + B = 0 by ϕ̄1. Also define C ′

µ

to be the pull-back of E′ by the map ϕ̄2 = h ◦ ϕ̄1. Now it is easy to see that
C ′

µ is a double cover of the t-line ramifying at the same six points as Cµ. It
turns out that by choosing a suitable µ we can make Cµ and C ′

µ isomorphic.
Let C be this isomorphic curve of genus 2. Then C admits two maps to E;
one is ϕ1, and the other is the lift of ϕ̄2 composed with the dual isogeny
ψ′ : E′ → E. In particular the Jacobian J(C) is isogenous to E × E.

In the following we will work out in detail for the cases of isogenies of
degree 3 and 5. First we start consider the elliptic curve

(2) E : y2 = x3 − 9(u + 3)(3u + 1)x + 18(u + 3)(3u2 + 6u − 1).

It is isogenous to

(3) E′ : Y 2 = X3 − 27(u + 27)(u + 3)X + 54(u + 3)(u2 − 54u − 243)

by an isogeny of degree 3. Here we give the formula for the dual isogeny
ψ′ : E′ → E, which we will need later:

ψ : (X,Y ) 7−→

(
X3 + 9(u + 3)

(
2X2 + 3(19u + 9)X + 48u(5u + 27)

)
9(X + 9u + 27)2

,(
X3 + 27(u + 3)

(
X2 − (7u − 27)X + 11u2 − 270u + 243

))
Y

27(X + 9u + 27)3

)
.
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By straight forward calculations we find that the linear transformation

h : x 7→ X = −3
(2u + 9)x − 6(u + 3)2

x − 3(u + 2)

sends three roots of x3 − 9(u + 3)(3u + 1)x + 18(u + 3)(3u2 + 6u− 1) = 0 to
those of X3 − 27(u + 27)(u + 3)X + 54(u + 3)(u2 − 54u − 243) = 0.

Proposition 2.6. Let C be the curve of genus 2 given by

C : s2 = −t6 + 9(u + 2)t4 − 9(2u + 9)t2 + 9u.

Then we have a map ϕ1 from C to the elliptic curve E given by (2) and a
map ϕ2 to E′ given by (3). They are independent and given by

ϕ1 : (s, t) 7−→ (x, y) =
(
−t2 + 3(u + 2), s

)
,

ϕ2 : (s, t) 7−→ (X,Y ) =
(
−3(2u + 9)t2 + 9u

t2
,
9us

t3

)
.

Proof. We follow the strategy explained earlier, and find that the twisting
factor µ in this case equals −1. ¤

Corollary 2.7 (cf. Rubin-Silverberg[10, Cor. 3.5]). Let f(t) be the polyno-
mial

f(t) = −t6 + 9(u + 2)t4 − 9(2u + 9)t2 + 9u,

and let Ef(t) be the elliptic cureve over k[t] given by

f(t) y2 = x3 − 9(u + 3)(3u + 1)x + 18(u + 3)(3u2 + 6u − 1).

Then the Mordell-Weil group Ef(t)(k(t)) has two independent points:

P1 =
(
−t2 + 3(u + 2), 1

)
,

P2 =
(
−(6u + 19)t6 − 9(5u + 14)t4 + 27t2 − 9u

t2(t2 + 3)2
,

(27u + 80)t6 − 9(5u + 16)t4 + 9ut2 + 9u
t3(t2 + 3)3

)
.

Proof. The second point P2 is obtained from the map ψ′ ◦ ϕ2. ¤

Next we consider the curve

(4) E : y2 = x3 − 3(u2 + 1)(u2 − 6u + 4)x + 2(u2 + 1)2(u2 − 9u + 19),

which is isogenous to

(5) E′ : Y 2 = X3−3(u2+1)(u2+114u+124)X+2(u2+1)2(u2−261u−2501).
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by an isogeny of degree 5. Since the actual formula for the isogeny is too
complicated and of little interest, we omit it. We find that the linear trans-
formation

h : x 7−→ X = −(8u2 + 72u − 13)x − 8(u2 + 1)(u2 + 6u − 32)
4x − 4u2 + 12u + 5

sends three roots of x3−3(u2+1)(u2−6u+4)x+2(u2+1)2(u2−9u+19) = 0
to those of X3−3(u2+1)(u2+114u+124)X+2(u2+1)2(u2−261u−2501) = 0.

Proposition 2.8. Let C be the curve of genus 2 given by

C : s2 = −3t6 + 3(4u2 − 12u − 5)t4 − 3(8u2 + 72u − 13)t2 + 3(2u − 11)2

There exits a map ϕ1 from C to the elliptic curve E given by (4) and a map
ϕ2 to E′ given by (5). They are given by

ϕ1 : (s, t) 7−→(x, y) =
(
−3t2 − 4u2 + 12u + 5

4
,
3s

8

)
,

ϕ2 : (s, t) 7−→(X,Y )

=
(
−(8u2 + 72u − 13)t2 − 3(2u − 11)2

4t2
,
3(2u − 11)2s

8t3

)
.

Proof. We follow the strategy explained earlier, and find that the twisting
factor µ in this case equals −3/4. ¤
Corollary 2.9. Let f(t) be the polynomial

f(t) = −3t6 + 3(4u2 − 12u − 5)t4 − 3(8u2 + 72u − 13)t2 + 3(2u − 11)2,

and let Ef(t) be the elliptic cureve over k[t] given by

f(t) y2 = x3 − 3(u2 + 1)(u2 − 6u + 4)x + 2(u2 + 1)2(u2 − 9u + 19).

Then the Mordell-Weil group Ef(t)(k(t)) has two independent points:

P1 =
(
−3t2 − 4u2 + 12u + 5

4
,
3
8

)
,

P2 =
(

p(t)
d(t)2

,
q(t)
d(t)3

)
,

where

p(t) = −(32u4 − 64u3 + 148u2 − 76u + 107)t10

+ 5(112u4 − 96u3 − 72u2 − 24u − 205)t8

+ 10(128u4 − 864u3 + 196u2 − 732u − 283)t6

+ 10(2u − 11)(2u − 1)(52u2 − 72u + 73)t4

+ 5(2u − 11)2(8u2 − 72u + 29)t2 + 3(2u − 11)4,
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q(t) = −3(160u5 − 240u4 + 400u3 − 440u2 + 242u − 211)t12

+ 6(160u5 + 880u4 − 432u3 + 2072u2 − 478u + 1315)t10

+ 9(2u − 11)(48u4 + 32u3 − 280u2 − 88u − 293)t8

− 12(2u − 11)(144u4 + 464u3 + 1216u2 + 684u + 487)t6

+ 3(2u − 11)2(232u3 + 444u2 − 338u − 171)t4

− 18(2u − 11)4(2u − 1)t2 − 3(2u − 11)5,

d(t) = 2t
(
(2u + 1)t4 + 10(2u − 1)t2 + 5(2u − 11)

)
.

Remark 2.10. It is possible to obtain similar formulas for the curve that
admits an isogeny of degree 7:

y2 = x3 − 3(u2 + 3)(9u2 − 48u + 43)x

+ 2(u2 + 3)(27u4 − 216u3 + 522u2 − 584u + 747),

or the curve that admits an isogeny of degree 13:

y2 = x3 − 3(u2 + 1)(4u2 − 2u + 7)(4u4 − 10u3 + 11u2 − 10u + 4)x

+ 2(u2 + 1)2(4u2 − 2u + 7)

× (16u6 − 64u5 + 124u4 − 168u3 + 149u2 − 77u + 23).

The results are too complicated, and thus we do not write them down here.

3. hyperelliptic curves of genus 3

In this section we construct a hyperelliptic curve C of genus 3 starting
from two given elliptic curves E1 and E2 such that C admits maps of degree 2
to each of E1 and E2. Then the Jacobian J(C) is isogenous to the product
E1 × E2 × E3 with a third elliptic curve E3. We will then determine E3

explicitly.
Our strategy is to find a curve of geometric genus 0 on the Kummer

surface S obtained from the quotient E1×E2/{±1}. A section of an elliptic
fibration on S → P1 is a curve of arithmetic genus 0, and thus geometric
genus 0. An irreducible singular fiber of an elliptic fibration is also a curve
of geometric genus 0, though its arithmetic genus is 1. Here we use such
a singular curve for our construction. The difficulty lies in the fact that
singular fibers of type I1 or II in an elliptic fibration are rarely defined over
the base field.

Oguiso [9] classified all the elliptic fibrations on the Kummer surface S
with a section. We find that one of the fibrations admits a singular fiber of
type I1 defined over the base field k if E1 and E2 satisfy a certain condition.
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Let Fu be the elliptic curve defined over k(u) given by the equation

Fu : y2 = x
(
x2 − 2(u − 2)x + u2

)
.

This curve has a k(u)-rational 4-torsion point (u, 2u). In fact, this is the
universal elliptic curve with a 4-torsion point.

Take two distinct elements λ and µ in k, and consider two elliptic curves:

(6)
E1 : y2 = x

(
x2 − 2(λ − 2)x + λ2

)
,

E2 : y2 = x
(
x2 − 2(µ − 2)x + µ2

)
.

Let S be the Kummer surface associated to the product E1×E2. A singular
affine model of S is given by the equation

(7) z
(
z2 − 2(µ − 2)z + µ2

)
y2 = x

(
x2 − 2(λ − 2)x + λ2

)
.

One of the elliptic fibrations on S classified by Oguiso [9] is given by the
map (x, y, z) 7→ zy/x. Setting v = zy/x, we obtain

vµ2y2 −
(
x2 + 2

(
(µ − 2)v2 − (λ − 2)

)
x + λ2

)
y + x2v3 = 0.

By setting

Y = 2vµ2y −
(
x2 + 2

(
(µ − 2)v2 − (λ − 2)

)
+ λ2

)
,

we have

Y 2 =
(
x2 − 2(2v2 + λ − 2)x + λ2

)(
x2 + 2

(
2(µ − 1)v2 − (λ − 2)

)
x + λ2

)
.

The discriminant of the right hand side with respect to x is

216µ4λ4v8(v − 1)(v + 1)(v2 + λ − 1)
(
(µ − 1)v2 + 1

)(
(µ − 1)v2 − λ + 1

)
.

From this we see that the elliptic fibration (x, y, z) 7→ zy/x has a singular
fiber of type I1 at v = ±1. In other words, the intersection of (7) and x =
±zy is a curve of geometric genus 0. It is easy to obtain a parametrization
of the intersection of (7) and x = ±zy with parameter t:

(x, y, z) =
(

t(µt + λ)
t + 1

, t2,
µt + λ

t(t + 1)

)
.

We thus obtain a map f : P1 → E1 × E2/{±1}. Let C be the curve that
makes the following diagram commutative:

C
f̃−−−−→ E1 × E2y y

P1 f−−−−→ E1 × E2/{±1}
C is the hyperelliptic curve given by the equation

(8) C : s2 = t(t + 1)(µt + λ)
(
µ2t4 + 4µt3 − 2(λµ − 2λ − 2µ)t2 + 4λt + λ2

)
.
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The discriminant of the right hand side is

212µ6λ12(λ − µ)12(λ − 1)2(µ − 1)2

Thus, C is a curve of genus 3 as long as λ, µ 6= 0, 1 and λ 6= µ. The
above commutative diagram shows that C admits maps ϕ1 : C → E1 and
ϕ2 : C → E2 given by

ϕ1 : (t, s) 7−→ (x, y) =
(

t(µt + λ)
t + 1

,
s

(t + 1)2

)
,

ϕ2 : (t, s) 7−→ (x, y) =
(

(µt + λ)
t(t + 1)

,
s

t2(t + 1)2

)
.

Theorem 3.1. Let λ and µ be two distinct elements of k \ {0, 1}, and let
C be the hyperelliptic curve given by the equation (8). Then C admits two
automorphisms σ and τ given by

σ : (t, s) 7−→
(
− µt + λ

µ(t + 1)
,

s(λ − µ)2

µ2(t + 1)4

)
,

τ : (t, s) 7−→
(
−λ(t + 1)

µt + λ
,
sλ2(λ − µ)2

(µt + λ)4

)
.

The quotients C/〈σ〉 and C/〈τ〉 are birationally equivalent to E1 and E2

given by (6), respectively. The quotient C/〈σ ◦ τ〉 is birationally equivalent
to the elliptic curve E3 given by

E3 : y2 = (x + λ + µ)(x2 + 4x − 4λµ + 4λ + 4µ),

and the quotient map ϕ3 : C → E3 is given by

ϕ3 : (t, s) 7−→ (x, y) =
(

µt +
λ

t
,

s

t2

)
.

The Jacobian J(C) of the hyperelliptic curve C is (2, 2, 2)-isogenous to the
product of elliptic curve E1 × E2 × E3.

Proof. A map that exchanges points in the inverse image ϕ−1
1 (P ) of each

point P ∈ E1 is an automorphism of C. σ is nothing but this automorphism.
Similarly, τ is the automorphism obtained by exchanging the inverse image
ϕ−1

2 (P ). Thus, the quotients C/〈σ〉 and C/〈τ〉 are birationally equivalent
to E1 and E2, respectively.

The automorphism σ ◦ τ is given by

σ ◦ τ : (t, s) 7−→
(

λ

µt
,

sλ2

µ2t4

)
.
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In the function field k(C) = k(t, s), two elements

x = µt +
λ

t
, and y =

s

t2

are invariant under σ ◦ τ . Using elimination theory, it is easy to see that
these x and y satisfy the equation of E3.

Since three elliptic curves E1, E2, E3 are generically not isomorphic, three
maps ϕ1, ϕ2, ϕ3 are independent. Therefore, the Jacobian J(C) of the
hyperelliptic curve C is (2, 2, 2)-isogenous to the product E1 ×E2 ×E3. ¤

The j-invariants of Ei are:

j1 = −16(λ2 − 16λ + 16)3

λ4(λ − 1)
,

j2 = −16(µ2 − 16µ + 16)3

µ4(µ − 1)
,

j3 =
16

(
(λ − µ)2 + 16(λ − 1)(µ − 1)

)3

(λ − µ)4(λ − 1)(µ − 1)
.

If µ = λ/(λ − 1), then j1 = j2. However, when µ = λ/(λ − 1), E2 is
isomoprphic to the quadratic twist

E1−λ
1 : (1 − λ)y2 = x

(
x2 − 2(λ − 2)x + λ2

)
.

Thus, if we set λ = 1− ν2 and µ = 1− 1/ν2, then E1 and E2 are isomorphic
over k, and their j-invariants are

(9) j1 = j2 =
16(ν4 + 14ν2 + 1)3

ν2(ν2 − 1)4
.

Then the j-invariant of E3 is given by

(10) j3 =
16(ν8 + 14ν4 + 1)3

ν4(ν4 − 1)4
.

Proposition 3.2. If k contains a root of the equation

(ν2 − ν + 1)(ν2 + ν + 1)(ν3 + ν2 + 3ν − 1)

(ν3 − ν2 + 3ν + 1)(ν3 − 3ν2 − ν − 1)(ν3 + 3ν2 − ν + 1)

(ν4 − 4ν3 + 10ν2 − 4ν + 1)(ν4 + 4ν3 + 10ν2 + 4ν + 1) = 0,

then there exists a hyperelliptic curve C over k whose Jacobian is (2, 2, 2)-
isogenous to the product E × E × E over at most a quadratic extension
of k.
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Proof. The above equation is obtained by equating (9) and (10). If ν is a
root, then all three elliptic curves E1, E2 and E3 have the same j-invariant.
Since E1 and E2 are isomorphic, we can make E3 isomorphic to these by at
most a quadratic extension of k. ¤

Example 3.3. If we put ν = ζ3, a primitive cube root of unity, then all three
elliptic curves Ei are isomorphic. After a suitable change of coordinates over
Q(ζ3), we obtain

E1
∼= E2

∼= E3 : y2 = x(x2 − 2x − 3),

C : s2 = t(t6 + 7t3 + 8).

The maps C → Ei are defined over Q(ζ3); they are given by

ϕ1 : (t, s) 7−→
(

ζ2
3 (t − 1)(t + 1 + ζ3)

t − ζ3
,

s

(t − ζ3)2

)
,

ϕ2 : (t, s) 7−→
(

3ζ2
3 (t + 1 + ζ3)

(t − 1)(t − ζ3)
,

3ζ3s

(t − 1)2(t − ζ3)2

)
,

ϕ3 : (t, s) 7−→
(

t2 + t + 1
t − 1

,
s

(t − 1)2

)
.

Example 3.4. Putting λ = 4 and µ = 4/3, we obtain

E1 : y2 = x(x2 − 4x + 16),

E2 : y2 = x
(
x2 +

4
3
x +

16
9

)
,

E3 : y2 = x(x + 4)
(
x +

16
3

)
.

In this case E1 is a quadratic twist of E2 by −3. The conductor of E2 and
the conductor of E3 are both 72. In fact, E2 is isogenous to E3 with the
isogeny given by

(x, y) 7→
(

(3x − 4)2

9x
,
y(9x2 − 16)

9x2

)
.

The curve C is given by

s′2 = 3t(t + 1)(t + 3)(t2 + 3)(t2 + 3t + 3),

where s′ = 9s/8. In this cace C is isogenous to E
(−3)
2 ×E2 ×E2 over Q and

thus isogenous to E2 ×E2 ×E2 over Q(
√
−3). The curve C in this example

is a quadratic twist by −3 of the curve in the previous example.

Question 3.5. Can we choose λ and µ such that E1, E2 and E3 are all
isogenous to each other over Q?
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vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 153–176.

[3] Everett W. Howe, Constructing distinct curves with isomorphic Jacobians in charac-
teristic zero, Internat. Math. Res. Notices (1995), no. 4, 173–180 (electronic).

[4] , Plane quartics with Jacobians isomorphic to a hyperelliptic Jacobian, Proc.
Amer. Math. Soc. 129 (2001), no. 6, 1647–1657 (electronic).
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