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DIHEDRAL QUINTIC FIELDS WITH A POWER BASIS

Melissa J. LAVALLEE, Blair K. SPEARMAN, Kenneth S. WILLIAMS
and Qiduan YANG

Abstract. It is shown that there exist infinitely many dihedral quintic
fields with a power basis.

1. Introduction

Let K be an algebraic number field of degree n. Let OK denote the
ring of integers of K. The field K is said to possess a power basis if there
exists an element θ ∈ OK such that OK = Z + Zθ+ · · · + Zθn−1. A field
having a power basis is called monogenic. Every quadratic field is monogenic.
Dedekind [3] gave an example of a cubic field which is not monogenic. If
K is a cyclic cubic field Gras [7], [8] and Archinard [1] have given necessary
and sufficient conditions for K to be monogenic. Dummit and Kisilevsky
[4] have shown that there exist infinitely many cyclic cubic fields which
are monogenic. The same has been shown for non-cyclic cubic fields, pure
quartic fields, bicyclic quartic fields, dihedral quartic fields by Spearman and
Williams [15], Funakura [6], Nakahara [14], Huard, Spearman and Williams
[10] respectively. It is not known if there are infinitely many monogenic
cyclic quartic fields. If K is a cyclic field of prime degree p ≥ 5 then Gras [9]
has proved that K is monogenic if and only if K is the maximal real subfield
of a cyclotomic field. In particular there is only one monogenic cyclic quintic
field.

In this paper we exhibit infinitely many monogenic dihedral quintic fields.
After giving some preliminary results in Section 2, we prove the following
theorem in Section 3.

Theorem. There are infinitely many integers b such that the quintic fields

Q(θ), θ5 − 2θ4 + (b + 2)θ3 − (2b + 1)θ2 + bθ + 1 = 0,

are distinct, dihedral and monogenic.

2. A parametric family of quintics

For an integer b we define

Fb(x) := x5 − 2x4 + (b + 2)x3 − (2b + 1)x2 + bx + 1, b ∈ Z.
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As x5 + x2 + 1 and x5 + x3 + x2 + x + 1 are irreducible (mod 2), we have

Lemma 2.1. Fb(x) is irreducible for all b ∈ Z.

Using MAPLE we find

Lemma 2.2. disc(Fb(x)) = (4b3 + 28b2 + 24b + 47)2.

We note that the cubic polynomial 4b3 + 28b2 + 24b + 47 is irreducible. The
polynomial Fb(x) is a special case of the polynomial Ra,b(x) (a, b ∈ Z) given
by

Ra,b(x) = x5 + (a − 3)x4 + (b − a + 3)x3 + (a2 − a − 1 − 2b)x2 + bx + a,

which was studied by Brumer [2] and Kondo [12]. Our polynomial Fb(x) is
obtained by setting a = 1. It is shown in [11, pp. 44-46] that the Ra,b form
a generic dihedral family and it is known when the Galois group of Ra,b is
cyclic of order 5. From this work we have the following two lemmas.

Lemma 2.3.

Gal(Fb(x)) = Z5, if − (4b3 + 28b2 + 24b + 47) is a square in Z.

Gal(Fb(x)) = D5, if − (4b3 + 28b2 + 24b + 47) is not a square in Z.

Lemma 2.4. If −(4b3 + 28b2 + 24b + 47) 6= square in Z then the quadratic
subfield of the splitting field of Fb(x) is

Q
(√

−4b3 − 28b2 − 24b − 47
)

.

3. Proof of theorem

By a theorem of Erdös [5] there are infinitely many integers b such that
4b3 + 28b2 + 24b + 47 is squarefree. For each such b let θb be a root of
Fb(x) = 0 and set Kb = Q (θb). By Lemma 2.3 each Kb is a dihedral quintic
field. The discriminant d(Kb) of Kb is given by

d(Kb) = d2
bf

4
b ,

where

db = discriminant of the quadratic subfield of the splitting field of Fb(x)

and
fb = conductor of Kb ∈ N,

see [13, p. 836]. By Lemma 2.4 we have

db = −4b3 − 28b2 − 24b − 47

so that
d(Kb) = (4b3 + 28b2 + 24b + 47)2f4

b .
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By Lemma 2.2 we have

disc(Fb(x)) = (4b3 + 28b2 + 24b + 47)2.

As d(Kb) divides disc(Fb(x)), we deduce that fb = 1 so that

d(Kb) = disc(Fb(x)) = ±(4b3 + 28b2 + 24b + 47)2.

Hence Kb has a power basis (namely
{
1, θb, θ

2
b , θ

3
b , θ

4
b

}
) and so is monogenic.

As
4k3 + 28k2 + 24k + 47 = ±(4b3 + 28b2 + 24b + 47)

has at most six solutions for a given integer b, we can pick an infinite sub-
sequence of the original sequence of b’s for which 4b3 + 28b2 + 24b + 47 is
squarefree in such a way that all the fields Kb are distinct. ¤

If 4b3 + 28b2 + 24b + 47 is squarefree the dihedral quintic field Kb has the
power basis

{
1, θ, θ2, θ3, θ4

}
, where we have written θ for θb. In addition Kb

also has the power bases
{
1, φ, φ2, φ3, φ4

}
with

φ1 = bθ − (b + 1)θ2 + θ3 − θ4

and
φ2 = (2b + 1)θ − (b + 2)θ2 + 2θ3 − θ4.

This follows as the minimal polynomials of φ1 and φ2 are by MAPLE

x5 + x4 + (b + 3)x3 + (b + 4)x2 + 3x + 1

and

x5 − 4bx4 + (6b2 − 2b − 1)x3 + (−4b3 + 6b2 + 4b + 2)x2

+ (b4 − 6b3 − 5b2 − 4b − 2)x + (2b4 + 2b3 + 2b2 + 2b + 1)

respectively, each of discriminant (4b3 + 28b2 + 24b + 47)2.
When b = 0, we have the additional eight power bases

{
1, φ, φ2, φ3, φ4

}
given by

φ1 = θ3 − θ4,

φ2 = 2θ − 2θ2 + 2θ3 − θ4,

φ3 = θ + θ3,

φ4 = θ − 2θ2 + θ3,

φ5 = 6θ − 7θ2 + 5θ3 − 2θ4,

φ6 = θ2 − θ3,

φ7 = θ − θ2 + θ3,

φ8 = θ − θ2.
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We do not know if there are any more power bases when b = 0.
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Sci. Univ. Besançon 3, No. 6, 26 pp, 1973.

[8] M.-N. Gras, Lien entre le groupe des unités et la monogéneite des corps cubiques
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