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DERIVATIONS AND AUTOMORPHISMS
ON THE ALGEBRA OF

NON-COMMUTATIVE POWER SERIES

Kentaro IHARA

Abstract. Motivated by the study of multiple zeta values, we discuss
several linear operators on the algebra of non-commutative formal power
series k〈〈x, y〉〉 over a field k of characteristic zero. Especially a family
of derivations whose elements commute with each other is defined and
automorphisms which correspond to these derivations via exponential
map are described explicitly.

1. Introduction

Let H = k〈x, y〉 be the non-commutative polynomial algebra in two in-
determinates x and y over a field k of characteristic zero. For any positive
integer n, define the derivations D′

n, D′
n and ∂n on H by

D′
n(x) = 0, D′

n(y) = xny, D′
n(x) = xyn, D′

n(y) = 0,

∂n(x) = x(x + y)n−1y, ∂n(y) = −x(x + y)n−1y.

Note that any derivation on H is uniquely determined by the values on the
generators x and y. Define the derivations on Ĥ := k〈〈x, y〉〉, the non-
commutative power series algebra, by D′ =

∑
n≥1

D′
n

n , D′ =
∑

n≥1
D′

n
n , and

∂ =
∑

n≥1
∂n
n .

In [1], Kaneko, Zagier and the author have established a relation among
their exponentials:

exp(∂) = exp(D′) exp(−D′),(1.1)

where, as usual, exp(d) = ed =
∑

m≥0
dm

m! for d = D′, D′ and ∂, which are
the automorphisms of Ĥ. To show the identity, we need to compute the
images of the automorphisms eD′

, eD′
, e∂ on the generators x and y. They

are given by

eD′
(x) = x, eD′

(y) = (1 − x)−1y, eD′
(x) = x(1 − y)−1, eD′

(y) = y,

e∂(x) = x(1 − y)−1, e∂(y) = (1 − x(1 − y)−1)−1y,
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where (1−w)−1 = 1+w +w2 + · · · defines an element in Ĥ for any element
w of degree ≥ 1. In general, it is a hard task to compute the exponential
of a given derivation. Using this formula, one can compute the composition
of the automorphisms and easily check the identity. In the recent study
of multiple zeta values these derivations and the relation (1.1) were used
effectively. (For more information, see below.)

In this paper, we shall consider closely a series of derivations

Dn := Dn(α, β, γ, δ) (α, β, γ, δ ∈ k)

(introduced in Section 7 in [1], see below for the precise definition), which
generalizes the above D′

n, D′
n and ∂n. First, in Section 2, Proposition 1,

we shall prove their mutual commutativity, i.e., DmDn = DnDm for any
fixed parameters α, β, γ, δ, and then, in Section 3, Theorem 1, we shall give
an explicit formula that computes how the exponential of the derivation∑

n cnDn(α, β, γ, δ), (where {c1, c2, . . .} is an arbitrary sequence of elements
of k) acts on the generators of Ĥ.

As mentioned above, these results are motivated by a recent study of the
multiple zeta values. Before closing this introduction, we shall explain more
about our background problem and related results from the viewpoint of
studies of the multiple zeta values. The multiple zeta values (MZV’s) are
defined by the series

ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1
mk1

1 mk2
2 · · ·mkn

n

∈ R,

where the exponents ki’s are positive integers and k1 > 1. They satisfy many
linear relations over Q, the simplest of which is ζ(3) = ζ(2, 1) found by Euler.
In [1], Kaneko, Zagier and the author found certain relations among MZV’s
called derivation relations. They also showed that the derivation relations
are equivalent in some sense to the other relations which had been found by
Ohno.

To review this, we use the algebraic setup introduced by Hoffman [2]. In
the rest of this introduction, we take the rationals Q as the base field k. Let
H0 := Q + xHy be a subalgebra of H = Q〈x, y〉, and Z : H0 −→ R be the
Q-linear map which maps each monomial (word) xk1−1yxk2−1y · · ·xkn−1y in
H0 to the value ζ(k1, k2, . . . , kn). Having defined the map Z, one of the main
problems in the theory of MZV’s is to find the structure of Ker Z. Producing
elements of Ker Z amounts to finding linear relations among MZV’s. For
example x2y − xy2 is in Ker Z, which corresponds to ζ(3) = ζ(2, 1). Then
the derivation relations are stated as

∂n(H0) ⊂ Ker Z
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for any n ≥ 1. The D′
n and D′

n are used to describe the other relations which
were proved by Y. Ohno [3], and the identity (1.1) showes the equivalence
between the derivation relations and Ohno’s relations. From these point
of view, we think that it is important to study the class of derivations
Dn(α, β, γ, δ) and their exponential automorphisms.

Acknowledgements. The author is grateful to Prof. Masanobu Kaneko,
Jyun Kajikawa and the referee who read the manuscript and suggested sev-
eral important improvements of the exposition.

2. Derivations

Let Ĥ = k〈〈x, y〉〉 be the algebra of non-commutative formal power series
in two indeterminates over a commutative field k of characteristic zero. The
algebra Ĥ is complete with respect to the grading defined by deg x = deg y =
1. The space of all derivations of Ĥ over k form a Lie algebra, denoted by
Der(Ĥ), with usual commutater bracket: [d, d′] := dd′ − d′d. On the other
hand, the set of all automorphisms of Ĥ over k form a group, denoted by
Aut(Ĥ). Note that both derivations and automorphisms on Ĥ are deter-
mined by the values on generators of Ĥ. Let Der+(Ĥ) be the Lie subalgebra
consisting of derivations which increase the degree, or equivalently which
induce the zero derivation on the associated graded algebra gr(Ĥ) =

⊕
Ĥn/Ĥn+1, where Ĥn is the subspace of Ĥ generated by the words of degree
≥ n. Let Aut1(Ĥ) be the subgroup of Aut(Ĥ) consisting of automorphisms
φ such that φ(x)−x and φ(y)−y belong to Ĥ2, or equivalently which induce
the identity automorphism on gr(Ĥ). There is a one to one correspondence
between the Lie subalgebra Der+(Ĥ) and the subgroup Aut1(Ĥ) via the ex-
ponential and the logarithm maps; exp(d) = ed =

∑
m≥0

dm

m! for d ∈ Der+(Ĥ)

and log φ = −
∑

m≥1
(1−φ)m

m for φ ∈ Aut1(Ĥ). We have used the condition
that the characteristic of k is zero to make these definitions well defined.

Let {a, b} be an arbitrary set of (topological) generators of Ĥ, for example
a and b are both linear combinations of x and y which are not proportional.
In this paper we will fix such {a, b} once and for all.

In Proposition 14 of [1], the following derivations were defined, which
generalize {Dn}, {Dn} and {∂n} in the introduction. Here we consider them
in a slightly generalized setting that the generators a and b need not be
of degree 1 homogeneous elements. The proof of Proposition 1 below was
omitted in [1] and so we give it here.
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Definition 1. For all n > 0 and elements α, β, γ, δ in k, define the deriva-
tions Dn := Dn(α, β, γ, δ) = Dn({a, b}; α, β, γ, δ) by

Dn(a) = 0, Dn(b) = αan+1 + βanb + γban + δban−1b,

which are clearly in Der+(Ĥ).

The derivations D′
n, D′

n and ∂n in the introduction are special cases of
Dn:

D′
n = Dn({x, y}; 0, 1, 0, 0), D′

n = Dn({y, x}; 0, 0, 1, 0),

∂n = Dn({x + y, x}; 0, 0, 1,−1) = Dn({x + y, y}; 0,−1, 0, 1).

Proposition 1. The derivations {Dn} commute with each other:

[Dm, Dn] = 0 for all m,n ≥ 1.

Proof. Clearly the [Dm, Dn] is also a derivation on Ĥ, so it is enough to
check the images of a and b are both 0. [Dm, Dn](a) = 0 is trivial. Put
u = αa + βb and v = γa + δb, then we have Dn(b) = anu + ban−1v. First we
have

Dm(u) = β(amu + bam−1v) = am(βu − αv) + uam−1v,

Dm(v) = δ(amu + bam−1v) = am(δu − γv) + vam−1v.

From this, we have

DmDn(b) = Dm(anu + ban−1v)

= anDm(u) + Dm(b)an−1v + ban−1Dm(v)

= an(am(βu − αv) + uam−1v) + (amu + bam−1v)an−1v

+ ban−1(am(δu − γv) + vam−1v)

= am+n(βu − αv) + (anuam−1v + amuan−1v)

+ bam+n−1(δu − γv) + (bam−1van−1v + ban−1vam−1v).

Since the last expression is symmetric in m and n, we have [Dm, Dn](b) =
0. ¤

To consider any linear combination of Dn’s, we use the notation Df which
was introduced in [1]:

Definition 2. Let f(X) =
∑

n≥1 cnXn ∈ Xk[[X]] be a formal power series
in one indeterminate X without constant term. We define the derivation
Df := Df (α, β, γ, δ) ∈ Der+(Ĥ) by Df (α, β, γ, δ) =

∑
n≥1 cnDn(α, β, γ, δ).
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Note that the action of Df on generators {a, b} is given by

Df (a) = 0,

Df (b) = αf(a)a + βf(a)b + γbf(a) + δb
f(a)

a
b

= f(a)u + b
f(a)

a
v

where u = αa + βb and v = γa + δb. The element f(a)
a ∈ Ĥ is given by

substituting a for X in the power series f(X)
X ∈ k[[X]].

It clearly holds that tDf = Dtf and Df + Dg = Df+g for any elements
t ∈ k and f(X), g(X) in Xk[[X]]. As a consequence of Proposition 1, we
have [Df , Dg] = 0 for any f, g ∈ Xk[[X]]. In other words, the space of
derivations {Df | f ∈ Xk[[X]]} forms a commutative Lie subalgebra in
Der+(Ĥ).

3. Automorphisms

In the previous section we defined the derivations Df depending on the
fixed basis {a, b}, coefficients α, β, γ, δ, and the series f(X) ∈ Xk[[X]]. In
this section we give an explicit description of the corresponding exponential
automorphisms.

Definition 3. Let h(X) ∈ 1+Xk[[X]] be a power series with constant term
1. We define an automorphism ∆h as follows: Denote by ε and ε′ the two
roots of the quadratic equation T 2 + (β + γ)T + αδ = 0 and put ω = ε− ε′.
The elements ε, ε′ and ω belong to a quadratic extension K of k, and the
elements ε + ε′ = −(β + γ) and εε′ = αδ are in k.

Let ∆h ∈ Aut1(Ĥ) be the automorphism defined by the following action
on generators: ∆h(a) = a and

∆h(b) = h(a)β+ε
[
b +

h(a)−ω − 1
−ω

(αa − εb)
]

(3.1)

×
[
1 +

h(a)ω − 1
ωa

(εa − δb)
]−1

h(a)γ+ε

= h(a)β
[
(h(a)ε − h(a)ε′)αa − (ε′h(a)ε − εh(a)ε′)b

]
(3.2)

×
[
(εh(a)ε − ε′h(a)ε′) − h(a)ε − h(a)ε′

a
δb

]−1
h(a)−β

where h(a)λ = exp(λ log h(a)) for any λ ∈ K, and the quotients (h(a)ω −
1)/ωa and (h(a)ε − h(a)ε′)/a define the elements of K〈〈x, y〉〉, since each
numerator has no constant term, one can divide it by a. In the case ω = 0,
we regard the elements (h(a)−ω − 1)/(−ω) and (h(a)ω − 1)/ωa as log h(a)
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and (log h(a))/a respectively. Since the expression (3.2) is symmetric in ε

and ε′, it defines an element of Ĥ.

First we check the expression (3.1) equals (3.2):

Ah : = h(a)β+ε
[
b +

h(a)−ω − 1
−ω

(αa − εb)
]

= h(a)β
[h(a)ε − h(a)ε′

ω
αa +

(
h(a)ε − ε(h(a)ε − h(a)ε′)

ω

)
b
]

= h(a)β
[h(a)ε − h(a)ε′

ω
αa − ε′h(a)ε − εh(a)ε′

ω
b
]
.(3.3)

On the other hand, we have

B−1
h : =

[
1 +

h(a)ω − 1
ωa

(εa − δb)
]−1

h(a)γ+ε

=
[
1 +

h(a)ω − 1
ωa

(εa − δb)
]−1

h(a)−(β+ε′)

=
[
h(a)ε′ +

ε(h(a)ε − h(a)ε′)
ω

− h(a)ε − h(a)ε′

ωa
δb

]−1
h(a)−β

=
[εh(a)ε − ε′h(a)ε′

ω
− h(a)ε − h(a)ε′

ωa
δb

]−1
h(a)−β .(3.4)

Thus we have showed that (3.1)=(3.2). Since the equation (3.4) defines
an invertible element of Ĥ, we denote the inverse by Bh. Hence we have
∆h(b) = AhB−1

h .

Theorem 3.1. For any f(X) ∈ Xk[[X]], set h(X) = ef(X) ∈ 1 + Xk[[X]].
Then we have

∆h = exp(Df ).(3.5)

Proof. For the derivation Df , we can consider the 1-dimensional commu-
tative Lie subalgebra {tDf = Dtf} spanned by Df . Then the image of
the Lie algebra under the exponential map forms a 1-parameter subgroup
{etDf = eDtf } of Aut1(Ĥ). The tangent vector along the path at the unit
(identity automorphism on Ĥ) corresponds to log(eDf ) = Df . Therefore
it is enough to show that (i) d

dt∆ht |t=0 = Df , and (ii) ∆gh = ∆g∆h for
g, h ∈ 1 + Xk[[X]], i.e., the map h 7→ ∆h is a group homomorphism.

For (i), from the definition of Df and ∆h it is clear that d
dt∆ht(a)|t=0 =

Df (a) = 0. Next we have from (3.1)

∆ht(b) = h(β+ε)t
[
b +

h−ωt − 1
−ω

(αa − εb)
][

1 +
hωt − 1

ωa
(εa − δb)

]−1
h(γ+ε)t,
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where we write h for h(a) for simplicity. By using the formula d
dth

λt|t=0 =
d
dte

λtf(a)|t=0 = λf(a) for λ ∈ K, we have

d

dt
∆ht(b)

∣∣
t=0

= (β + ε)f(a)b + f(a)(αa − εb) − b
f(a)

a
(εa − δb)

+ b(γ + ε)f(a)

= αf(a)a + βf(a)b + γbf(a) + δb
f(a)

a
b

= f(a)u + b
f(a)

a
v.

This coincides with the expression in Definition 2. For the proof of (ii) we
need the following lemma which will be proved later:

Lemma 3.2. For any g, h ∈ 1 + Xk[[X]], we obtain

∆g(Ah)Bg = Agh, ∆g(Bh)Bg = Bgh(3.6)

where Ah, Bh are the elements defined above.

Using this lemma we can prove (ii):

∆g(∆h(a)) = a = ∆gh(a),

∆g(∆h(b)) = ∆g(AhB−1
h ) = ∆g(Ah)∆g(Bh)−1

= (AghB−1
g )(BghB−1

g )−1 = AghB−1
gh = ∆gh(b).

Proof of Lemma. We continue to write h instead of h(a) and denote equa-
tions (3.3) and (3.4) simply as

Ah = hβ
[
(hε − hε′)αa − (ε′hε − εhε′)b

]/
ω,

Bh = hβ
[
(εhε − ε′hε′) − hε − hε′

a
δb

]/
ω,

and ∆h(b) = AhB−1
h . We obtain

∆g(Ah)Bg = hβ
[
(hε − hε′)αa − (ε′hε − εhε′)∆g(b)

]
Bg/ω

= hβ
[
(hε − hε′)αaBg − (ε′hε − εhε′)Ag

]
/ω

= (gh)β
[
(hε − hε′)αa

{
(εgε − ε′gε′) − gε − gε′

a
δb

}
− (ε′hε − εhε′)

{
(gε − gε′)αa − (ε′gε − εgε′)b

}]/
ω2

= (gh)β
[{

(hε − hε′)(εgε − ε′gε′) − (ε′hε − εhε′)(gε − gε′)
}
αa

−
{
(hε − hε′)(gε − gε′)αδ − (ε′hε − εhε′)(ε′gε − εgε′)

}
b
]/

ω2
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= (gh)β
[{

(gh)ε − (gh)ε′
}
αa −

{
ε′(gh)ε − ε(gh)ε′

}
b
]/

ω = Agh.

Similarly we obtain

∆g(Bh)Bg = hβ
[
(εhε − ε′hε′) − hε − hε′

a
δ∆g(b)

]
Bg

/
ω

= hβ
[
(εhε − ε′hε′)Bg −

hε − hε′

a
δAg

]/
ω

= (gh)β
[
(εhε − ε′hε′)

{
(εgε − ε′gε′) − gε − gε′

a
δb

}
− hε − hε′

a
δ
{
(gε − gε′)αa − (ε′gε − εgε′)b

}]/
ω2

= (gh)β
[{

(εhε − ε′hε′)(εgε − ε′gε′) − (hε − hε′)(gε − gε′)αδ
}

−
{(εhε − ε′hε′)(gε − gε′)

a
− (hε − hε′)(ε′gε − εgε′)

a

}
δb

]/
ω2

= (gh)β
[{

ε(gh)ε − ε′(gh)ε′
}
− (gh)ε − (gh)ε′

a
δb

]/
ω = Bgh.

Thus we conclude the proof of Lemma and Theorem 3.1. ¤
The following theorem is a special case of Theorem 1, but is worth stating

separately because of the conciseness of the expression.

Theorem 3.3. Suppose that α, β, γ, δ ∈ k satisfy αδ − βγ = 0. Then the
derivation Df is defined by the images Df (a) = 0, Df (b) = w f(a)

a w′ on the
generators for some w,w′ ∈ ka + kb and the automorphism ∆h = exp(Df )
for h = ef sends the generators to

∆h(a) = a,

∆h(b) =
[
b +

h(a)β−γ − 1
β − γ

u
][

1 − h(a)β−γ − 1
(β − γ)a

v
]−1

,(3.7)

where u = αa + βb, v = γa + δb.

Proof. The condition αδ−βγ = 0 is equivalent to that one can write u = λw′

and v = µw′ for some λ, µ ∈ k and w′ ∈ ka+kb. If we put w = λa+µb then
we have

Df (b) = f(a)u + b
f(a)

a
v = f(a)λw′ + b

f(a)
a

µw′

= (λa + µb)
f(a)

a
w′ = w

f(a)
a

w′.

In this case one can take −β and −γ respectively as the roots ε and ε′ of
the quadratic equation. Then we have −ω = β − γ. Therefore from (3.3) we
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obtain

Ah =
[
b +

h(a)β−γ − 1
β − γ

(αa + βb)
]
.

On the other hand, since the equation (3.4) is symmetric in ε and ε′, we
have

B−1
h =

[
1 +

h(a)−ω − 1
−ωa

(ε′a − δb)
]−1

h(a)−(β+ε)

=
[
1 − h(a)β−γ − 1

(β − γ)a
(γa + δb)

]−1
.

Hence we conclude the proof. ¤
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