UNIT GROUPS OF A CERTAIN CLASS OF COMPLETELY PRIMARY FINITE RINGS

Chiteng’a John CHIKUNJI

Abstract. A completely primary finite ring is a ring R with identity $1 \neq 0$ whose subset of all its zero-divisors forms the unique maximal ideal J. Let R be a commutative completely primary finite ring with the unique maximal ideal J such that $J^3 = (0)$ and $J^2 \neq (0)$. Then $R/J \cong GF(p^r)$ and the characteristic of R is p^k, where $1 \leq k \leq 3$, for some prime p and positive integer r. Let $R_o = GR(p^{kr}, p^k)$ be a Galois subring of R and let the annihilator of J be J^2 so that $R = R_o \oplus U \oplus V$, where U and V are finitely generated R_o-modules. Let non-negative integers s and t be numbers of elements in the generating sets for U and V, respectively. When $s = 2, t = 1$ and the characteristic of R is p^2 and p^3; and when $s = 2, t = 2$ and the characteristic of R is p, the structure of the group of units R^* of the ring R and its generators have been determined; these depend on the structural matrices (a_{ij}) and on the parameters p, k, r, s and t.

1. INTRODUCTION

This is a sequel to [3] and throughout this paper we will assume that all rings are commutative rings with identity, that ring homomorphisms preserve identities, and that a ring and its subrings have the same identity. To recall, the problem is to determine the group of units R^* of a commutative completely primary finite ring R with unique maximal ideal J such that $R/J \cong GF(p^r)$, $J^3 = (0)$ and $J^2 \neq (0)$ so that the characteristic of R is p^k, for some prime p and positive integers r and k, where $1 \leq k \leq 3$; and further identify sets of linearly independent generators for R^*. In particular, let $R_o = GR(p^{kr}, p^k)$ be a Galois ring and let the annihilator of J be J^2 so that $R = R_o \oplus U \oplus V$, where U and V are finitely generated R_o-modules. Let non-negative integers s and t be numbers of elements in the generating sets for U and V, respectively.

In the companion paper to the present we have determined R^* when $s = 2, t = 1$ and $\text{char} R = p$; and when $t = \frac{s(s+1)}{2}$, for any fixed positive integer s, and we turn our attention here to the case where $s = 2, t = 1$ and characteristic of R is p^2 and p^3; and the case where $s = 2, t = 2$ and $\text{char} R = p$. Our earlier strategy (that of considering different types of symmetric matrices) is thus not viable anymore and we have to follow a different
approach; that is, that of considering structural matrices of isomorphism classes of these types of rings with the same invariants p, r, k, s, and t.

We refer the reader to [1] for the general background of completely primary finite rings R with maximal ideals J such that $J^3 = (0)$ and $J^2 \neq (0)$. Let R be a completely primary finite ring with maximal ideal J such that $J^3 = (0)$ and $J^2 \neq (0)$. Then R is of order p^{nr} and the residue field R/J is a finite field $GF(p^r)$, for some prime p and positive integers n, r. The characteristic of R is p^k, where k is an integer such that $1 \leq k \leq 3$. Let $\mathbb{G}(p^{k^r}, p^k)$ be the Galois ring of characteristic p^k and order p^{k^r}, i.e., $\mathbb{G}(p^{k^r}, p^k) = \mathbb{Z}_{p^k}[x]/(f)$, where $f \in \mathbb{Z}_{p^k}[x]$ is a monic polynomial of degree r whose image in $\mathbb{Z}_p[x]$ is irreducible. Then, it can be deduced from the main theorem in [6] that R has a coefficient subring R_0 of the form $\mathbb{G}(p^{k^r}, p^k)$ which is clearly a maximal Galois subring of R. Moreover, there exist elements $m_1, m_2, \ldots, m_h \in J$ and automorphisms $\sigma_1, \ldots, \sigma_h \in Aut(R_0)$ such that

$$R = R_0 \oplus \sum_{i=1}^{h} R_0 m_i$$

(as R_0-modules), $m_i r = r^{\sigma_i} m_i$, for every $r \in R_0$ and any $i = 1, \ldots, h$. Further, $\sigma_1, \ldots, \sigma_h$ are uniquely determined by R and R_0. The maximal ideal of R is

$$J = pR_0 \oplus \sum_{i=1}^{h} R_0 m_i.$$

It is worth noting that R contains an element b of multiplicative order $p^r - 1$ and that $R_0 = \mathbb{Z}_{p^k}[b]$ (see, e.g. 1.3 in [1]).

The following results will be assumed (see [7] and [2]):

Proposition 1.1. Let R be a completely primary finite ring (not necessarily commutative). Then,

(i) the group of units R^* of R contains a cyclic subgroup $< b >$ of order $p^r - 1$, and R^* is a semi-direct product of $1 + J$ and $< b >$;

(ii) the group of units R^* is solvable;

(iii) if G is a subgroup of R^* of order $p^r - 1$, the group G is conjugate to $< b >$ in R^*;

(iv) if R^* contains a normal subgroup of order $p^r - 1$, the set $K_0 = < b > \cup\{0\}$ is contained in the center of the ring R;

(v) $(1 + J^i)/(1 + J^{i+1}) \cong J^i/J^{i+1}$ (the left hand side as a multiplicative group and the right hand side as an additive group).

Lemma 1.2. [2, 2.7.] Let R be a completely primary finite ring of characteristic p^k and with Jacobson radical J. Let R_0 be a Galois subring of R. If
$m \in J$ and p^t is the additive order of m, for some positive integer t, then $|R_om| = p^{tr}$.

Now let R be a commutative completely primary finite ring with maximal ideal J such that $J^3 = (0)$ and $J^2 \neq (0)$. In [1], the author gave constructions describing these rings for each characteristic and for details, we refer the reader to sections 4 and 6 of [1].

If R is a commutative completely primary finite ring with maximal ideal J such that $J^3 = (0)$ and $J^2 \neq (0)$, then from Constructions A and B in [1],

$$R = R_o \oplus U \oplus V \oplus W$$

and

$$J = pR_o \oplus U \oplus V \oplus W,$$

where the R_o—modules U, V and W are finitely generated. The structure of R is characterized by the invariants p, n, r, d, s, t and λ; and the linearly independent matrices (a_{ij}^k) defined in the multiplication. Let $ann(J)$ denote the two sided annihilator of J in R. Notice that since $J^2 \subseteq ann(J)$, we can write $R = R_o \oplus U \oplus M$, and hence, $J = pR_o \oplus U \oplus M$, where $M = V \oplus W$, and the multiplication in R may be written accordingly. It is therefore easy to see that the description of rings of this type reduces to the case where $ann(J)$ coincides with J^2. Therefore, when investigating the structure of the group of units of this type of rings for a given order, say p^{nr}, where $ann(J)$ does not coincide with J^2, we shall first write all the rings of this type of order $\leq p^{nr}$, where $ann(J)$ coincides with J^2.

In what follows, we assume that $ann(J) = J^2$.

Let $R_o = GR(p^{kr_0}, p^k)$ $(1 \leq k \leq 3)$ and let non-negative integers s and t be numbers of elements in the generating sets $\{u_1, ..., u_s\}$ and $\{v_1, ..., v_t\}$ for finitely generated R_o—modules U and V, respectively, where $t \leq \frac{s(s+1)}{2}$. Assume that u_1, u_2, ..., u_s and v_1, ..., v_t are commuting indeterminates. Then $R = R_o \oplus U \oplus V$.

As before, and since R is commutative,

$$R^* = < b > \cdot (1 + J) \cong < b > \times (1 + J);$$

a direct product.

Again, notice that since R is of order p^{nr} and $R^* = R - J$, it is easy to see that $|R^*| = p^{(n-1)r}(p^r - 1)$ and $|1 + J| = p^{(n-1)r}$, so that $1 + J$ is an abelian p—group. Thus, $R^* \cong (\text{Abelian } p\text{—group}) \times (\text{cyclic group of order } |R/J|-1)$. Our goal is to determine the structure and identify a set of generators of the multiplicative abelian p—group $1 + J$.
2. THE GROUP $1 + J$

In this section we determine the structure of the abelian p–group $1 + J$. We do this case by case based on the characteristic of the ring R and the invariants s and t.

Now let R be a commutative completely primary finite ring with maximal ideal J such that $J^3 = (0)$ and $J^2 \neq (0)$. Let $1 + J$ be the abelian p–subgroup of the unit group R^*.

The group $1 + J$ has a filtration $1 + J \supset 1 + J^2 \supset 1 + J^3 = \{1\}$ with filtration quotients $(1 + J)/(1 + J^2)$ and $(1 + J^2)/\{1\} = 1 + J^2$ isomorphic to the additive groups J/J^2 and J^2, respectively.

Remark. Notice that $1 + J^2$ is a normal subgroup of $1 + J$. But, in general, $1 + J$ does not have a subgroup which is isomorphic to the quotient $(1 + J)/(1 + J^2)$ as may be illustrated by the following example.

EXAMPLE: Let $R = \mathbb{Z}_{p^3}$, where p is an odd prime. Then $J = p\mathbb{Z}_{p^3}$, $\text{ann}(J) = J^2$, and $1 + J \cong \mathbb{Z}_{p^2}$, $1 + J^2 \cong \mathbb{Z}_p$, $(1 + J)/(1 + J^2) \cong \mathbb{Z}_p$.

Remark. In view of the above remark and example, we investigate the structure of $1 + J$ by considering various subgroups of $1 + J$.

The following result is fundamental in the study of the group of units of the rings in this paper.

Lemma 2.1. Let R and S be rings (not necessarily rings considered in this paper). Then every (ring) isomorphism between R and S restricts to an isomorphism between R^* and S^*.

However, it is not always true that if $R^* \cong S^*$, then the rings R and S are isomorphic as may be illustrated by the following: $\mathbb{Z}^* = \{1, -1\} \cong \mathbb{Z}_3^* = \{1, 2\}$, while \mathbb{Z} (infinite) and \mathbb{Z}_3 (finite) are non-isomorphic rings.

2.1. **The case when char$R = p^2$, $s = 2$ and $t = 1$.** Let the characteristic of the ring R be p^2, and let $s = 2$ and $t = 1$. Then

$$R = R_o \oplus R_o u_1 \oplus R_o u_2 \oplus R_o v_1,$$

and the Jacobson radical

$$J = pR_o \oplus R_o u_1 \oplus R_o u_2 \oplus R_o v_1,$$

where $R_o = GR(p^{2r}$, p^2), the Galois ring of characteristic p^2 and order p^{2r}, for any positive integer r, and prime integer p, and we have

$$u_i u_j = a_{ij}^1 p + a_{ij}^2 pu_1 + a_{ij}^3 pu_2 + a_{ij}^4 v_1,$$

where a_{ij}^1, a_{ij}^2, a_{ij}^3, $a_{ij}^4 \in R_o/pR_o$.
From the definition of the multiplication in the ring R, we deduce two cases; namely, (i) the case when $p \in J^2$, and (ii) the case when $p \in J - J^2$. These cases do not overlap and we treat them in turn.

2.1.1. Case (i). Suppose that $p \in J^2$. Then the multiplication in R is as defined

$$u_i u_j = a^1_{ij} p + a^2_{ij} v_1.$$

Since these four products span J^2, the symmetric matrices $A = (a^1_{ij})$, $B = (a^2_{ij})$ are linearly independent, and one verifies that any such pair of matrices gives rise to a ring of the present type. If we change to new generators u_1', u_2', v_1' with corresponding matrices A', B', then u_1', u_2' are linear combinations of u_1, u_2, v_1, p. Since $J^3 = (0)$, we may assume that the coefficients of v_1, p are zero and write

$$u_i = p_1 u_1 + p_2 u_2,$$

and compare coefficients of v_1, p we obtain equations which, in matrix form are:

$$\begin{align*}
P^t A P &= k A', \\
P^t B P &= m A' + B',
\end{align*}$$

where P^t is the transpose of the matrix P. The problem of classifying the present class of rings up to isomorphism is now readily seen to amount to that of classifying pairs of symmetric matrices (A, B) under the above equivalence relation, in which $P \in GL_2(R_o/pR_o)$, $k \in (R_o/pR_o)^*$, $m \in R_o/pR_o$ are arbitrary. Observe that $Q = \begin{pmatrix} k & 0 \\ m & 1 \end{pmatrix}$ is the transition matrix from the basis $\{v_1, p\}$ of J^2 to the basis $\{v_1', p\}$. This is similar to the situation of [4, 5], wherein Q is an element of GL_2. We deduce from Theorem 3 in [5] that if $p = 2$, there are up to isomorphism, three commutative rings with pairs of structural matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

and from Theorem 3 in [4] that if p is odd, there are up to isomorphism, three commutative rings with pairs of structural matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

where g is a fixed non-square in $(R_o/pR_o)^*$.

We now determine the structure of $1 + J$. Notice that

$$1 + J = 1 + pR_o \oplus R_o u_1 \oplus R_o u_2 \oplus R_o v_1.$$
To simplify our notation, we shall call a ring with characteristic 2^2, a ring of Type I, if it is isomorphic to a ring with structural matrices

$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;

and a ring of Type II if it is isomorphic to a ring with structural matrices

$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Proposition 2.2. If $\text{char } R = p^2$, $s = 2$, $t = 1$, and suppose that $p \in J^2$. Then

(i) $1 + J \cong \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r$, if p is odd; and when $p = 2$,

(ii) $1 + J \cong \left\{ \begin{array}{ll}
\mathbb{Z}_2^r \times \mathbb{Z}_2^r, & \text{if } R \text{ is of Type I;} \\
\mathbb{Z}_2^r \times \mathbb{Z}_2^r \times \mathbb{Z}_2^r, & \text{if } R \text{ is of Type II.}
\end{array} \right.$

Proof. If $p \in J^2$, let $a = 1 + x$ be an element of $1 + J$ with the highest possible order and assume that $x \in J - J^2$. Then

$$o(a) = \begin{cases} p, & \text{if } p \text{ is odd;} \\
p^2, & \text{if } p = 2.\end{cases}$$

This is true because

$$(1 + x)^p = 1 + px + \frac{p(p-1)}{2}x^2 \quad (\text{since } x^3 = 0)$$

$$= 1 + \frac{p(p-1)}{2}x^2 \quad (\text{since } p \in J^2 \text{ and } px = 0).$$

It is easy to see that if p is odd, then $(1 + x)^p = 1$; and if $p = 2$, then $(1 + x)^p = 1 + x^2$. But then

$$(1 + x^2)^2 = 1 + 2x^2 + x^4$$

$$= 1, \quad \text{since } x^3 = 0 \text{ and } 2x^2 = 0.$$

Now, let $\varepsilon_1, \ldots, \varepsilon_r \in R_o$ with $\varepsilon_1 = 1$ such that $\overline{\varepsilon}_1, \ldots, \overline{\varepsilon}_r \in R_o/pR_o \cong GF(p')$ form a basis for $GF(p')$ over $GF(p)$.

We consider the two cases separately. So, suppose that p is odd. We first note the following results: For each $i = 1, \ldots, r$, $\varepsilon_{i}p, (1 + \varepsilon_{i}p)^p = 1$, $(1 + \varepsilon_{i}u_1)^p = 1, (1 + \varepsilon_{i}u_2)^p = 1, (1 + \varepsilon_{i}v_1)^p = 1$, and $g^p = 1$ for all $g \in 1 + J$.

For integers $k_i, l_i, m_i, n_i \leq p$, we assert that

$$\prod_{i=1}^{r}(1 + \varepsilon_{i}p)^{k_i} \cdot \prod_{i=1}^{r}(1 + \varepsilon_{i}u_1)^{l_i} \cdot \prod_{i=1}^{r}(1 + \varepsilon_{i}u_2)^{m_i} \cdot \prod_{i=1}^{r}(1 + \varepsilon_{i}v_1)^{n_i} = 1,$$

will imply $k_i = l_i = m_i = n_i = p$ for all $i = 1, \ldots, r$.

If we set $E_i = \{ (1 + \varepsilon_{i}p)^k | k = 1, \ldots, p \}, F_i = \{ (1 + \varepsilon_{i}u_1)^l | l = 1, \ldots, p \}$, $G_i = \{ (1 + \varepsilon_{i}u_2)^m | m = 1, \ldots, p \}$ and $H_i = \{ (1 + \varepsilon_{i}v_1)^n | n = 1, \ldots, p \}$, for all
$i = 1, \ldots, r$; we see that E_i, F_i, G_i, H_i are all subgroups of the group $1 + J$ and these are all of order p as indicated in their definition. The argument above will show that the product of the $4r$ subgroups E_i, F_i, G_i and H_i is direct. So, their product will exhaust $1 + J$. This proves (i).

To prove part (ii), suppose $p = 2$. We first observe that $(1 + \varepsilon_i u_1)^4 = 1$, in both cases, and if the ring R is of Type II, the element $1 + \varepsilon_i u_2$ will be of order 2, while if it is of Type I, it will be of order 4.

If R is of Type II, then for each $i = 1, \ldots, r$, and for integers $k_i \leq 4$, and $l_i, m_i \leq p$, we assert that the equation

\[
\prod_{i=1}^{r} \{(1 + \varepsilon_i u_1)^{k_i}\} \cdot \prod_{i=1}^{r} \{(1 + \varepsilon_i u_2)^{l_i}\} \cdot \prod_{i=1}^{r} \{(1 + \varepsilon_i v_1)^{m_i}\} = 1,
\]

will imply $k_i = 4$, and $l_i = m_i = 2$, for all $i = 1, \ldots, r$.

If we set $E_i = \{(1 + \varepsilon_i u_1)^k|k = 1, \ldots, 4\}$, $F_i = \{(1 + \varepsilon_i u_2)^l|l = 1, 2\}$, and $G_i = \{(1 + \varepsilon_i v_1)^m|m = 1, 2\}$, for all $i = 1, \ldots, r$; we see that E_i, F_i, G_i are all subgroups of the group $1 + J$ and these are of the precise order as indicated in their definition; and if R is of Type I, the equation

\[
\prod_{i=1}^{r} \{(1 + \varepsilon_i u_1)^{k_i}\} \cdot \prod_{i=1}^{r} \{(1 + \varepsilon_i u_2)^{l_i}\} = 1,
\]

will imply $k_i = 4$, and $l_i = 4$, for all $i = 1, \ldots, r$. If we set $H_i = \{(1 + \varepsilon_i u_1)^k|k = 1, \ldots, 4\}$, and $K_i = \{(1 + \varepsilon_i u_2)^l|l = 1, \ldots, 4\}$, we see that E_i and F_i are subgroups of $1 + J$, each of order 4. The argument above will show that the product of the $3r$ subgroups E_i, F_i, and G_i is direct; and the product of the $2r$ subgroups H_i and K_i is direct; and in both cases, these products will exhaust $1 + J$. \hfill \Box

2.1.2. Case (ii). Suppose that $p \in J - J^2$. Then the multiplication in R is now defined by

\[u_i u_j = a_{ij}^1 p u_1 + a_{ij}^2 p u_2 + a_{ij}^3 v_1.\]

Let us assume that $pu_1 \neq 0$ and $pu_2 \neq 0$. Since these four products span J^2, the symmetric matrices $A = (a_{ij}^1)$, $B = (a_{ij}^2)$ and $C = (a_{ij}^3)$ are linearly independent over R_o/pR_o, and one verifies that any such triple of linearly independent symmetric matrices A, B, C gives rise to a ring of the present type. All rings of this type are isomorphic to the ring with structural matrices of the form

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix};
\]

since all vector spaces of symmetric 2×2 matrices of equal dimension 3 over the same field \mathbb{F}_{q}, are isomorphic.
Proposition 2.3. If $\text{char} R = p^2$, $s = 2$, $t = 1$, and suppose that $p \in J - J^2$. Suppose further that $pu_1 \neq 0$ and $pu_2 \neq 0$. Then

$$1 + J \cong \begin{cases}
\mathbb{Z}_2 \times (\mathbb{Z}_2 \times \mathbb{Z}_2) \times (\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}_2, & \text{if } p = 2 \text{ and } r = 1; \\
\mathbb{Z}_2^r \times \mathbb{Z}_2^r \times \mathbb{Z}_2^r, & \text{if } p = 2 \text{ and } r > 1; \\
\mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r, & \text{if } p \neq 2.
\end{cases}$$

Proof. If $p \in J - J^2$, let $a = 1 + x$ be an element of $1 + J$ with the highest possible order and assume that $x \in J - J^2$. Then

$$o(a) = \begin{cases}
p^2, & \text{if } p \text{ is odd; or } p = 2 \text{ and } r > 1;
p, & \text{if } p = 2 \text{ and } r = 1.
\end{cases}$$

This is true because, for any ε_i ($i = 1, \ldots, r$),

$$(1 + \varepsilon_i x)^p = 1 + p\varepsilon_i x + \frac{p(p-1)}{2}(\varepsilon_i x)^2 \quad \text{(since } x^3 = 0).$$

If p is odd, then $(1 + \varepsilon_i x)^p = 1 + p\varepsilon_i x$, since $px^2 = 0$. Now,

$$\begin{align*}
(1 + p\varepsilon_i x)^p &= 1 + p^2\varepsilon_i x + \frac{p(p-1)}{2}(p\varepsilon_i x)^2 \\
&= 1, \quad \text{since } \text{char} R = p^2.
\end{align*}$$

Hence, $(1 + \varepsilon_i x)^{p^2} = 1$. However, if p is even, and $\varepsilon_i \neq 1$, for $i = 2, \ldots, r$, then

$$(1 + \varepsilon_i x)^2 = 1 + 2\varepsilon_i x + 2\varepsilon_i^2 x \text{ and } (1 + \varepsilon_i x)^4 = 1;$$

and if $r = 1$,

$$\begin{align*}
(1 + x)^2 &= 1 + 2x + x^2 \\
&= 1 + 2x + 2x \quad \text{(since in this case, } x^2 = px) \\
&= 1 + 2^2 x \\
&= 1,
\end{align*}$$

so that $o(1 + x) = 2$ and $o(1 + \varepsilon_i x) = 4$, $\varepsilon_i \neq 1$, for $i = 2, \ldots, r$.

Notice also that $1 + J = (1 + pR_o) \times (1 + R_0u_1 \oplus R_0u_2 \oplus R_0v_1)$. Choose $\varepsilon_1, \ldots, \varepsilon_r \in R_o$ with $\varepsilon_1 = 1$ such that $\varepsilon_1, \ldots, \varepsilon_r \in R_o/pR_o \cong GF(p^r)$ form a basis for $GF(p^r)$ over $GF(p)$.

If p is odd, since for each $i = 1, \ldots, r$, $(1 + \varepsilon_i u_1)^p = 1$, $(1 + \varepsilon_i u_2)^p = 1$, $(1 + \varepsilon_i v_1)^p = 1$, the direct product of the cyclic subgroups $< 1 + \varepsilon_i u_1 >$, $< 1 + \varepsilon_i u_2 >$ and $< 1 + \varepsilon_i v_1 >$ exhaust $1 + R_0u_1 \oplus R_0u_2 \oplus R_0v_1$.

If $p = 2$, and $r = 1$, $(1 + u_1)^2 = 1$, $(1 + 2u_1)^2 = 1$, $(1 + u_2)^2 = 1$, $(1 + 2u_2)^2 = 1$, and $(1 + v_1)^2 = 1$, and these elements generate subgroups of $1 + J$ of the given orders; and
if \(p = 2 \), \(r > 1 \), we have \((1 + \varepsilon_i u_1)^4 = 1\), \((1 + \varepsilon_i u_2)^4 = 1\), and \((1 + \varepsilon_i v)^2 = 1\), and also these elements generate subgroups of \(1 + J\) of the given orders. Moreover, their direct product gives rise to the subgroup \(1 + R_o u_1 \oplus R_o u_2 \oplus R_o v_1\).

The structure of \(1 + pR_o\) is given in [7], Theorem 9 (1), and it is a direct product of \(r\) cyclic groups, each of order \(p\). Thus, \(1 + J\) is of the required form, and this completes the proof.

We remark here that the case for which only one of \(pu_1\), \(pu_2\) is zero has a similar argument to that given in 2.1.1, and one may deduce the structure of \(1 + J\) from Proposition 2.2.

2.2. The case when \(\text{char} R = p^3\), \(s = 2\) and \(t = 1\). Let the characteristic of the ring \(R\) be \(p^3\), and let \(s = 2\) and \(t = 1\). Then

\[R = R_o \oplus R_o u_1 \oplus R_o u_2 \oplus R_o v_1, \]

and the Jacobson radical

\[J = pR_o \oplus R_o u_1 \oplus R_o u_2 \oplus R_o v_1, \]

where \(R_o = GR(p^{3r}, p^3)\), the Galois ring of characteristic \(p^3\) and order \(p^{3r}\), for any positive integer \(r\), and prime integer \(p\), and we have

\[u_i u_j = a_{ij}^1 p^2 + a_{ij}^2 pu_1 + a_{ij}^3 pu_2 + a_{ij}^4 v_1, \]

where \(a_{ij}^1, a_{ij}^2, a_{ij}^3, a_{ij}^4 \in R_o/pR_o\).

From the definition of the multiplication in the ring \(R\), we deduce two cases; namely, (i) the case when \(pu_1 = 0\), \(pu_2 = 0\), and (ii) the case when one of \(pu_1\), \(pu_2\) is zero, and the other product is non-zero. These two cases do not overlap and we treat them in turn. Notice that \(pu_1\), \(pu_2\) can not both be non-zero, since this will lead to 4 symmetric \(2 \times 2\) matrices which are clearly dependent over \(R_o/pR_o\).

2.2.1. Case(i). Suppose that \(pu_1 = 0\), \(pu_2 = 0\). Then the multiplication in \(R\) is as defined by

\[u_i u_j = a_{ij}^1 p^2 + a_{ij}^2 v_1, \]

and we have two linearly independent symmetric matrices \(A = (a_{ij}^1)\), \(B = (a_{ij}^2)\) over \(R_o/pR_o\). The argument is the same as that in 2.1.1, and we may deduce from Theorem 3 in [5] that if \(p = 2\), there are up to isomorphism, three commutative rings with pairs of structural matrices

\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}; \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};
\]
and from Theorem 3 in [4] that if p is odd, there are up to isomorphism, three commutative rings with pairs of structural matrices
\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};
\]
where g is a fixed non-square in $(R_o/pR_o)^*$. We again simplify our notation by calling a ring of characteristic 2 a ring of Type III, if it is isomorphic to the ring with structural matrices
\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};
\]
and of Type IV, if it is isomorphic to a ring with structural matrices
\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

Proposition 2.4. If $char R = p^3$, $s = 2$, $t = 1$, and suppose that $pu_1 = 0$, $pu_2 = 0$. Then

(i) $1 + J \cong \mathbb{Z}_p^3 \times \mathbb{Z}_p^3 \times \mathbb{Z}_p^3 \times \mathbb{Z}_p^3$, if p is odd; and when $p = 2$,

(ii) $1 + J \cong \begin{cases} \mathbb{Z}_4^3 \times \mathbb{Z}_4^3 \times \mathbb{Z}_2, & \text{if } R \text{ is of Type III;} \\
\mathbb{Z}_4^3 \times \mathbb{Z}_4^3 \times \mathbb{Z}_2^2 \times \mathbb{Z}_2^2, & \text{if } R \text{ is of Type IV.}
\end{cases}

Proof. If $pu_1 = 0$, $pu_2 = 0$, let $a = 1 + x$ be an element of $1 + J$ with the highest possible order and assume that $x \in J - J^2$. Then $o(a) = p^2$, for every prime p. This is true because

\[
(1 + x)^p = 1 + px + \frac{p(p-1)}{2} x^2 \quad \text{(since } x^3 = 0)\]

It is easy to see that if p is odd, then $(1 + x)^p = 1 + px$, since $px^2 = 0$. So,

\[
(1 + px)^p = 1 + p(px) + \frac{p(p-1)}{2} (px)^2 = 1 + p^2 x = 1, \quad \text{since } p^2 x = 0.
\]

If $p = 2$, then $(1 + x)^2 = 1 + 2x + x^2$, and

\[
(1 + 2x + x^2)^2 = 1 + 4x + 6x^2 + 4x^3 + x^4 = 1 + 4x + 6x^2 = 1, \quad \text{since } char R = 2^3 \text{ and } 2x^2 = 0.
\]

Now, let $\varepsilon_1, \ldots, \varepsilon_r \in R_o$ with $\varepsilon_1 = 1$ such that $\overline{\varepsilon_1}, \ldots, \overline{\varepsilon_r} \in R_o/pR_o \cong GF(p^r)$ form a basis for $GF(p^r)$ over $GF(p)$. Then the proof is essentially the proof of Proposition 2.2 with slight changes that

(i) if p is odd, then $1 + J$ contains subgroups $<1 + \varepsilon_i p + \varepsilon_i u_1>$ each of order p^2, for every $i = 1, \ldots, r$; and
(ii) if p is even, then $1 + J$ contains an extra r subgroups, each of order p.

The small changes preserve each of the previous results up to the inclusion of the direct products of these extra subgroups. Therefore, with a few modifications, everything goes through as before. Hence, if p is odd, then

$$1 + J = \prod_{i=1}^{r} < 1 + \varepsilon_{i} > \times \prod_{i=1}^{r} < 1 + \varepsilon_{i} > \times \prod_{i=1}^{r} < 1 + \varepsilon_{i} >$$

a direct product (proving part (i)); and if p is even and R is of type III, then

$$1 + J = \prod_{i=1}^{r} < 1 + 4\varepsilon_{i} > \times \prod_{i=1}^{r} < 1 + \varepsilon_{i} > \times \prod_{i=1}^{r} < 1 + \varepsilon_{i} >$$

a direct product, and if R is of type IV, then

$$1 + J = \prod_{i=1}^{r} < 1 + 4\varepsilon_{i} > \times \prod_{i=1}^{r} < 1 + \varepsilon_{i} > \times \prod_{i=1}^{r} < 1 + \varepsilon_{i} >$$

a direct product. This completes the proof. \[\square\]

2.2.2. Case (ii). Suppose that $pu_1 = 0$, $pu_2 \neq 0$. Then the multiplication in R is now defined by

$$u_iu_j = a_{ij}^{1}p^2 + a_{ij}^{2}pu_2 + a_{ij}^{3}v_1.$$

Since these four products span J^2, the symmetric matrices $A = (a_{ij}^{1})$, $B = (a_{ij}^{2})$ and $C = (a_{ij}^{3})$ are linearly independent over R_0/pR_0, and one verifies that any such triple of linealy independent symmetric matrices A, B, C gives rise to a ring of the present type. All rings of this type are isomorphic to the ring with structural matrices of the form

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(see 2.1.2 case (ii)).

Proposition 2.5. If $\text{char} R = p^3$, $s = 2$, $t = 1$, and suppose that $pu_1 = 0$, $pu_2 \neq 0$. Then

$$1 + J \cong \begin{cases} \mathbb{Z}_2^r \times \mathbb{Z}_2^r \times \mathbb{Z}_2^r \times \mathbb{Z}_2^r, & \text{if } p = 2; \\
\mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r, & \text{if } p \neq 2. \end{cases}$$
Proof. If \(pu_1 = 0, pu_2 \neq 0 \), let \(a = 1 + x \) be an element of \(1 + J \) with the highest possible order and assume that \(x \in J - J^2 \). Then \(o(a) = p^2 \), for every prime \(p \). This is true because

\[
(1 + x)^p = 1 + px + \frac{p(p - 1)}{2} x^2 \quad \text{(since } x^3 = 0).\]

It is easy to see that if \(p \) is odd, then \((1 + x)^p = 1 + px \), since \(px^2 = 0 \). So,

\[
(1 + px)^p = 1 + p(px) + \frac{p(p - 1)}{2} (px)^2 \\
= 1 + p^2 x \\
= 1, \text{ since } p^2 x = 0.
\]

If \(p = 2 \), then \((1 + x)^2 = 1 + 2x + x^2 \), and

\[
(1 + 2x + x^2)^2 = 1 + 4x + 6x^2 + 4x^3 + x^4 \\
= 1 + 4x + 6x^2 \\
= 1, \text{ since } char R = 2^3 \text{ and } 2x^2 = 0.
\]

Now, let \(\varepsilon_1, \ldots, \varepsilon_r \in R_o \) with \(\varepsilon_1 = 1 \) such that \(\varepsilon_1, \ldots, \varepsilon_r \in R_o/pR_o \cong GF(p^r) \) form a basis for \(GF(p^r) \) over \(GF(p) \). Then since for each \(i = 1, \ldots, r, \) and \(p \) odd, \((1 + \varepsilon_i p + \varepsilon_i u_1)^2 = 1, (1 + \varepsilon_i u_1)^p = 1, (1 + \varepsilon_i u_2)^2 = 1, \) \((1 + \varepsilon_i u_1) \) is trivial, and the order of the group generated by the direct product of these cyclic subgroups coincides with \(|1 + J| \), it follows that

\[
1 + J = \prod_{i=1}^{r} < 1 + \varepsilon_i p + \varepsilon_i u_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_2 > \\
= \prod_{i=1}^{r} < 1 + \varepsilon_i v_1 >,
\]

a direct product. This proves the second result. To prove the first part, we first observe that \((1 + \varepsilon_i u_1)^4 = 1 \), and the elements \(1 + \varepsilon_i u_2 \) and \(1 + \varepsilon_i u_2 \) are all of order 2. Now, since for each \(i = 1, \ldots, r, (1 + 4\varepsilon_i)^2 = 1, (1 + \varepsilon_i u_1)^4 = 1, \) \((1 + \varepsilon_i u_2)^2 = 1, (1 + 2\varepsilon_i u_2)^2 = 1, \) \((1 + \varepsilon_i v_1)^2 = 1 \), and the order of the group generated by the direct product of the cyclic subgroups \(< 1 + 4\varepsilon_i >, \) \(< 1 + \varepsilon_i u_1 >, < 1 + \varepsilon_i u_2 >, < 1 + 2\varepsilon_i u_2 > \) and \(< 1 + \varepsilon_i v_1 > \) coincides with \(|1 + J| \), and their intersection is the identity group, it follows that

\[
1 + J = \prod_{i=1}^{r} < 1 + 4\varepsilon_i > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_2 >
\]
\[
\times \prod_{i=1}^{r} < 1 + 2\varepsilon_i u_2 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i v_1 >,
\]
a direct product. This completes the proof. \(\square \)

2.3. **The case when** \(\text{char} R = p, s = 2 \) **and** \(t = 2 \). **In this case,**

\[
R = \mathbb{F}_q \oplus \mathbb{F}_q u_1 \oplus \mathbb{F}_q u_2 \oplus \mathbb{F}_q v_1 \oplus \mathbb{F}_q v_2,
\]

and the Jacobson radical

\[
J = \mathbb{F}_q u_1 \oplus \mathbb{F}_q u_2 \oplus \mathbb{F}_q v_1 \oplus \mathbb{F}_q v_2,
\]

where \(\mathbb{F}_q = GF(p^r) \), for some positive integer \(r \) and any prime integer \(p \).

The multiplication in \(R \) is defined by

\[
u_i u_j = a_{ij}^1 v_1 + a_{ij}^2 v_2,
\]

where \(a_{ij}^1, a_{ij}^2 \in \mathbb{F}_q \), and the two symmetric matrices \(A = (a_{ij}^1), B = (a_{ij}^2) \) are linearly independent over \(\mathbb{F}_q \), since the four products \(u_i u_j \) span \(J^2 \). The ring structure is determined by the pair of \(2 \times 2 \) symmetric matrices \(A = (a_{ij}^1), B = (a_{ij}^2) \), which are linearly independent over \(\mathbb{F}_q \), and any pair of independent symmetric matrices defines such a ring. The problem of determining the number of isomorphism classes of such rings and of finding normal forms for the pair of matrices \(A, B \) defining them, was treated in [4] and [5]. There are exactly three commutative types of these rings for any prime characteristic \(p \). These are represented by the following structural matrices:

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}; \quad
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}; \quad
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix};
\]

if \(p = 2 \); and

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}; \quad
\begin{pmatrix}
1 & 0 \\
0 & g
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}; \quad
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix};
\]

if \(p \) is odd, where \(g \) is a fixed non-square in \(\mathbb{F}_q \) (see e.g. Theorem 3 [5], and Theorem 3 [4], respectively).

We now proceed to determine the structure of \(1 + J \). Notice that

\[
1 + J = 1 + \mathbb{F}_q u_1 \oplus \mathbb{F}_q u_2 \oplus \mathbb{F}_q v_1 \oplus \mathbb{F}_q v_2.
\]

To simplify our notation again, we shall call a ring of characteristic 2, a **ring of Type V**, if it is isomorphic to a ring with structural matrices

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix} \quad \text{or} \quad
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix};
\]

and a **ring of Type VI** if it is isomorphic to a ring with structural matrices

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
\]
Proposition 2.6. If $\text{char}R = p$, $s = 2$, $t = 2$, then

(i) $1 + J \cong \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r$, if p is odd; and when $p = 2$,

(ii) $1 + J \cong \begin{cases} \mathbb{Z}_2^r \times \mathbb{Z}_4^r, & \text{if } R \text{ is of Type V;} \\ \mathbb{Z}_4^r \times \mathbb{Z}_2^r \times \mathbb{Z}_2^r, & \text{if } R \text{ is of Type VI.} \end{cases}$

Proof. Let $a = 1 + x$ be an element of $1 + J$ with the highest possible order and assume that $x \in J - J^2$. Then

$$o(a) = \begin{cases} p, & \text{if } p \text{ is odd;} \\ p^2, & \text{if } p = 2. \end{cases}$$

This is true because

$$(1 + x)^p = 1 + px + \frac{p(p-1)}{2}x^2 \quad \text{(since } x^3 = 0)$$

$$= 1 + \frac{p(p-1)}{2}x^2 \quad \text{(since } p \in J^2 \text{ and } px = 0).$$

It is easy to see that if p is odd, then $(1 + x)^p = 1$; and if $p = 2$, then $(1 + x)^p = 1 + x^2$. But then

$$(1 + x^2)^2 = 1 + 2x^2 + x^4$$

$$= 1, \quad \text{since } x^3 = 0 \text{ and } 2x^2 = 0.$$

Now, let elements $\varepsilon_1, ..., \varepsilon_r \in \mathbb{F}_q$ with $\varepsilon_1 = 1$ be a basis for $GF(p^r)$ over $GF(p)$. Then the proof is essentially the proof of Proposition 2.2, with a few modifications; and if p is odd, then

$$1 + J = \prod_{i=1}^{r} < 1 + \varepsilon_i u_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_2 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i v_1 >$$

$$\times \prod_{i=1}^{r} < 1 + \varepsilon_i v_2 >,$$

a direct product, proving (i); and if p is even and R is of type V, then

$$1 + J = \prod_{i=1}^{r} < 1 + \varepsilon_i u_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_2 >,$$

a direct product, while if R is of type VI,

$$1 + J = \prod_{i=1}^{r} < 1 + \varepsilon_i u_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i u_2 + \varepsilon_i v_1 > \times \prod_{i=1}^{r} < 1 + \varepsilon_i v_2 >,$$

a direct product; proving part (ii). This completes the proof. \hfill \Box

In summary, we have proved:
Theorem 2.7. Let R be a commutative completely primary finite ring of the introduction with unique maximal ideal J. If $\text{char} R = p^2$ or p^3, $s = 2$, $t = 1$; and $\text{char} R = p$, $s = 2$, $t = 2$; then, the group of units R^\ast of R is the direct product of a cyclic group $\mathbb{Z}_{p^r - 1}$ and the p–group $(1 + J)$, whose structure is given in Propositions 2.2 – 2.6.

ACKNOWLEDGEMENT

The author is very grateful to the Managing Editor, Professor Naoki Tanaka for the valuable advice on the use of jokayama.cls package.

REFERENCES