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UNIT GROUPS OF A CERTAIN CLASS OF COMPLETELY
PRIMARY FINITE RINGS

Chiteng’a John CHIKUNJI

Abstract. A completely primary finite ring is a ring R with identity
1 6= 0 whose subset of all its zero-divisors forms the unique maximal
ideal J . Let R be a commutative completely primary finite ring with
the unique maximal ideal J such that J3 = (0) and J2 6= (0). Then
R/J ∼= GF (pr) and the characteristic of R is pk, where 1 ≤ k ≤ 3, for
some prime p and positive integer r. Let Ro = GR(pkr, pk) be a Galois
subring of R and let the annihilator of J be J2 so that R = Ro ⊕U ⊕V ,
where U and V are finitely generated Ro-modules. Let non-negative
integers s and t be numbers of elements in the generating sets for U
and V , respectively. When s = 2, t = 1 and the characteristic of R is
p2 and p3; and when s = 2, t = 2 and the characteristic of R is p, the
structure of the group of units R∗ of the ring R and its generators have
been determined; these depend on the structural matrices (al

ij) and on
the parameters p, k, r, s and t.

1. INTRODUCTION

This is a sequel to [3] and throughout this paper we will assume that
all rings are commutative rings with identity, that ring homomorphisms
preserve identities, and that a ring and its subrings have the same identity.
To recall, the problem is to determine the group of units R∗ of a commutative
completely primary finite ring R with unique maximal ideal J such that
R/J ∼= GF (pr), J3 = (0) and J2 6= (0) so that the characteristic of R is
pk, for some prime p and positive integers r and k, where 1 ≤ k ≤ 3; and
further identify sets of linearly independent generators for R∗. In particular,
let Ro = GR(pkr, pk) be a Galois ring and let the annihilator of J be J2 so
that R = Ro ⊕ U ⊕ V, where U and V are finitely generated Ro−modules.
Let non-negative integers s and t be numbers of elements in the generating
sets for U and V, respectively.

In the companion paper to the present we have determined R∗ when
s = 2, t = 1 and charR = p; and when t = s(s+1)

2 , for any fixed positive
integer s, and we turn our attention here to the case where s = 2, t = 1
and characteristic of R is p2 and p3; and the case where s = 2, t = 2 and
charR = p. Our earlier strategy (that of considering different types of sym-
metric matrices) is thus not viable anymore and we have to follow a different
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approach; that is, that of considering structural matrices of isomorphism
classes of these types of rings with the same invariants p, r, k, s, and t.

We refer the reader to [1] for the general background of completely pri-
mary finite rings R with maximal ideals J such that J3 = (0) and J2 6= (0).
Let R be a completely primary finite ring with maximal ideal J such that
J3 = (0) and J2 6= (0). Then R is of order pnr and the residue field
R/J is a finite field GF (pr), for some prime p and positive integers n, r.
The characteristic of R is pk, where k is an integer such that 1 ≤ k ≤ 3.
Let GR(pkr, pk) be the Galois ring of characteristic pk and order pkr, i.e.,
GR(pkr, pk) = Zpk [x]/(f), where f ∈ Zpk [x] is a monic polynomial of degree
r whose image in Zp[x] is irreducible. Then, it can be deduced from the main
theorem in [6] that R has a coefficient subring Ro of the form GR(pkr, pk)
which is clearly a maximal Galois subring of R. Moreover, there exist ele-
ments m1, m2, ..., mh ∈ J and automorphisms σ1, ..., σh ∈ Aut(Ro) such
that

R = Ro ⊕
h∑

i=1

Romi

(as Ro−modules), mir = rσimi, for every r ∈ Ro and any i = 1, ..., h.
Further, σ1, ..., σh are uniquely determined by R and Ro. The maximal
ideal of R is

J = pRo ⊕
h∑

i=1

Romi.

It is worth noting that R contains an element b of multiplicative order pr−1
and that Ro = Zpk [b] (see, e.g. 1.3 in [1]).

The following results will be assumed (see [7] and [2]):

Proposition 1.1. Let R be a completely primary finite ring (not necessarily
commutative). Then,

(i) the group of units R∗ of R contains a cyclic subgroup < b > of order
pr − 1, and R∗ is a semi-direct product of 1 + J and < b >;

(ii) the group of units R∗ is solvable;
(iii) if G is a subgroup of R∗ of order pr − 1, the group G is conjugate to

< b > in R∗;
(iv) if R∗ contains a normal subgroup of order pr − 1, the set Ko =< b >

∪{0} is contained in the center of the ring R;
(v) (1 + J i)/(1 + J i+1) ∼= J i/J i+1 (the left hand side as a multiplicative

group and the right hand side as an additive group).

Lemma 1.2. [2, 2.7.] Let R be a completely primary finite ring of charac-
teristic pk and with Jacobson radical J . Let Ro be a Galois subring of R. If
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m ∈ J and pt is the additive order of m, for some positive integer t, then
|Rom| = ptr.

Now let R be a commutative completely primary finite ring with maximal
ideal J such that J3 = (0) and J2 6= (0). In [1], the author gave constructions
describing these rings for each characteristic and for details, we refer the
reader to sections 4 and 6 of [1].

If R is a commutative completely primary finite ring with maximal ideal
J such that J3 = (0) and J2 6= (0), then from Constructions A and B in [1],

R = Ro ⊕ U ⊕ V ⊕ W

and

J = pRo ⊕ U ⊕ V ⊕ W,

where the Ro−modules U , V and W are finitely generated. The structure of
R is characterized by the invariants p, n, r, d, s, t and λ; and the linearly
independent matrices (ak

ij) defined in the multiplication. Let ann(J) denote
the two sided annihilator of J in R. Notice that since J2 ⊆ ann(J), we can
write R = Ro ⊕ U ⊕M , and hence, J = pRo ⊕ U ⊕M , where M = V ⊕W ,
and the multiplication in R may be written accordingly. It is therefore easy
to see that the description of rings of this type reduces to the case where
ann(J) coincides with J2. Therefore, when investigating the structure of
the group of units of this type of rings for a given order, say pnr, where
ann(J) does not coincide with J2, we shall first write all the rings of this
type of order ≤ pnr, where ann(J) coincides with J2.

In what follows, we assume that ann(J) = J2.
Let Ro = GR(pkr, pk) (1 ≤ k ≤ 3) and let non-negative integers s and t

be numbers of elements in the generating sets {u1, ..., us} and {v1, ..., vt}
for finitely generated Ro-modules U and V , respectively, where t ≤ s(s+1)

2 .
Assume that u1, u2, ..., us and v1, ..., vt are commuting indeterminates.
Then R = Ro ⊕ U ⊕ V .

As before, and since R is commutative,

R∗ =< b > ·(1 + J) ∼=< b > ×(1 + J);

a direct product.
Again, notice that since R is of order pnr and R∗ = R−J , it is easy to see

that |R∗| = p(n−1)r(pr − 1) and |1 + J | = p(n−1)r, so that 1 + J is an abelian
p−group. Thus, R∗ ∼=(Abelian p−group)×(cyclic group of order |R/J |− 1).

Our goal is to determine the structure and identify a set of generators of
the multiplicative abelian p−group 1 + J .
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2. THE GROUP 1 + J

In this section we determine the structure of the abelian p−group 1 + J.
We do this case by case based on the characteristic of the ring R and the
invariants s and t.

Now let R be a commutative completely primary finite ring with maximal
ideal J such that J3 = (0) and J2 6= (0). Let 1+J be the abelian p−subgroup
of the unit group R∗.

The group 1 + J has a filtration 1 + J ⊃ 1 + J2 ⊃ 1 + J3 = {1} with
filtration quotients (1 + J)/(1 + J2) and (1 + J2)/{1} = 1 + J2 isomorphic
to the additive groups J/J2 and J2, respectively.

Remark. Notice that 1 + J2 is a normal subgroup of 1 + J . But, in general,
1 + J does not have a subgroup which is isomorphic to the quotient (1 +
J)/(1 + J2) as may be illustrated by the following example.

EXAMPLE: Let R = Zp3 , where p is an odd prime. Then J = pZp3 ,
ann(J) = J2, and 1 + J ∼= Zp2 , 1 + J2 ∼= Zp, (1 + J)/(1 + J2) ∼= Zp.

Remark. In view of the above remark and example, we investigate the struc-
ture of 1 + J by considering various subgroups of 1 + J .

The following result is fundamental in the study of the group of units of
the rings in this paper.

Lemma 2.1. Let R and S be rings (not necessarily rings considered in this
paper). Then every (ring) isomorphism between R and S restricts to an
isomorphism between R∗ and S∗.

However, it is not always true that if R∗ ∼= S∗, then the rings R and S are
isomorphic as may be illustrated by the following: Z∗ = {1, −1} ∼= Z∗

3 =
{1, 2}, while Z (infinite) and Z3 (finite) are non-isomorphic rings.

2.1. The case when charR = p2, s = 2 and t = 1.. Let the characteristic
of the ring R be p2, and let s = 2 and t = 1. Then

R = Ro ⊕ Rou1 ⊕ Rou2 ⊕ Rov1,

and the Jacobson radical

J = pRo ⊕ Rou1 ⊕ Rou2 ⊕ Rov1,

where Ro = GR(p2r, p2), the Galois ring of characteristic p2 and order p2r,
for any positive integer r, and prime integer p, and we have

uiuj = a1
ijp + a2

ijpu1 + a3
ijpu2 + a4

ijv1,

where a1
ij , a2

ij , a3
ij , a4

ij ∈ Ro/pRo.
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From the definition of the multiplication in the ring R, we deduce two
cases; namely, (i) the case when p ∈ J2, and (ii) the case when p ∈ J − J2.
These cases do not overlap and we treat them in turn.

2.1.1. Case(i). Suppose that p ∈ J2. Then the multiplication in R is as
defined

uiuj = a1
ijp + a2

ijv1.

Since these four products span J2, the symmetric matrices A = (a1
ij), B =

(a2
ij) are linearly independent, and one verifies that any such pair of matri-

ces gives rise to a ring of the present type. If we change to new generators
u

′
1, u

′
2, v

′
1 with corresponding matrices A

′
, B

′
, then u

′
1, u

′
2 are linear combi-

nations of u1, u2, v1, p. Since J3 = (0), we may assume that the coefficients
of v1, p are zero and write u

′
i = p1iu1 + p2iu2, so that P = (pij) is the tran-

sition matrix from the basis {u1, u2} of J/J2 to the basis {u1
′
, u2

′}. If also
v
′
1 = kv1 + mp (k ∈ (Ro/pRo)∗, m ∈ Ro/pRo) and we now calculate u

′
iu

′
j

and compare coefficients of v1, p we obtain equations which, in matrix form
are: {

P tAP = kA
′

P tBP = mA
′
+ B

′

where P t is the transpose of the matrix P. The problem of classifying the
present class of rings up to isomorphism is now readily seen to amount
to that of classifying pairs of symmetric matrices (A, B) under the above
equivalence relation, in which P ∈ GL2(Ro/pRo), k ∈ (Ro/pRo)∗, m ∈

Ro/pRo are arbitrary. Observe that Q =
(

k 0
m 1

)
is the transition matrix

from the basis {v1, p} of J2 to {v′
1, p}. This is similar to the situation of

[4, 5], wherein Q is an element of GL2. We deduce from Theorem 3 in [5]
that if p = 2, there are up to isomorphism, three commutative rings with
pairs of structural matrices(

1 0
0 0

)
,

(
0 0
0 1

)
;

(
1 0
0 1

)
,

(
0 1
1 1

)
;

(
1 0
0 0

)
,

(
0 1
1 0

)
;

and from Theorem 3 in [4] that if p is odd, there are up to isomorphism,
three commutative rings with pairs of structural matrices(

1 0
0 0

)
,

(
0 0
0 1

)
;

(
1 0
0 g

)
,

(
0 1
1 0

)
;

(
1 0
0 0

)
,

(
0 1
1 0

)
;

where g is a fixed non-square in (Ro/pRo)∗.
We now determine the structure of 1 + J. Notice that

1 + J = 1 + pRo ⊕ Rou1 ⊕ Rou2 ⊕ Rov1.
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To simplify our notation, we shall call a ring with characteristic 22, a ring
of Type I, if it is isomorphic to a ring with structural matrices(

1 0
0 0

)
,

(
0 0
0 1

)
or

(
1 0
0 1

)
,

(
0 1
1 1

)
;

and a ring of Type II if it is isomorphic to a ring with structural matrices(
1 0
0 0

)
,

(
0 1
1 0

)
.

Proposition 2.2. If charR = p2, s = 2, t = 1, and suppose that p ∈ J2.
Then

(i) 1 + J ∼= Zr
p × Zr

p × Zr
p × Zr

p, if p is odd; and when p = 2,

(ii) 1 + J ∼=
{

Zr
4 × Zr

4, if R is of Type I;
Zr

4 × Zr
2 × Zr

2, if R is of Type II.

Proof. If p ∈ J2, let a = 1 + x be an element of 1 + J with the highest
possible order and assume that x ∈ J − J2. Then

o(a) =
{

p, if p is odd;
p2, if p = 2.

This is true because

(1 + x)p = 1 + px +
p(p − 1)

2
x2 (since x3 = 0)

= 1 +
p(p − 1)

2
x2 (since p ∈ J2 and px = 0).

It is easy to see that if p is odd, then (1 + x)p = 1; and if p = 2, then
(1 + x)p = 1 + x2. But then

(1 + x2)2 = 1 + 2x2 + x4

= 1, since x3 = 0 and 2x2 = 0.

Now, let ε1, ..., εr ∈ Ro with ε1 = 1 such that ε1, ..., εr ∈ Ro/pRo
∼=

GF (pr) form a basis for GF (pr) over GF (p).
We consider the two cases separately. So, suppose that p is odd. We

first note the following results: For each i = 1, ..., r, (1 + εip)p = 1,
(1+ εiu1)p = 1, (1+ εiu2)p = 1, (1+ εiv1)p = 1, and gp = 1 for all g ∈ 1+J .
For integers ki, li, mi, ni ≤ p, we assert that
r∏

i=1

{(1 + εip)ki} ·
r∏

i=1

{(1 + εiu1)li} ·
r∏

i=1

{(1 + εiu2)mi} ·
r∏

i=1

{(1 + εiv1)ni} = 1,

will imply ki = li = mi = ni = p for all i = 1, ..., r.
If we set Ei = {(1 + εip)k|k = 1, ..., p}, Fi = {(1 + εiu1)l|l = 1, ..., p},

Gi = {(1+εiu2)m|m = 1, ..., p} and Hi = {(1+εiv1)n|n = 1, ..., p}, for all
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i = 1, ..., r; we see that Ei, Fi, Gi, Hi are all subgroups of the group 1 + J
and these are all of order p as indicated in their definition. The argument
above will show that the product of the 4r subgroups Ei, Fi, Gi and Hi is
direct. So, their product will exhaust 1 + J. This proves (i).

To prove part (ii), suppose p = 2. We first observe that (1 + εiu1)4 = 1,
in both cases, and if the ring R is of Type II, the element 1 + εiu2 will be
of order 2, while if it is of Type I, it will be of order 4.

If R is of Type II, then for each i = 1, ..., r, and for integers ki ≤ 4, and
li, mi ≤ p, we assert that the equation

r∏
i=1

{(1 + εiu1)ki} ·
r∏

i=1

{(1 + εiu2)li} ·
r∏

i=1

{(1 + εiv1)mi} = 1,

will imply ki = 4, and li = mi = 2, for all i = 1, ..., r.
If we set Ei = {(1 + εiui)k|k = 1, ..., 4}, Fi = {(1 + εiu2)l|l = 1, 2}, and

Gi = {(1 + εiv1)m|m = 1, 2}, for all i = 1, ..., r; we see that Ei, Fi, Gi

are all subgroups of the group 1 + J and these are of the precise order as
indicated in their definition; and if R is of Type I, the equation

r∏
i=1

{(1 + εiu1)ki} ·
r∏

i=1

{(1 + εiu2)li} = 1,

will imply ki = 4, and li = 4, for all i = 1, ..., r. If we set Hi = {(1 +
εiui)k|k = 1, ..., 4}, and Ki = {(1 + εiu2)l|l = 1, ..., 4}, we see that Ei

and Fi are subgroups of 1 + J , each of order 4. The argument above will
show that the product of the 3r subgroups Ei, Fi, and Gi is direct; and the
product of the 2r subgroups Hi and Ki is direct; and in both cases, these
products will exhaust 1 + J . ¤

2.1.2. Case(ii). Suppose that p ∈ J − J2. Then the multiplication in R is
now defined by

uiuj = a1
ijpu1 + a2

ijpu2 + a3
ijv1.

Let us assume that pu1 6= 0 and pu2 6= 0. Since these four products span
J2, the symmetric matrices A = (a1

ij), B = (a2
ij) and C = (a3

ij) are linearly
independent over Ro/pRo, and one verifies that any such triple of linealy
independent symmetric matrices A, B, C gives rise to a ring of the present
type. All rings of this type are isomorphic to the ring with structural ma-
trices of the form (

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
;

since all vector spaces of symmetric 2×2 matrices of equal dimension 3 over
the same field Fq, are isomorphic.
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Proposition 2.3. If charR = p2, s = 2, t = 1, and suppose that p ∈ J−J2.
Suppose further that pu1 6= 0 and pu2 6= 0.Then

1 + J ∼=


Z2 × (Z2 × Z2) × (Z2 × Z2) × Z2, if p = 2 and r = 1;
Zr

2 × Zr
4 × Zr

4 × Zr
2, if p = 2 and r > 1;

Zr
p × Zr

p2 × Zr
p2 × Zr

p, if p 6= 2.

Proof. If p ∈ J − J2, let a = 1 + x be an element of 1 + J with the highest
possible order and assume that x ∈ J − J2. Then

o(a) =
{

p2, if p is odd; or p = 2 and r > 1;
p, if p = 2 and r = 1.

This is true because, for any εi (i = 1, ..., r),

(1 + εix)p = 1 + pεix +
p(p − 1)

2
(εix)2 (since x3 = 0).

If p is odd, then (1 + εix)p = 1 + pεix, since px2 = 0. Now,

(1 + pεix)p = 1 + p2εix +
p(p − 1)

2
(pεix)2

= 1, since charR = p2.

Hence, (1 + εix)p2
= 1. However, if p is even, and εi 6= 1, for i = 2, ..., r,

then
(1 + εix)2 = 1 + 2εix + 2ε2

i x and (1 + εix)4 = 1;

and if r = 1,

(1 + x)2 = 1 + 2x + x2

= 1 + 2x + 2x (since in this case, x2 = px)
= 1 + 22x

= 1,

so that o(1 + x) = 2 and o(1 + εix) = 4, εi 6= 1, for i = 2, ..., r.
Notice also that 1 + J = (1 + pRo) × (1 + Rou1 ⊕ Rou2 ⊕ Rov1). Choose

ε1, ..., εr ∈ Ro with ε1 = 1 such that ε1, ..., εr ∈ Ro/pRo
∼= GF (pr) form

a basis for GF (pr) over GF (p).
If p is odd, since for each i = 1, ..., r, (1 + εiu1)p2

= 1, (1 + εiu2)p2
= 1,

(1 + εiv1)p = 1, the direct product of the cyclic subgroups < 1 + εiu1 >,
< 1 + εiu2 > and < 1 + εiv1 > exhaust 1 + Rou1 ⊕ Rou2 ⊕ Rov1.

If p = 2, and r = 1, (1 + u1)2 = 1, (1 + 2u1)2 = 1, (1 + u2)2 = 1,
(1 + 2u2)2 = 1, and (1 + v1)2 = 1, and these elements generate subgroups of
1 + J of the given orders; and



UNIT GROUPS OF COMPLETELY PRIMARY FINITE RINGS 47

if p = 2, r > 1, we have (1 + εiu1)4 = 1, (1 + εiu2)4 = 1, and (1 + εiv)2 = 1,
and also these elements generate subgroups of 1 + J of the given orders.
Moreover, their direct product gives rise to the subgroup 1+Rou1 ⊕Rou2 ⊕
Rov1.

The structure of 1 + pRo is given in [7], Theorem 9 (1), and it is a direct
product of r cyclic groups, each of order p. Thus, 1 + J is of the required
form, and this completes the proof. ¤

We remark here that the case for which only one of pu1, pu2 is zero has a
similar argument to that given in 2.1.1, and one may deduce the structure
of 1 + J from Proposition 2.2.

2.2. The case when charR = p3, s = 2 and t = 1.. Let the characteristic
of the ring R be p3, and let s = 2 and t = 1. Then

R = Ro ⊕ Rou1 ⊕ Rou2 ⊕ Rov1,

and the Jacobson radical

J = pRo ⊕ Rou1 ⊕ Rou2 ⊕ Rov1,

where Ro = GR(p3r, p3), the Galois ring of characteristic p3 and order p3r,
for any positive integer r, and prime integer p, and we have

uiuj = a1
ijp

2 + a2
ijpu1 + a3

ijpu2 + a4
ijv1,

where a1
ij , a2

ij , a3
ij , a4

ij ∈ Ro/pRo.
From the definition of the multiplication in the ring R, we deduce two

cases; namely, (i) the case when pu1 = 0, pu2 = 0, and (ii) the case when
one of pu1, pu2 is zero, and the other product is non-zero. These two cases
do not overlap and we treat them in turn. Notice that pu1, pu2 can not
both be non-zero, since this will lead to 4 symmetric 2 × 2 matrices which
are clearly dependent over Ro/pRo.

2.2.1. Case(i). Suppose that pu1 = 0, pu2 = 0. Then the multiplication in
R is as defined by

uiuj = a1
ijp

2 + a2
ijv1,

and we have two linearly independent symmetric matrices A = (a1
ij), B =

(a2
ij) over Ro/pRo. The augument is the same as that in 2.1.1, and we may

deduce from Theorem 3 in [5] that if p = 2, there are up to isomorphism,
three commutative rings with pairs of structural matrices(

1 0
0 0

)
,

(
0 0
0 1

)
;

(
1 0
0 1

)
,

(
0 1
1 1

)
;

(
1 0
0 0

)
,

(
0 1
1 0

)
;
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and from Theorem 3 in [4] that if p is odd, there are up to isomorphism,
three commutative rings with pairs of structural matrices(

1 0
0 0

)
,

(
0 0
0 1

)
;

(
1 0
0 g

)
,

(
0 1
1 0

)
;

(
1 0
0 0

)
,

(
0 1
1 0

)
;

where g is a fixed non-square in (Ro/pRo)∗.
We again simplify our notation by calling a ring of characteristic 23, a

ring of Type III, if it is isomorphic to the ring with structural matices(
1 0
0 0

)
,

(
0 0
0 1

)
or

(
1 0
0 1

)
,

(
0 1
1 1

)
;

and of Type IV, if it is isomorphic to a ring with structural matrices(
1 0
0 0

)
,

(
0 1
1 0

)
.

Proposition 2.4. If charR = p3, s = 2, t = 1, and suppose that pu1 =
0, pu2 = 0. Then

(i) 1 + J ∼= Zr
p2 × Zr

p × Zr
p × Zr

p, if p is odd; and when p = 2,

(ii) 1 + J ∼=
{

Zr
4 × Zr

4 × Zr
2, if R is of Type III;

Zr
4 × Zr

2 × Zr
2 × Zr

2, if R is of Type IV.

Proof. If pu1 = 0, pu2 = 0, let a = 1 + x be an element of 1 + J with the
highest possible order and assume that x ∈ J − J2. Then o(a) = p2, for
every prime p. This is true because

(1 + x)p = 1 + px +
p(p − 1)

2
x2 (since x3 = 0).

It is easy to see that if p is odd, then (1 + x)p = 1 + px, since px2 = 0. So,

(1 + px)p = 1 + p(px) +
p(p − 1)

2
(px)2

= 1 + p2x

= 1, since p2x = 0.

If p = 2, then (1 + x)2 = 1 + 2x + x2, and

(1 + 2x + x2)2 = 1 + 4x + 6x2 + 4x3 + x4

= 1 + 4x + 6x2

= 1, since charR = 23 and 2x2 = 0.

Now, let ε1, ..., εr ∈ Ro with ε1 = 1 such that ε1, ..., εr ∈ Ro/pRo
∼=

GF (pr) form a basis for GF (pr) over GF (p). Then the proof is essentially
the proof of Proposition 2.2 with slight changes that

(i) if p is odd, then 1 + J contains subgroups < 1 + εip + εiu1 > each of
order p2, for every i = 1, ..., r; and
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(ii) if p is even, then 1+J contains an extra r subgroups, each of order p.
The small changes preserve each of the previous results up to the inclu-

sion of the direct products of these extra subgroups. Therefore, with a few
modifications, everything goes through as before. Hence, if p is odd, then

1 + J =
r∏

i=1

< 1 + εip + εiu1 > ×
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 >

×
r∏

i=1

< 1 + 2εiu2 >,

a direct product (proving part (i)); and if p is even and R is of type III, then

1 + J =
r∏

i=1

< 1 + 4εi > ×
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 >,

a direct product, and if R is of type IV, then

1 + J =
r∏

i=1

< 1 + 4εi > ×
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 >

×
r∏

i=1

< 1 + εiv1 >,

a direct product. This completes the proof. ¤

2.2.2. Case(ii). Suppose that pu1 = 0, pu2 6= 0. Then the multiplication in
R is now defined by

uiuj = a1
ijp

2 + a2
ijpu2 + a3

ijv1.

Since these four products span J2, the symmetric matrices A = (a1
ij), B =

(a2
ij) and C = (a3

ij) are linearly independent over Ro/pRo, and one verifies
that any such triple of linealy independent symmetric matrices A, B, C
gives rise to a ring of the present type. All rings of this type are isomorphic
to the ring with structural matrices of the form(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
(see 2.1.2 case (ii)).

Proposition 2.5. If charR = p3, s = 2, t = 1, and suppose that pu1 =
0, pu2 6= 0. Then

1 + J ∼=
{

Zr
2 × Zr

4 × Zr
2 × Zr

2 × Zr
2, if p = 2;

Zr
p × Zr

p2 × Zr
p2 × Zr

p, if p 6= 2.
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Proof. If pu1 = 0, pu2 6= 0, let a = 1 + x be an element of 1 + J with the
highest possible order and assume that x ∈ J − J2. Then o(a) = p2, for
every prime p. This is true because

(1 + x)p = 1 + px +
p(p − 1)

2
x2 (since x3 = 0).

It is easy to see that if p is odd, then (1 + x)p = 1 + px, since px2 = 0. So,

(1 + px)p = 1 + p(px) +
p(p − 1)

2
(px)2

= 1 + p2x

= 1, since p2x = 0.

If p = 2, then (1 + x)2 = 1 + 2x + x2, and

(1 + 2x + x2)2 = 1 + 4x + 6x2 + 4x3 + x4

= 1 + 4x + 6x2

= 1, since charR = 23 and 2x2 = 0.

Now, let ε1, ..., εr ∈ Ro with ε1 = 1 such that ε1, ..., εr ∈ Ro/pRo
∼=

GF (pr) form a basis for GF (pr) over GF (p). Then since for each i = 1, ..., r,

and p odd, (1 + εip + εiu1)p2
= 1, (1 + εiu1)p = 1, (1 + εiu2)p2

= 1,
(1+εiv1)p = 1, and the intersection of the cyclic subgroups < 1+εip+εiu1 >,
< 1 + εiu1 >, < 1 + εiu2 > and < 1 + εiv1 >, is trivial, and the order of the
group generated by the direct product of these cyclic subgroups coincides
with |1 + J |, it follows that

1 + J =
r∏

i=1

< 1 + εip + εiu1 > ×
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 >

×
r∏

i=1

< 1 + εiv1 >,

a direct product. This proves the second result. To prove the first part, we
first observe that (1+εiu1)4 = 1, and the elements 1+εiu2 and 1+εiu2 are all
of order 2. Now, since for each i = 1, ..., r, (1 + 4εi)2 = 1, (1 + εiu1)4 = 1,
(1 + εiu2)2 = 1, (1 + 2εiu2)2 = 1, (1 + εiv1)2 = 1, and the order of the
group generated by the direct product of the cyclic subgroups < 1 + 4εi >,
< 1 + εiu1 >, < 1 + εiu2 >, < 1 + 2εiu2 > and < 1 + εiv1 > coincides with
|1 + J |, and their intersection is the identity group, it follows that

1 + J =
r∏

i=1

< 1 + 4εi > ×
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 >
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×
r∏

i=1

< 1 + 2εiu2 > ×
r∏

i=1

< 1 + εiv1 >,

a direct product. This completes the proof. ¤
2.3. The case when charR = p, s = 2 and t = 2. In this case,

R = Fq ⊕ Fqu1 ⊕ Fqu2 ⊕ Fqv1 ⊕ Fqv2,

and the Jacobson radical

J = Fqu1 ⊕ Fqu2 ⊕ Fqv1 ⊕ Fqv2,

where Fq = GF (pr), for some postive integer r and any prime integer p.
The multiplication in R is defined by

uiuj = a1
ijv1 + a2

ijv2,

where a1
ij , a2

ij ∈ Fq, and the two symmetric matrices A = (a1
ij), B = (a2

ij) are
linearly independent over Fq, since the four products uiuj span J2. The ring
structure is determined by the pair of 2 × 2 symmetric matrices A = (a1

ij),
B = (a2

ij), which are linearly independent over Fq, and any pair of indepen-
dent symmetric matrices defines such a ring. The problem of determining
the number of isomorphism classes of such rings and of finding normal forms
for the pair of matrices A, B defining them, was treated in [4] and [5]. There
are exactly three commutative types of these rings for any prime character-
istic p. These are represented by the following structural matrices:(

1 0
0 0

)
,

(
0 0
0 1

)
;

(
1 0
0 1

)
,

(
0 1
1 1

)
;

(
1 0
0 0

)
,

(
0 1
1 0

)
;

if p = 2; and(
1 0
0 0

)
,

(
0 0
0 1

)
;

(
1 0
0 g

)
,

(
0 1
1 0

)
;

(
1 0
0 0

)
,

(
0 1
1 0

)
;

if p is odd , where g is a fixed non-square in Fq (see e.g. Theorem 3 [5], and
Theorem 3 [4], respectively).

We now proceed to determine the structure of 1 + J. Notice that

1 + J = 1 + Fqu1 ⊕ Fqu2 ⊕ Fqv1 ⊕ Fqv2.

To simplify our notation again, we shall call a ring of characteristic 2, a
ring of Type V, if it is isomorphic to a ring with structural matrices(

1 0
0 0

)
,

(
0 0
0 1

)
or

(
1 0
0 1

)
,

(
0 1
1 1

)
;

and a ring of Type VI if it is isomorphic to a ring with structural matrices(
1 0
0 0

)
,

(
0 1
1 0

)
.
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Proposition 2.6. If charR = p, s = 2, t = 2, then
(i) 1 + J ∼= Zr

p × Zr
p × Zr

p × Zr
p, if p is odd; and when p = 2,

(ii) 1 + J ∼=
{

Zr
4 × Zr

4, if R is of Type V;
Zr

4 × Zr
2 × Zr

2, if R is of Type VI.

Proof. Let a = 1 + x be an element of 1 + J with the highest possible order
and assume that x ∈ J − J2. Then

o(a) =
{

p, if p is odd;
p2, if p = 2.

This is true because

(1 + x)p = 1 + px +
p(p − 1)

2
x2 (since x3 = 0)

= 1 +
p(p − 1)

2
x2 (since p ∈ J2 and px = 0).

It is easy to see that if p is odd, then (1 + x)p = 1; and if p = 2, then
(1 + x)p = 1 + x2. But then

(1 + x2)2 = 1 + 2x2 + x4

= 1, since x3 = 0 and 2x2 = 0.

Now, let elements ε1, ..., εr ∈ Fq with ε1 = 1 be a basis for GF (pr) over
GF (p). Then the proof is essentially the proof of Proposition 2.2, with a few
modifications; and if p is odd, then

1 + J =
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 > ×
r∏

i=1

< 1 + εiv1 >

×
r∏

i=1

< 1 + εiv2 >,

a direct product, proving (i); and if p is even and R is of type V, then

1 + J =
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 >,

a direct product, while if R is of type VI,

1 + J =
r∏

i=1

< 1 + εiu1 > ×
r∏

i=1

< 1 + εiu2 + εiv1 > ×
r∏

i=1

< 1 + εiv2 >,

a direct product; proving part (ii). This completes the proof. ¤

In summary, we have proved:
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Theorem 2.7. Let R ba a commutative completely primary finite ring of
the introduction with unique maximal ideal J . If charR = p2 or p3, s = 2,
t = 1; and charR = p, s = 2, t = 2; then, the group of units R∗ of R is
the direct product of a cyclic group Zpr−1 and the p−group (1 + J), whose
structure is given in Propositions 2.2 − 2.6.
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