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THE SPIEGELUNGSSATZ FOR p = 5
FROM A CONSTRUCTIVE APPROACH

Yasuhiro KISHI

Abstract. We describe explicitly the relation between the 5-ranks of
the ideal class groups of two quadratic fields with conductors m and 5m,
respectively, and that of the associated cyclic quartic field.

1. Introduction

The “Spiegelungssatz” gives the relation between the p-ranks of the ideal
class groups of two different number fields. The first “Spiegelungssatz” was
given by Scholz [10] in 1932 for p = 3. He gave a relation between the 3-rank
of the ideal class group of an imaginary quadratic field Q(

√
d) and that of

the associated real quadratic field Q(
√
−3d): Let r denote the former and

s the latter. Then we have the inequalities s ≤ r ≤ s + 1. Some extensions
were given by several authors; for example, Leopoldt [6], Kuroda [5], and
recently Gras [2]. According to them, the associated field of a quadratic field
for p = 5 is a cyclic quartic field. Moreover, the associated field of Q(

√
d)

and that of Q(
√

5d) are the same. In the present paper, we extend Scholz’s
inequalities to p = 5 by constructing polynomials with data of Q(

√
d) and

Q(
√

5d) which generate unramified cyclic quintic extensions of the associated
quartic field; as a consequence, we describe explicitly the relation between
the 5-ranks of the ideal class groups of Q(

√
d) and Q(

√
5d), and that of the

associated quartic field.
Let d (6= 1) be a square free integer prime to 5, and let ζ be a primitive fifth

root of unity. We define two quadratic fields k1 = Q(
√

d) and k2 = Q(
√

5d).
Then there exists a unique proper subextension of the bicyclic biquadratic
extension k1(ζ)/Q(

√
5) other than k1(

√
5) and Q(ζ). We denote it by M .

Then M is a cyclic quartic field, and M(ζ) coincides with k1(ζ).
Let Cl(ki) be the ideal class group of ki, and let Sylel5 Cl(ki) denote the

elementary Sylow 5-subgroup of Cl(ki). Moreover, let ri be the 5-rank of
Cl(ki). Then we can express

Sylel5 Cl(ki) = 〈[ai1]〉 × · · · × 〈[airi ]〉,

where aij , 1 ≤ j ≤ ri, are non-principal prime ideals of ki of degree 1 and
prime to 5. Then a5

ij is principal. Fix an integer αij ∈ Oki
with (αij) = a5

ij
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for each j; αij is not a fifth power in ki. We define the sets S(ki) (i = 1, 2)
as follows:

S(ki) :=

{
{αij | 1 ≤ j ≤ ri} ∪ {εi} if d > 0,

{αij | 1 ≤ j ≤ ri} if d < 0,

where εi is the fundamental unit of ki, if d > 0.
For α ∈ Ok1 and for β ∈ Ok2 , we define six conditions, (A-i) through

(A-v) and (B), as follows:

(A-i) Trk1(α)2 ≡ 4Nk1(α) (mod 53);

(A-ii) Trk1(α) ≡ 0 (mod 52);

(A-iii) Trk1(α)2 ≡ Nk1(α) (mod 52);

(A-iv) Trk1(α)2 ≡ 2Nk1(α) (mod 52);

(A-v) Trk1(α)2 ≡ 3Nk1(α) (mod 52);

(B) Trk2(β)2 ≡ 4Nk2(β) (mod 52),

where Nki
and Trki

are the norm map and the trace map of ki/Q, respec-
tively. Under the above notation, we define δ1 and δ2 respectively by

δ1 :=


1 if none of the five conditions (A-i) through (A-v)

holds for some α ∈ S(k1),
0 if one of the five conditions (A-i) through (A-v)

holds for every α ∈ S(k1),

δ2 :=

{
1 if the condition (B) does not hold for some β ∈ S(k2),
0 if the condition (B) holds for every β ∈ S(k2).

Main Theorem. Let the notation be as above. Moreover let r be the 5-rank
of the ideal class group of M . Then we have

r =

{
r1 + r2 + 2 − δ1 − δ2 if d > 0,

r1 + r2 − δ1 − δ2 if d < 0.

Remark 1.1. (1) The set S(ki) depends on the choice of generators of
Sylel5 Cl(ki). However, δi does not so (cf. Proposition 5.1).
(2) Case (A-iv) occurs only when d ≡ ±1 (mod 5), and cases (A-iii), (A-v)
occur only when d ≡ ±2 (mod 5) (cf. Proposition 5.5).

Remark 1.2. It follows from known results; for example, [11, Section 10] and
[2, Théorème 7.7], and so on, that the difference between r and r1 + r2 is at
most equal to 2.
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For our proof of the main theorem, we give all of those unramified cyclic
quintic extensions of M which are F5-extensions of Q, by constructing quin-
tic polynomials with rational coefficients. Here for an odd prime p in general,
Fp denotes the Frobenius group of order p(p − 1):

Fp = 〈σ, ι | σp = ιp−1 = 1, ι−1σι = σa〉,
where a is a primitive root modulo p. According to class field theory,
Sylel5 Cl(M) is isomorphic to the Galois group of the composite field of all
unramified cyclic quintic extensions of M over M . However, in Section 2
we show that the 5-rank of Cl(M) can be calculated by considering only
unramified cyclic quintic extensions of M which are F5-extensions of Q. In
Section 3, we study Fp-polynomials for a general odd prime p. By applying
Section 3 to the case p = 5, we construct unramified cyclic quintic exten-
sions of M which are F5-extensions of Q in Section 4. In Section 5, we finish
the proof of the main theorem. As an application of our main theorem, we
give another proof of Parry’s result on the 5-divisibility of the class number
of a certain imaginary cyclic quartic field in Section 6. We give in the last
Section 7, some numerical examples.

2. Classification of unramified cyclic quintic extensions

In this section, we will use the same notation as in Section 1.
Fix a generator ρ of Gal(M(ζ)/k1), and assume that ζρ = ζ2. We classify

unramified cyclic quintic extensions E of M into the following three types:
(i) E/Q is normal and its Galois group is

Gal(E/Q) = 〈σ, ι | σ5 = ι4 = 1, ι−1σι = σ2〉
with ι|M = ρ|M ;

(ii) E/Q is normal and its Galois group is

Gal(E/Q) = 〈σ, ι | σ5 = ι4 = 1, ι−1σι = σ3〉
with ι|M = ρ|M ;

(iii) E/Q is not normal.

Remark 2.1. As is observed in [7], every unramified cyclic quintic extension
of M is normal over Q(

√
5). From the fact that the only primitive roots

modulo 5 are 2 and 3, and the fact that the class number of Q(
√

5) is not
divisible by 5, every unramified cyclic quintic extension of M satisfies one
of the above three conditions.

Definition 2.2. An unramified cyclic quintic extension E of M is said
to be of Type (I), (II) or (III) if E satisfies the condition (i), (ii) or (iii),
respectively.
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Proposition 2.3. Let E be an unramified cyclic quintic extension of M of
Type (III). Then there exist unramified cyclic quintic extensions E1/M and
E2/M of Type (I) and Type (II), respectively, so that we have E ⊂ E1E2.

For our proof of this proposition we need the following two lemmas.

Lemma 2.4. Let E be an unramified cyclic quintic extension of M . If E is
of Type (III), then the Galois closure of E over Q is of degree 100, and has
two subfields of degree 20 which are normal over Q.

Proof. Assume that E is of Type (III). Since E/M is an unramified ex-
tension, E is normal over Q(

√
5). Let h(X) ∈ Q(

√
5)[X] be a polynomial

of degree 5 which generates E over Q(
√

5). Since E/Q is not normal, we
have h(X) 6∈ Q[X]. Let ν be a generator of Gal(Q(

√
5)/Q). Then hν(X)

is irreducible over Q(
√

5). Denote the minimal splitting field of hν(X) over
Q(

√
5) by E′. Then EE′ is the minimal splitting field of h(X)hν(X) over

Q(
√

5). Since h(X)hν(X) ∈ Q[X], EE′/Q is normal. Hence the Galois clo-
sure E of E over Q is contained in EE′. On the other hand, E′ contains M
because M/Q is normal. Since E′/Q(

√
5) is normal, E′ is a cyclic quintic

extension of M . Hence EE′ is a bicyclic biquintic extension of M ; that is,
Gal(EE′/M) ' C5×C5. Since the extension EE′/E has no proper subfield,
EE′ coincides with E. Then we have

[E : Q] = [E : M ][M : Q] = 25 · 4 = 100.

Let us write G = Gal(E/Q) for simplicity. Let H1 := 〈σ1〉 and H2 := 〈σ2〉
be the subgroups of G corresponding to E and E′, respectively, and put
A := H1 × H2. Moreover, let B := 〈ι〉 be the subgroup of G of order 4. By
(|A|, |B|) = 1, we have

G = AB = 〈σ1, σ2, ι〉.

We now consider a subgroup Gal(E/Q(
√

5)) of G. Since E and E′ are both
D5-extensions of Q(

√
5), we can express

Gal(E/Q(
√

5)) =

〈
σ1, σ2, ι2

∣∣∣∣∣ σ5
1 = σ5

2 = (ι2)2 = 1, σ1σ2 = σ2σ1,

ι−2σ1ι
2 = σ−1

1 , ι−2σ2ι
2 = σ−1

2

〉
.

Since Eι = E′, we get

(E′)ι−1σ1ι = Eσ1ι = Eι = E′.

Therefore, we have ι−1σ1ι = σx
2 for some x, 1 ≤ x ≤ 4. With replacement of

a generator σ2, we may assume x = 1. In a similar way, we get ι−1σ2ι = σy
1

for some y, 1 ≤ y ≤ 4. Then we have

σ−1
1 = ι−2σ1ι

2 = ι−2(ισ2ι
−1)ι2 = ι−1σ2ι = σy

1 ,
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and hence y = 4. From this, we see that 〈σ1σ
2
2〉 and 〈σ1σ

3
2〉 are both normal

subgroup of G. Indeed, we have

ι−1(σ1σ
2
2)ι = σ2ι

−1ισ−2
1 = σ3

1σ2 = (σ1σ
2
2)

3,

ι−1(σ1σ
3
2)ι = σ2ι

−1ισ−3
1 = σ2

1σ2 = (σ1σ
3
2)

2.

Then the two subfields of E corresponding to 〈σ1σ
2
2〉 and 〈σ1σ

3
2〉 are normal

over Q and of degree 20. The proof is completed. ¤
Lemma 2.5. Let E1 and E2 be unramified cyclic quintic extensions of M . If
both of them are of Type (I) (resp. of Type (II)), then all proper subextensions
of E1E2/M are of Type (I) (resp. of Type (II)).

Proof. We note that all proper subextensions of E1E2/M are unramified
cyclic quintic extensions of M .

Now express

Gal(E1E2/Q) =
〈
σ1, σ2, ι

∣∣ σ5
1 = σ5

2 = ι4 = 1, σ1σ2 = σ2σ1

〉
with ι|M = ρ|M and let 〈σ1〉 and 〈σ2〉 be the subgroups of Gal(E1E2/Q)
corresponding to E1 and E2, respectively. Then we have

Gal(E1/Q) = 〈σ2|E1 , ι|E1〉 and Gal(E2/Q) = 〈σ1|E2 , ι|E2〉.

Hence by the assumption, the relations ι−1σ1ι = σl
1 and ι−1σ2ι = σl

2 hold,
where l = 2 or 3 according to whether E1 and E2 are of Type (I) or of
Type (II). Note that every proper subextensions of E1E2/M except for E1

and E2 corresponds to a subgroup 〈σj
1σ2〉 of Gal(E1E2/Q) for some j, 1 ≤

j ≤ 4. Since

ι−1(σj
1σ2)ι = (ι−1σj

1ι)(ι
−1σ2ι) = (ι−1σ1ι)j(ι−1σ2ι) = (σl

1)
jσl

2 = (σj
1σ2)l,

we obtain the desired conclusion. ¤

Proof of Proposition 2.3. Let E be an unramified cyclic quintic extension of
M of Type (III), and let τ be a automorphism of E/Q of order 2. Since M
is normal over Q, Eτ contains M . By using Lemma 2.4, the Galois closure
E of E over Q has two subfields of degree 20 which are normal over Q. We
denote them by E1 and E2. It is clear that E = EEτ = E1E2. Since E
and Eτ are both unramified over M , so is E. Then E1 and E2 are both
unramified over M also. By using Lemma 2.5, one is of Type (I) and the
other is of Type (II). ¤

Let E1 (resp. E2) be the composite field of all unramified cyclic quintic
extensions of M of Type (I) (resp. of Type (II)). Then by using Lemma 2.5,
we have

(2.1) E1 ∩ E2 = M.
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Put E := E1E2. It is clear that E is unramified over M and contains all
unramified cyclic quintic extensions of M of Types (I) or (II). Let E3 be an
unramified cyclic quintic extension of M of Type (III). Then by Proposi-
tion 2.3, we have E3 ⊂ E1E2 = E. Hence the composite field of all unram-
ified cyclic quintic extensions of M coincides with E. From this, together
with (2.1), we can prove

(2.2) Sylel5 Cl(M) ' Gal(E/M) ' Gal(E1/M) × Gal(E2/M).

We see therefore that the 5-rank of Cl(M) can be calculated by considering
only unramified cyclic quintic extensions of M of Types (I) and (II).

3. Fp-extensions of the rational number field

First we review a part of Imaoka and the author’s work in [4].
Let p be an odd prime and let ζ be a primitive p-th root of unity. Let k be a

quadratic field different from Q(
√

(−1)(p−1)/2p). Then there exists a unique
proper subextension of the bicyclic biquadratic extension k(ζ)/Q(ζ + ζ−1)
other than k(ζ + ζ−1) and Q(ζ). We denote it by M . Then M is a cyclic
field of degree p − 1.

Fix a generator τ of Gal(M(ζ)/M). We define subsets M(M) and N (M)
of M(ζ)× as follows:

M(M) := {γ ∈ M(ζ)× | γ−1+τ 6∈ M(ζ)p},
N (M) := M(ζ)× \M(M).

For α ∈ k, we define the polynomial fp(X; α) by

fp(X;α) :=
(p−1)/2∑

i=0

(−N(α))i p

p − 2i

(
p − i − 1

i

)
Xp−2i − N(α)(p−1)/2Tr(α),

where N and Tr are the norm map and the trace map of k/Q. Denote the
minimal splitting field of fp(X; α) over Q by Kα.

Proposition 3.1 ([4, Theorem 2.1, Corollary 2.6]). Let the notation be as
above. Fix a generator ρ of Gal(M(ζ)/k), and take an element l(ρ) ∈ Z so
that we have ζρ = ζ l(ρ). Then for α ∈ M(M) ∩ k, Kα is an Fp-extension
of Q containing M . Furthermore, let σ and ι be generators of Gal(Kα/Q)
which satisfy the following two relations:

(i) ι|M = ρ|M ;
(ii) σp = ιp−1 = 1.

Then we have
ι−1σι = σl(ρ).
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Conversely, every Galois extension E of Q containing M with Galois group

Gal(E/Q) = 〈σ, ι | σp = ιp−1 = 1, ι−1σι = σl(ρ)〉,

where ι|M = ρ|M , is given as E = Kα for some α ∈ M(M) ∩ k.

A criterion for two fields Kα1 and Kα2 with α1, α2 ∈ M(M) ∩ k to
coincide with each other is given by the following proposition.

Proposition 3.2 ([4, Proposition 1.3]). For elements α1, α2 ∈ M(M)∩ k,
the following statements are equivalent:

(a) Kα1 = Kα2 ;
(b) αn

1/α2 ∈ N (M) for some n ∈ Z \ pZ.

Remark 3.3. It follows from this proposition that we may replace M(M)∩k
by M(M) ∩ Ok in the statement of Proposition 3.1.

Next we show the following proposition with respect to the ramification.
For a prime number p and for an integer m, we denote by vp(m) the greatest
exponent µ of p such that pµ | m.

Proposition 3.4. Let q be a prime and θ be a root of fp(X; α) for α ∈
M(M) ∩ Ok. Assume that (N(α), Tr(α)) = 1. Then the condition

vq(N(α)) 6≡ 0 (mod p)

is a sufficient condition for the prime q to be totally ramified in Q(θ). More-
over, if q 6= p, it is also necessary.

For the proof of this proposition, we need the following Sase’s results.

Proposition 3.5 ([9, Proposition 2]). Let p (6= 2) and q be prime numbers.
Suppose that the polynomial

ϕ(X) = Xp +
p−2∑
j=0

ajX
j , aj ∈ Z

is irreducible over Q and satisfies the condition

(3.1) vq(aj) < p − j for some j, 0 ≤ j ≤ p − 2.

Let θ be a root of ϕ(X).
(1) If q is different from p, then q is totally ramified in Q(θ)/Q if and only
if

0 <
vq(a0)

p
≤ vq(aj)

p − j
for every j, 1 ≤ j ≤ p − 2.
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(2) The prime p is totally ramified in Q(θ)/Q if and only if one of the
following conditions (S-i), (S-ii) holds:

(S-i) 0 <
vp(a0)

p
≤ vp(aj)

p − j
for every j, 1 ≤ j ≤ p − 2;

(S-ii) (S-ii-1) vp(a0) = 0,

(S-ii-2) vp(aj) > 0 for every j, 1 ≤ j ≤ p − 2,

(S-ii-3)
vp(ϕ(−a0))

p
≤ vp(ϕ(j)(−a0))

p − j
for every j, 1 ≤ j ≤ p − 2,

and

(S-ii-4) vp(ϕ(j)(−a0)) < p − j for some j, 0 ≤ j ≤ p − 1,

where ϕ(j)(X) is the j-th differential of ϕ(X).

Proof of Proposition 3.4. Let α be an element of M(M) ∩ Ok. It follows
from Proposition 3.1 that fp(X; α) is irreducible over Q. Let q be a prime
number. Express

vq(N(α)(p−1)/2) = pu + v, u, v ∈ Z, 0 ≤ v ≤ p − 1, u ≥ 0,

and put
N(α) = q2(pu+v)/(p−1)w, w ∈ Z, q - w.

Then we have

fp(X; α) =
(p−1)/2∑

i=0

(−q2(pu+v)/(p−1)w)i p

p − 2i

(
p − i − 1

i

)
Xp−2i

− qpu+vw(p−1)/2Tr(α).

Divide both sides of this equation by qpu, and put X = quY ; then we have

gp(Y ; α) :=
fp(quY ;α)

qpu

=
(p−1)/2∑

i=0

q2i(u+v)/(p−1)(−w)i p

p − 2i

(
p − i − 1

i

)
Y p−2i

− qvw(p−1)/2Tr(α).

Since

0 ≤ 2(u + v)
p − 1

=
2(pu + v)

p − 1
− 2u ∈ Z,

we have gp(Y ;α) ∈ Z[Y ]. Let denote the coefficient of Y j in gp(Y ; α) by aj .
When q - N(α), we have vq(a1) = 0 or 1 according to whether q is equal to
p or not; and hence vq(a1) < p− 1. When q | N(α), we have vq(a0) = v < p
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because (N(α), Tr(α)) = 1. Therefore, gp(Y ; α) satisfies the condition (3.1)
in any case. Hence we can apply Proposition 3.5 to gp(Y ; α).

Assume that vq(N(α)) 6≡ 0 (mod p). Then we have vq(Tr(α)) = 0 by the
assumption. Let us show the inequality

(3.2) 0 <
vq(a0)

p
≤ vq(aj)

p − j
for every j, 1 ≤ j ≤ p − 2.

Since v 6= 0, the first inequality of the condition (3.2) holds. We see that,
for every j, 1 ≤ j ≤ p − 2,

vq(aj)
p − j

− vq(a0)
p

≥

2(u + v)
p − 1

· p − j

2
+ ε

p − j
− v

p

=
pu + v

p(p − 1)
+

ε

p − j

> 0;

here ε = 1 or 0 according to whether q is equal to p or not. Hence the second
inequality of (3.2) also holds. Therefore, q is totally ramified in Q(θ).

Assume that q 6= p and vq(N(α)) ≡ 0 (mod p). In this case, the in-
equality (3.2) does not hold. Indeed, we have ap−2 = −pw 6≡ 0 (mod q)
because v = 0, if q - N(α), and a0 = w(p−1)/2Tr(α) 6≡ 0 (mod q) because
(N(α),Tr(α)) = 1, if q | N(α). Therefore, q is not totally ramified in Q(θ).
The proof is completed. ¤

4. Construction of unramified cyclic quintic extensions

In this section, we apply the previous section to the case p = 5.
Let ζ be a primitive fifth root of unity, and let k = Q(

√
D) be a quadratic

field, where D is a square free integer and is different from 5. Let M be the
same definition as in Section 3; then M is a cyclic quartic field containing
Q(

√
5). Fix a generator ρ of Gal(M(ζ)/k), and take an element l(ρ) ∈ Z so

that we have ζρ = ζ l(ρ). Moreover, we define subsets M5(M) and N5(M)
of M(ζ)× as follows:

M5(M) := {γ ∈ M(ζ)× | γ−1+τ 6∈ M(ζ)5},
N5(M) := M(ζ)× \M5(M),

where τ is a generator of Gal(M(ζ)/M). Furthermore, we define a subset
U(k) of Ok as follows:

U(k) := {α ∈ Ok | (N(α), Tr(α)) = 1, N(α) ∈ Z5, α 6∈ (Ok)5}.
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We consider the polynomial

f(X;α) := f5(X; α)

= X5 − 5N(α)X3 + 5N(α)2X − N(α)2Tr(α), α ∈ Ok.

Denote the minimal splitting field of f(X;α) over Q by Kα.
First we show the following proposition.

Proposition 4.1. Let the notation be as above. Then the following state-
ments hold.
(1) For α ∈ U(k), Kα is normal over Q and is a cyclic quintic extension of
M unramified outside 5. Moreover, let σ and ι be generators of Gal(Kα/Q)
with σ5 = ι4 = 1 and ι|M = ρ|M . Then we have

Gal(Kα/Q) = 〈σ, ι | σ5 = ι4 = 1, ι−1σι = σl(ρ)〉.
(2) Let E be an unramified cyclic quintic extension of M . Assume that E/Q
is normal and its Galois group is

Gal(E/Q) = 〈σ, ι | σ5 = ι4 = 1, ι−1σι = σl(ρ)〉 with ι|M = ρ|M .

Then there exists an element α ∈ U(k) so that we have E = Kα.

To prove this proposition, we need the following two lemmas.

Lemma 4.2. The set U(k) is included in M5(M) ∩ Ok.

Proof. Let α be an element of U(k). Since α 6∈ (Ok)5 and N(α) ∈ Z5, we
have α−1+τ = α−2N(α) 6∈ M(ζ)5. Therefore, we get α ∈ M5(M) ∩ Ok. ¤
Lemma 4.3. (1) For an element α ∈ M5(M)∩Ok, we have Kα = Kαn for
every n ∈ Z, (n, 5) = 1.
(2) For two elements α1, α2 ∈ U(k), Kα1 = Kα2 if and only if αn

1 = α2x
5

for some x ∈ k and n ∈ {1, 2, 3, 4}.

Proof. (1) This result immediately follows from Proposition 3.2.
(2) For elements α1, α2 ∈ U(k), we have

Kα1 = Kα2

⇐⇒ αn
1/α2 ∈ N5(M) for some n ∈ {1, 2, 3, 4} (by Proposition 3.2)

⇐⇒ (αn
1/α2)−1+τ ∈ M(ζ)5 for some n ∈ {1, 2, 3, 4}

⇐⇒ (αn
1/α2)−2N(αn

1/α2) ∈ M(ζ)5 for some n ∈ {1, 2, 3, 4}
⇐⇒ αn

1/α2 ∈ M(ζ)5 for some n ∈ {1, 2, 3, 4} (by N(α1), N(α2) ∈ Z5)

⇐⇒ αn
1 = α2x

5 for some x ∈ M(ζ) and n ∈ {1, 2, 3, 4}
⇐⇒ αn

1 = α2x
5 for some x ∈ k and n ∈ {1, 2, 3, 4} (by 5 - [M(ζ) : k]).

The proof is completed. ¤



SPIEGELUNGSSATZ FOR p = 5 11

Proof of Proposition 4.1. (1) Let α be an element of U(k). Then we have
α ∈ M5(M) ∩ Ok by Lemma 4.2. Hence by Proposition 3.1, we have only
to show that Kα/M is unramified outside 5. By applying Proposition 3.4
to f(X; α), we see that no primes except for 5 are totally ramified in Q(θ),
where θ is a root of f(X; α). Then it follows from 5 - [M : Q] that Kα/M is
unramified outside 5.
(2) Let E be an unramified cyclic quintic extension of M . Assume that E/Q
is normal and its Galois group is

Gal(E/Q) = 〈σ, ι | σ5 = ι4 = 1, ι−1σι = σl(ρ)〉 with ι|M = ρ|M .

Then by Proposition 3.1 and Remark 3.3, there is an element α ∈ M5(M)∩
Ok so that we have E = Kα.

Now let us show that we can take an element β ∈ U(k) with Kα = Kβ .
We write α = (a + b

√
D)/2, a, b ∈ Z. Put g := (N(α), Tr(α)), and express

(4.1)
N(α) = gn,

Tr(α) = gt.

Then we have n, t ∈ Z, (n, t) = 1, and

(4.2) b2D = g2t2 − 4gn.

Put g′ := (g, n) and β := α2/gg′. Then we have Kα = Kβ . Indeed, Kα =
Kα2 follows from Lemma 4.3 (1), and Kα2 = Kβ follows from f(X; α2) =
g5g′5f(X/gg′;β). Hence we have only to show β ∈ U(k). By (4.1) and (4.2),
we have

β =
(a + b

√
D)2

4gg′
=

a2 + b2D + 2ab
√

D

4gg′

=
g2t2 + (g2t2 − 4gn) + 2gtb

√
D

4gg′
=

gt2 − 2n + tb
√

D

2g′
.

Since

N(β) =
N(α)2

g2g′2
=

n2

g′2
∈ Z and Tr(β) =

gt2 − 2n

g′
∈ Z,

we have β ∈ Ok. Moreover we have(
n

g′
,
gt2 − 2n

g′

)
=

(
n

g′
,
gt2

g′

)
= 1,

so

(N(β), Tr(β)) =
(

n2

g′2
,
gt2 − 2n

g′

)
= 1.

By the definition of β, we easily see β ∈ M(M). Hence we can apply
Proposition 3.4 to f(X; β). From the assumption that E/M is unramified,
it must hold that vq(N(β)) ≡ 0 (mod 5) for every prime q. Then we have
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N(β) ∈ Z5. Finally, we show β 6∈ (Ok)5. Suppose, on the contrary, that
β ∈ (Ok)5. Then there exist rational numbers u and v such that

β = γ5 with γ = u + v
√

D.

Then because

Tr(β) = 2u(u4 + 10u2v2D + 5v4D2) and N(β) = (u2 − v2D)5,

we have

f(X; β) = X5 − 5(u2 − v2D)5X3

+ 5(u2 − v2D)10X − 2u(u4 + 10u2v2D + 5v4D2)(u2 − v2D)10

=
{
X − 2u(u2 − v2D)2

}{
X4 + 2u(u2 − v2D)2X3

− (u2 − 5v2D)(u2 − v2D)4X2 − 2u(u2 − 5v2D)(u2 − v2D)6X

+(u4 + 10u2v2D + 5v4D2)(u2 − v2D)8
}

.

Hence f(X; β) is reducible over Q. This contradicts Kα = Kβ . Hence we
have β 6∈ (Ok)5. Therefore, we obtain β ∈ U(k), as desired. ¤

Next we examine the ramification of the prime 5.

Proposition 4.4. Let α = (a + b
√

D)/2 (a, b ∈ Z) be an element of U(k)
and let θ be a root of f(X; α). Suppose that 5 | b2D. Then the following
statements hold.
(1) If v5(b2D) ≥ 3, then the prime 5 is not totally ramified in Q(θ)/Q.
(2) If v5(b2D) = 1 or 2, then the prime 5 is totally ramified in Q(θ)/Q.

Proof. Let α = (a + b
√

D)/2 (a, b ∈ Z) be an element of U(k), and suppose
that 5 | b2D. Then neither N(α) nor Tr(α) is divisible by 5. Express
N(α) = m5, 5 - m ∈ Z; then we have

f(X; α) = X5 − 5m5X3 + 5m10X − m10a.

This polynomial satisfies the condition (3.1) for j = 0 because the constant
term is not divisible by 5. Now let us apply Proposition 3.5 to f(X; α).

By 5 - a and 5 - m, we can verify that

v5(a0) = 0 and v5(aj) > 0 for every j, 1 ≤ j ≤ 3;

that is, the condition (S-i) does not holds, but the conditions both (S-ii-1)
and (S-ii-2) hold.

We note that

f (1)(X; α) = 5X4 − 15m5X2 + 5m10,

f (2)(X; α) = 20X3 − 30m5X,

f (3)(X; α) = 60X2 − 30m5.
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Then we have

f (1)(m10a; α) = 5(m10a)4 − 15m5(m10a)2 + 5m10

= 5m10(m30a4 − 3m15a2 + 1)

= 5m10

{(
a2 − b2D

4

)6

a4 − 3
(

a2 − b2D

4

)3

a2 + 1

}

=
5m10

46
(a16 − 3 · 43a8 + 46 + t1b

2D)

for some t1 ∈ Z. In a similar way, we get

f (2)(m10a;α) = 20(m10a)3 − 30m5(m10a)

=
5m15a

16
(a8 − 96 + t2b

2D),

f (3)(m10a;α) = 60(m10a)2 − 30m5

=
15m5

16
(a8 − 32 + t3b

2D)

for some t2, t3 ∈ Z. Since the congruence equations a16 − 3 · 43a8 + 46 ≡
0 (mod 5) and a8 − 96 ≡ 0 (mod 5) hold for all a ∈ Z with (a, 5) = 1, and
since X8 − 32 = 0 has no solution in Z/5Z, we have

(4.3) v5(f (3)(m10a; α)) = 1

and

(4.4)
v5(f (j)(m10a; α))

5 − j
≥ 1

2
for every j, 1 ≤ j ≤ 3.

It follows from the Eq. (4.3) that the condition (S-ii-4) holds for j = 3.
Now we have

f(m10a; α)

= (m10a)5 − 5m5(m10a)3 + 5m10m10a − m10a

= m10a(m40a4 − 5m25a2 + 5m10 − 1)

= m10a

{(
a2 − b2D

4

)8

a4 − 5
(

a2 − b2D

4

)5

a2 + 5
(

a2 − b2D

4

)2

− 1

}

=
m10a

48
(a20 − 5 · 43a12 + 5 · 46a4 − 48

− 8a18b2D + 52 · 43a10b2D − 10 · 46a2b2D + t4b
4D2)

for some t4 ∈ Z. Here the congruence equation

a20 − 5 · 43a12 + 5 · 46a4 − 48 ≡ 0 (mod 53)
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holds for all a ∈ Z with (a, 5) = 1, because

X20 − 5 · 43X12 + 5 · 46X4 − 48

≡ (X4 − 1)(X16 + X12 − 69X8 − 69X4 + 36) (mod 53),

X16 + X12 − 69X8 − 69X4 + 36

≡ (X4 − 1)2(X8 + 3X4 + 11) (mod 52)

and a4 − 1 ≡ 0 (mod 5) for all a ∈ Z with (a, 5) = 1. Hence we have

v5(f(m10a; α))

{
≥ 3 if v5(b2D) ≥ 3,
= v5(b2D) ≤ 2 if v5(b2D) = 1 or 2.

From this together with the inequality (4.4), we see that the condition
(S-ii-3) does not hold if v5(b2D) ≥ 3, but holds if v5(b2D) = 1 or 2. This
completes the proof of Proposition 4.4. ¤

5. Proof of the main theorem

The goal of this section is to prove our main theorem.
Let the notation be as in Sections 1 and 2. Moreover, put αi ri+1 := εi, if

d > 0, and put

r′i :=

{
ri + 1 if d > 0,

ri if d < 0.

Define the set U(S(ki)) as follows:

U(S(ki)) :=


r′i∏

j=1

α
tij
ij

∣∣∣∣∣∣ 0 ≤ tij ≤ 4,

r′i∑
j=1

tij 6= 0

 .

The following proposition is important to prove our main theorem.

Proposition 5.1. The family {Kα | α ∈ U(S(ki))} of the minimal splitting
fields Kα of f(X; α) over Q for α ∈ U(S(ki)) does not depend on the choice
of generators of Sylel5 Cl(ki).

Proof. Let Sylel5 Cl(ki) be expressed as follows:

(5.1) Sylel5 Cl(ki) = 〈[bi1]〉 × · · · × 〈[biri ]〉,

where bij , 1 ≤ j ≤ ri, are (integral) ideals of ki. Then b5
ij is principal. Fix

integer βij ∈ ki with (βij) = b5
ij for each j, 1 ≤ j ≤ ri, and put βi ri+1 := εi,
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if d > 0. Define the sets T (ki) and U(T (ki)) by

T (ki) := {βij | 1 ≤ j ≤ r′i},

U(T (ki)) :=


r′i∏

j=1

β
tij
ij

∣∣∣∣∣∣ 0 ≤ tij ≤ 4,

r′i∑
j=1

tij 6= 0

 ,

respectively. Moreover, put

A := {Kα | α ∈ U(S(ki))} and B := {Kβ | β ∈ U(T (ki))}.

To prove Proposition 5.1, it is sufficient to show that A = B.
Before proving this, we will show the following two lemmas.

Lemma 5.2. Let the notation be as above. Then the following statements
hold.
(1) Let β be an element of U(T (ki)). Assume that β is not divisible by any
rational integers except ±1. Then β is also an element of U(ki).
(2) For α ∈ U(ki), there exists an element β ∈ U(T (ki)) so that we have
Kα = Kβ.

Proof. (1) Assume that β is an element of U(T (ki)) which is not divisible
by any rational integers except ±1. It is easily seen that N(β) ∈ Z5 and
β 6∈ (Ok)5. Hence we have only to show (N(β),Tr(β)) = 1. Express β =
(a + b

√
D)/2, a, b ∈ Z, where D = d or 5d according to i = 1 or 2, and

express N(β) = m5, m ∈ Z. Then we have

(5.2) a2 − b2D = 4m5.

Assume that there exists a prime q so that we have q | (N(β), Tr(β)). Then
by the Eq. (5.2), we have q2 | b2D. Since D is square-free, we have q | b.
Hence it follows from the assumption that q must be equal to 2. Put a = 2a′,
b = 2b′. Then we have a′2 − b′2D = m5. This implies

(5.3) a′
2 − b′

2
D ≡ 0 (mod 4),

and hence a′ ≡ b′ (mod 2). If a′ ≡ b′ ≡ 0 (mod 2), then we have 2 | β. This
is a contradiction. If a′ ≡ b′ ≡ 1 (mod 2), then we have D ≡ 1 (mod 4) by
the congruence equation (5.3). Therefore we have 2 | β = a′ + b′

√
D. This

is a contradiction. Then we have (N(β), Tr(β)) = 1. Thus the assertion (1)
of Lemma 5.2 has been proved.
(2) Let α be an element of U(ki). First we show that α is not divisible by
any rational integers except ±1. Assume that the prime q divides α. Then q
also divides the conjugate of α. We see, therefore, that q divides both N(α)
and Tr(α). This is a contradiction.
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Now suppose that α is a unit of ki. Then we have α = ±εn
i for some

n ∈ Z, (n, 5) = 1. Express n = 5n1 + n2, n1, n2 ∈ Z, 1 ≤ n2 ≤ 4; then we
have εn2

i = βn2
i ri+1 ∈ U(T (ki)) and Kα = Kε

n2
i

.
Next suppose that α is not a unit. Let q be a prime divisor of (α) in ki,

and put q := q ∩ Z. Since α is not divisible by any rational integers except
±1 as we have seen, q is not inert in ki. Assume that q is ramified in ki;
(q) = q2. Since q | N(α) and N(α) ∈ Z5, we have q5 | N(α), and hence
q | (α). This is a contradiction. Therefore all prime divisors of N(α) split
in ki. Let

|N(α)| =
m∏

l=1

q5el
l

be the prime decomposition of |N(α)| in Z. For each ql, express ql = qlq
′
l in

ki. Choose the ideal ql so that we have ql | (α) for each l (1 ≤ l ≤ m); then
we obtain

(α) =
m∏

l=1

q5el
l =

(
m∏

l=1

qel
l

)5

.

Put a :=
∏m

l=1 qel
l . Since α 6∈ (Oki

)5, a is not principal. Then by (5.1) we
can express

a = bti1
i1 · · · btiri

iri
(γ), 0 ≤ tij ≤ 4,

ri∑
j=1

tij 6= 0, γ ∈ ki.

Then we have
(α) = (βti1

i1 · · ·βtiri
iri

γ5),
and hence

α = βti1
i1 · · ·β

tir′
i

ir′i
γ′5, γ′ ∈ ki.

Then we have β := βti1
i1 · · ·β

tir′
i

ir′i
∈ U(T (ki)) and Kα = Kβ . This completes

the proof of Lemma 5.2. ¤
Lemma 5.3. The number of distinct cyclic quintic extensions of M given
as Kα with α ∈ U(T (ki)) is equal to (5r′i − 1)/4.

Proof. For β, β′ ∈ U(T (ki)), we express

β = βti1
i1 · · ·β

tir′
i

ir′i
, 0 ≤ tij ≤ 4,

β′ = β
t′i1
i1 · · ·β

t′
ir′

i

ir′i
, 0 ≤ t′ij ≤ 4.

By using Lemma 4.3, Kβ = Kβ′ if and only if there exists n ∈ {1, 2, 3, 4}
such that we have ntij ≡ t′ij (mod 5) for all j, 1 ≤ j ≤ r′i. Since #U(T (ki)) =
5r′i − 1, therefore, we obtain the desired conclusion. ¤
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We go back to the proof of Proposition 5.1. Let α be an element of
U(S(ki)). It follows from the choice of aij that α is not divisible by any
rational integers except ±1. Then by (1) of Lemma 5.2, we have α ∈ U(ki).
Hence by (2) of Lemma 5.2, we have on the one hand Kα = Kβ for some
β ∈ U(T (ki)). Therefore we have A ⊂ B. By Lemma 5.3, on the other hand,
we have

#A = #B =
5r′i − 1

4
.

Hence we obtain A = B. The proof of Proposition 5.1 is completed. ¤

As we have seen in Section 2, we have only to study Gal(Ei/M) (i = 1, 2)
for getting the 5-rank of Cl(M), where E1 (resp. E2) is the composite field of
all unramified cyclic quintic extensions of M of Type (I) (resp. of Type (II)).
From now on, we calculate the 5-rank of Gal(Ei/M).

We recall that ρ is the fixed generator of Gal(M(ζ)/k1) with ζρ = ζ2.
Assume that α ∈ U(k1) and take generators σ, ι of Gal(Kα/Q) with σ5 =
ι4 = 1 and ι|M = ρ|M . By applying Proposition 4.1 (1) to k = k1, the
relation ι−1σι = σ2 holds. Hence if Kα is unramified over M , then it is of
Type (I). Next assume that β ∈ U(k2). Take generators σ, ι of Gal(Kβ/Q)
with σ5 = ι4 = 1 and ι|M = ρ|M and take a generator ρ′ of Gal(M(ζ)/k2)
with ι|M = ρ′|M ; then we have ρ′ = τρ. Hence by Proposition 4.1 (1), we
have

ι−1σι = σl(ρ′) = σl(τρ) = σ3

because ζτρ = (ζ−1)ρ = ζ−2 = ζ3. If Kβ/M is unramified, therefore, Kβ is
of Type (II).

From this, together with Proposition 4.1 (2), and Lemma 5.2, we have

Proposition 5.4. For α ∈ U(S(k1)) (resp. β ∈ U(S(k2))), Kα is nor-
mal over Q and is a cyclic quintic extension of M unramified outside 5.
Moreover, if Kα/M (resp. Kβ/M) is unramified, then Kα (resp. Kβ) is of
Type (I) (resp. of Type (II)). Conversely, suppose that E is an unramified
cyclic quintic extension of M . If E is of Type (I) (resp. of Type (II)), then
there exists an element α ∈ U(S(k1)) (resp. β ∈ U(S(k2))) so that we have
E = Kα (resp. E = Kβ).

By this proposition, Ei coincides with the composite field of all unramified
cyclic quintic extensions of M given as Kα with α ∈ U(S(ki)).

The following proposition states a criterion for an element of U(S(ki)) to
give an unramified extension of M .
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Proposition 5.5. (1) For α ∈ U(S(k1)), we have

Kα/M is unramified

⇐⇒

{
(A-i), (A-ii) or (A-iv) if d ≡ ±1 (mod 5),
(A-i), (A-ii), (A-iii) or (A-v) if d ≡ ±2 (mod 5).

(2) For β ∈ U(S(k2)), we have

Kβ/M is unramified ⇐⇒ (B).

Proof. (1) Let α = (a + b
√

d)/2 (a, b ∈ Z) be an element of U(S(k1)). It is
clear by Proposition 5.4 that Kα/M is unramified outside 5. Hence we have

Kα/M is unramified ⇐⇒ a prime divisor of 5 in M is unramified in Kα.

Put

αl =
al + bl

√
d

2
, al, bl ∈ Z,

for l (> 0) ∈ Z.
First assume that d ≡ ±1 (mod 5). In this case, the prime 5 splits in k1;

(5) = pp′. Then we have

(Ok1/(5))× = (Ok1/p)× ×
(
Ok1/p′

)× ' C4 × C4.

Since (α, 5) = 1, therefore, we have α4 ≡ 1 (mod 5), and hence v5(b4) ≥ 1.
Since α4 is not divisible by any rational integers except ±1, we can show
α4 ∈ U(k1) in the same way as the proof of Lemma 5.2 (1). It follows from
Lemma 4.3 (1) that Kα = Kα4 . By applying Proposition 4.4 to f(X; α4),
therefore, we have

a prime divisor of 5 in M is unramified in Kα

⇐⇒ a prime divisor of 5 in M is unramified in Kα4

⇐⇒ 5 is not totally ramified in Q(θ)

⇐⇒ v5(b4) ≥ 2,

where θ is a root of f(X; α4). Here we note that

b4 =
ab(a2 + b2d)

2
.

Moreover, an easy calculation shows that

v5(a) ≥ 2 ⇐⇒ (A-ii),

v5(b) ≥ 2 ⇐⇒ (A-i),

v5(a2 + b2d) ≥ 2 ⇐⇒ (A-iv).
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Hence by 5 - (a, b), 5 - (a, a2 + b2d) and 5 - (b, a2 + b2d), we have

Kα/M is unramified ⇐⇒ (A-i), (A-ii) or (A-iv).

Next assume that d ≡ ±2 (mod 5). In this case, the prime 5 remains
prime in k1. In a similar way to the above argument, we have v5(b24) ≥ 1
because

(Ok1/(5))× ' C24.

Moreover, we see that α24 ∈ U(k1) and Kα = Kα24 . By Proposition 4.4,
therefore, we have

a prime divisor of 5 in M is unramified in Kα

⇐⇒ a prime divisor of 5 in M is unramified in Kα24

⇐⇒ 5 is not totally ramified in Q(θ)

⇐⇒ v5(b24) ≥ 2,

where θ is a root of f(X; α24). Now we have

b24 =
1

220
ab(3a2 + b2d)(a2 + 3b2d)(a2 + b2d)(a4 + 14a2b2d + b4d2)

× (a4 + 6a2b2d + b4d2)(a8 + 60a6b2d + 134a4b4d2 + 60a2b6d3 + b8d4).

It is easily seen that

v5(a) ≥ 2 ⇐⇒ (A-ii),

v5(b) ≥ 2 ⇐⇒ (A-i),

v5(3a2 + b2d) ≥ 2 ⇐⇒ (A-iii),

v5(a2 + 3b2d) ≥ 2 ⇐⇒ (A-v),

and the greatest common divisor of any pair of {a, b, 3a2 + b2d, a2 + 3b2d} is
not divisible by 5. Furthermore,

(a2 + b2d)(a4 + 14a2b2d + b4d2)(a4 + 6a2b2d + b4d2)

× (a8 + 60a6b2d + 134a4b4d2 + 60a2b6d3 + b8d4) = 0

has no solution in Z/5Z when 5 - (a, b) and d ≡ ±2 (mod 5). Hence the
statement (1) of Proposition 5.5 has been proved.
(2) Let β = (a + b

√
5d)/2 (a, b ∈ Z) be an element of U(S(k2)) ⊂ U(k2).

Then by Proposition 4.4 and Proposition 5.4, we have

Kβ/M is unramified ⇐⇒ 5 is not totally ramified in Q(θ)

⇐⇒ v5(b) ≥ 1,

where θ is a root of f(X; β). Since

v5(b) ≥ 1 ⇐⇒ (B),
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we obtain the desired conclusion. ¤

Now we define the integer ϕ by

ϕ :=

{
4 if d ≡ ±1 (mod 5),
24 if d ≡ ±2 (mod 5).

For calculating the 5-rank of Gal(E1/M), we need the following lemma.

Lemma 5.6. Let α, α1 and α2 be elements of U(S(k1)).
(1) If α satisfies the condition (A-ii) (resp. (A-iii), (A-iv) or (A-v)), then
α2 (resp. α3, α4 or α6) satisfies (A-i).
(2) If both α1 and α2 satisfy the condition (A-i), then so does the product
α1α2.
(3) If neither α1 nor α2 satisfies all of the five conditions (A-i) through
(A-v), then one of the elements (α1α2)ϕ, (α2

1α2)ϕ, (α3
1α2)ϕ and (α4

1α2)ϕ

satisfies the condition (A-i).

Proof. Note that for α = (a + b
√

d)/2 ∈ U(S(k1)) (a, b ∈ Z), we have

(5.4) (A-i) ⇐⇒ v5(b) ≥ 2.

(1) By easy calculations, we give the results. Let us explain the case where
α = (s + t

√
d)/2 ∈ U(S(k1)) (s, t ∈ Z) satisfies the condition (A-iii) for

example. In this case, we have

s2 ≡ s2 − t2d

4
(mod 52),

and hence 3s2 + t2d ≡ 0 (mod 52). From this together with

α3 =
s(s2 + 3t2d) + t(3s2 + t2d)

√
d

8
,

we see by (5.4) that α3 satisfies (A-i).
(2) Assume that both elements α1 = (s + t

√
d)/2 (s, t ∈ Z) and α2 =

(u + v
√

d)/2 (u, v ∈ Z) of U(S(k1)) satisfy the condition (A-i). Then by
(5.4) we have v5(t) ≥ 2 and v5(v) ≥ 2, and hence

(5.5) v5(sv + tu) ≥ 2.

On the other hand, we have

α1α2 =
su + tvd + (sv + tu)

√
d

4
.

Then by (5.4) and (5.5), we conclude that α1α2 satisfies (A-i).
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(3) Let α1 and α2 be elements of U(S(k1)). Assume that neither α1 nor
α2 satisfies all of the five conditions (A-i) through (A-v). Then by Propo-
sition 5.5 (1), a prime divisor of 5 in M is ramified in both Kα1 and Kα2 .
Put

αϕ
1 =

s + t
√

d

2
and αϕ

2 =
u + v

√
d

2
with s, t, u, v ∈ Z.

Then both 5 | t and 5 | v hold as we have seen in the proof of (1) of
Proposition 5.5. Since (ϕ, 5) = 1, we have Kα1 = Kαϕ

1
and Kα2 = Kαϕ

2
.

Hence we have 52 - t and 52 - v. Write t = 5t′ and v = 5v′ (t′, v′ ∈ Z,
5 - t′v′), and put

(αl
1α2)ϕ =

al + bl

√
d

2
with al, bl ∈ Z,

for l (> 0) ∈ Z. Then we have

b1 =
5(sv′ + t′u)

2
,

b2 =
5s(sv′ + 2t′u) + 125t′2v′d

4
,

b3 =
5s2(sv′ + 3t′u) + 125t′2(3sv′ + t′u)d

8
,

b4 =
5s3(sv′ + 4t′u) + 250st′2(3sv′ + 2t′u)d + 3125t′4v′d2

16
.

It is clear that one of those four elements is divisible by 52. Hence by (5.4),
we obtain the desired conclusion. ¤

We recall that the number of distinct cyclic quintic extensions of M given
as Kα with α ∈ U(S(k1)) is equal to (5r′1 − 1)/4.

Suppose that one of the five conditions (A-i) through (A-v) holds for
every element of S(k1). Then by using Lemma 5.6 (1), we can choose uj ∈
{1, 2, 3, 4, 6} so that α

uj

1j satisfies the condition (A-i) for each α1j ∈ S(k1).
Put α′

1j := α
uj

1j . Then we have

Sylel5 Cl(k1) = 〈[au1
11 ]〉 × · · · × 〈[aur1

1r1
]〉,

and (α′
1j) = (auj

1j )
5. We define the set S′(k1) by

S′(k1) := {α′
1j | 1 ≤ j ≤ r′1},

and put

U(S′(k1)) :=


r′1∏

j=1

(α′
1j)

t1j

∣∣∣∣∣∣ 0 ≤ t1j ≤ 4,

r′1∑
j=1

t1j 6= 0

 .
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It follows from (2) of Lemma 5.6 that all elements of U(S′(k1)) satisfy the
condition (A-i). Then by Proposition 5.5 (1), all (5r′1 − 1)/4 fields given
as Kα with α ∈ U(S′(k1)) are unramified over M . Therefore the 5-rank of
Gal(E1/M) is equal to r′1.

Next suppose that none of the five conditions (A-i) through (A-v) holds
for some elements of S(k1).

First we consider the case where d > 0 and the fundamental unit ε1

satisfies none of the five conditions (A-i) through (A-v). By Lemma 5.6 (3),
there exists uj ∈ {0, 1, 2, 3, 4} such that (εuj

1 α1j)ϕ satisfies (A-i) for each α1j

(1 ≤ j ≤ r1). Put α′
1j := ε

uj

1 α1j ; then we have

Sylel5 Cl(k1) = 〈[a11]〉 × · · · × 〈[a1r1 ]〉,
and (α′

1j) = (a1j)5. Put

S′(k1) := {α′
1j | 1 ≤ j ≤ r1}

and

U(S′(k1)) :=


r1∏

j=1

(α′
1j)

t1j

∣∣∣∣∣∣ 0 ≤ t1j ≤ 4,

r1∑
j=1

t1j 6= 0

 .

It follows from (2) of Lemma 5.6 that all elements of U(S′(k1)) satisfy the
condition (A-i). Then by Proposition 5.5 (1), all (5r1 − 1)/4 fields given
as Kα with α ∈ U(S′(k1)) are unramified over M . However the number of
unramified cyclic quintic extensions of M given as Kα with α ∈ U(S(k1))
is less than (5r1+1 − 1)/4, because a prime divisor of 5 in M is ramified in
Kε1 ; that is, Kε1/M is not unramified. Therefore the 5-rank of Gal(E1/M)
is equal to r1 = r′1 − 1.

Next we consider the case where “d < 0” or “d > 0 and the fundamental
unit satisfies one of the five conditions (A-i) through (A-v).” We may as-
sume that α11 satisfies none of the five conditions (A-i) through (A-v). By
Lemma 5.6 (3), for each α1j (2 ≤ j ≤ r1), there exists uj ∈ {0, 1, 2, 3, 4}
such that (αuj

11α1j)ϕ satisfies the condition (A-i). Put α′
1j := α

uj

11α1j ; then
we have

Sylel5 Cl(k1) = 〈[a11]〉 × 〈[au2
11a12]〉 × · · · × 〈[aur1

11 a1r1 ]〉
and (α′

1j) = (auj

11a1j)5, 2 ≤ j ≤ r1. When d > 0, εu
1 satisfies the condition

(A-i) for some u ∈ {1, 2, 3, 4, 6}. Then we put α′
1r′1

:= εu
1 . Put

S′(k1) := {α′
1j | 2 ≤ j ≤ r′1}

and

U(S′(k1)) :=


r′1∏

j=2

(α′
1j)

t1j

∣∣∣∣∣∣ 0 ≤ t1j ≤ 4,

r′1∑
j=2

t1j 6= 0

 .
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Then the number of unramified cyclic quintic extensions of M given as Kα

with α ∈ U(S′(k1)) is equal to (5r′1−1−1)/4. Hence the 5-rank of Gal(E1/M)
is equal to r′1 − 1.

Next let us calculate the 5-rank of Gal(E2/M). The following lemma
corresponds to our Lemma 5.6.

Lemma 5.7. Let β1 and β2 be elements of U(S(k2)).
(1) If both β1 and β2 satisfy the condition (B), then so does β1β2.
(2) If neither β1 nor β2 satisfies the condition (B), then one of the elements
β1β2, β2

1β2, β3
1β2, β4

1β2 satisfies the condition (B).

Proof. We note that β = (a + b
√

5d)/2 ∈ U(S(k2)) (a, b ∈ Z) satisfies the
condition (B) if and only if v5(b) ≥ 1.

For β1, β2 ∈ U(S(k2)), we express

β1 =
s + t

√
5d

2
and β2 =

u + v
√

5d

2
with s, t, u, v ∈ Z.

(1) From the assumption, we have v5(t) ≥ 1 and v5(v) ≥ 1. Since

β1β2 =
su + 5tvd + (sv + tu)

√
5d

4
and v5(sv + tu) ≥ 1, we obtain the desired conclusion.
(2) From the assumption, we have v5(t) = 0 and v5(v) = 0. We also have
v5(s) = 0 and v5(u) = 0 by (N(β1), Tr(β1)) = (N(β2),Tr(β2)) = 1. Put

βl
1β2 =

al + bl

√
5d

2
with al, bl ∈ Z,

for l (> 0) ∈ Z. Then we have

b1 =
sv + tu

2
,

b2 =
s(sv + 2tu) + 5t2vd

4
,

b3 =
s2(sv + 3tu) + 5t2(3sv + tu)d

8
,

b4 =
s3(sv + 4tu) + 10st2(3sv + 2tu)d + 25t4vd2

16
.

It is clear that one of them is divisible by 5. The proof of Lemma 5.7 is
completed. ¤

As in the above discussion, by using this lemma, we obtain that the 5-rank
of Gal(E2/M) is equal to r′2 − δ2.

We summarize the above argument in the following.
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Proposition 5.8. Let E1 (resp. E2) be the composite field of all unramified
cyclic quintic extensions of M of Type (I) (resp. of Type (II)). Then we have

Gal(Ei/M) ' C5 × · · · × C5︸ ︷︷ ︸
r′i−δi

(i = 1, 2),

where δi is defined as in Section 1.

From this proposition together with the relation (2.2), we obtain that the
5-rank of the ideal class group of M is equal to r′1 + r′2 − δ1 − δ2. This
completes the proof of the main theorem.

6. Divisibility of the class numbers

A necessary and sufficient condition for 3 to divide the class number of
an imaginary quadratic field was given by Herz [3, Theorem 6]. In [8], Parry
extended such a result to p = 5; that is, he gave a necessary and sufficient
condition for 5 to divide the class number of a certain imaginary cyclic
quartic field. As an application of our main theorem, we can give another
proof of Parry’s result.

Theorem 6.1 ([8, Theorem 2, Theorem 5, Corollary 6]). Under the same
situation as that in our main theorem, we assume in addition that d is
positive. Let h1, h2 and h denote the class numbers of k1, k2 and M , re-
spectively. Express ε1 = (a1 +b1

√
d)/2 (a1, b1 ∈ Z) and ε2 = (a2 +b2

√
5d)/2

(a2, b2 ∈ Z). Then 5 | h if and only if one of the following conditions holds:

(P-i) a1 ≡ 0 (mod 52) or b1 ≡ 0 (mod 52);

(P-ii) a1 ≡ ±1, ±7 (mod 52);

(P-iii) b2 ≡ 0 (mod 5);

(P-iv) 5 | h1h2.

Proof. Let r, r1, r2, δ1 and δ2 be the same notation as in our main theorem.
Note that

(P-i) ⇐⇒ Trk1(ε1) ≡ 0 (mod 52) or Trk1(ε1)2 ≡ 4Nk1(ε1) (mod 53),

(P-ii) ⇐⇒ Trk1(ε1)2 ≡ Nk1(ε1) (mod 52),

(P-iii) ⇐⇒ Trk2(ε2)2 ≡ 4Nk2(ε2) (mod 52).

If the condition (P-iv) holds, then we have r1 + r2 ≥ 1. If the condition
(P-iv) does not hold, then we have S(ki) = {εi} for i = 1, 2, and hence

(P-i) or (P-ii) =⇒ δ1 = 0,

(P-iii) =⇒ δ2 = 0.
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Therefore, if one of the above four conditions holds, then we have r =
r1 + r2 + 2 − δ1 − δ2 ≥ 1.

Conversely, assume that none of the above four conditions holds. Since
both X2 ≡ ±2 (mod 52) and X2 ≡ ±3 (mod 52) have no solution in Z,
ε1 does not satisfy either (A-iv) or (A-v). Then we have δ1 = δ2 = 1 and
r1 + r2 = 0. This implies r = 0; that is, h is not divisible by 5. ¤

7. Numerical examples

In this section, we give some numerical examples.

Example 7.1. Let d = 2723. Then we have

Cl(k1) ' C2 and Cl(k2) ' C20.

Now we can write
Sylel5 Cl(k2) = 〈[q]〉,

where q is a prime divisor of 19 in k2 with (β) = q5, β = 1326+115
√

5 · 2723.
The fundamental unit ε1 = 94137 + 1804

√
2723 of k1 satisfies the condition

(A-iii). Moreover both β and the fundamental unit ε2 = 7001+60
√

5 · 2723
of k2 satisfy the condition (B). Then by the main theorem, the 5-rank r of
M is equal to 3:

r = 0 + 1 + 2 − 0 − 0 = 3.

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group
of M is isomorphic to C10 × C10 × C10 × C2.

Example 7.2. Let d = −14606. Then we have

Cl(k1) ' C10 × C10 and Cl(k2) ' C44 × C2 × C2,

and we can write
Sylel5 Cl(k1) = 〈[p1]〉 × 〈[p2]〉,

where p1 and p2 are prime divisors of 71 and 73, respectively, in k1 with
(α1) = p5

1, α1 = 39699 + 125
√
−14606 and (α2) = p5

2, α2 = 19097 +
342

√
−14606. We can easily verify that α1 and α2 satisfy the conditions

(A-i) and (A-iv), respectively. Then the main theorem follows that the
5-rank r of M is equal to 2:

r = 2 + 0 − 0 − 0 = 2.

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group
of M is isomorphic to C10 × C10 × C2.

Example 7.3. Let d = −16782. Then we have

Cl(k1) ' C10 × C10 and Cl(k2) ' C40 × C2 × C2.
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We can write

Sylel5 Cl(k1) = 〈[p1]〉 × 〈[p2]〉 and Sylel5 Cl(k2) = 〈[q]〉,

where p1 and p2 are prime divisors of 7 and 31 in k1 respectively with
(αj) = p5

j (j = 1, 2), α1 = 5 +
√
−16782, α2 = 647 + 41

√
−16782, and q is

a prime divisor of 271 in k2 with (β) = q5, β = 583699 + 3655
√
−5 · 16782.

We see that neither α1 nor α2 satisfy all of the five conditions (A-i) through
(A-v), but (α3

1α2)6 satisfies (A-i) (cf. Lemma 5.6 (3)). Moreover, we also
see that β satisfies the condition (B). Therefore it follows from the main
theorem that the 5-rank r of M is equal to 2:

r = 2 + 1 − 1 − 0 = 2.

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group
of M is isomorphic to C10 × C10.

Example 7.4. Let d = −560181. Then we have

Cl(k1) ' C334 × C2 and Cl(k2) ' C10 × C10 × C10.

We note that k2 is the imaginary quadratic field with the largest discriminant
which has ideal class group of 5-rank greater than two (see [1]). Now we
have

Sylel5 Cl(k2) = 〈[q1]〉 × 〈[q2]〉 × 〈[q3]〉,
where q1, q2 and q3 are prime divisors of 181, 241 and 349, respectively, in
k2 with (βj) = q5

j (j = 1, 2, 3),

β1 = 426689 + 66
√
−5 · 560181,

β2 = 91111 + 536
√
−5 · 560181,

β3 = 2183773 + 382
√
−5 · 560181.

We can easily verify that none of βj satisfies the condition (B). (Both β1β2

and β2β3 however satisfy (B).) Therefore, the main theorem follows that
the 5-rank r of M is equal to 2:

r = 0 + 3 − 0 − 1 = 2.

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group
of M is isomorphic to C10 × C10.
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