
Math. J. Okayama Univ. 46 (2004), 153–161

ON STRONG APPROXIMATION OF FUNCTIONS
BY CERTAIN LINEAR OPERATORS

Lucyna REMPULSKA and Mariola SKORUPKA

Abstract. This note is motivated by the results on the strong approxi-
mation of 2π-periodic functions by means of trigonometric Fourier series.
In this note is investigated certain class of positive linear operators in
the polynomial weighted spaces. We introduce the strong differences of
functions and their operators and we give the Jackson type theorems for
them. We give also some corollaries.

1. Introduction

1.1. The problem of strong approximation of functions connected with
Fourier series was examined in many papers presented by G. Alexits, K.
Tandori, L. Leindler, R. Taberski, V. Totik and other authors (see [5]).

The monograph [5] is devoted to the strong approximation of 2π-periodic
functions belonging to various classes by the means of trigonometric Fourier
series.

For example, if Sn(f ; x) is the n-th partial sum of trigonometric Fourier
series of f , then the n-th (C, 1)-mean of this series is defined by the formula

σn(f ; x) :=
1

n + 1

n∑

k=0

Sk(f ;x), n ∈ N0 = {0, 1, ...} .

The n-th strong (C, 1)-mean of this series is defined as follows

Hq
n(f ; x) :=

{
1

n + 1

n∑

k=0

|Sk(f ; x) − f(x)|q
} 1

q

, n ∈ N0,

where q is a fixed positive number. It is clear that

|σn(f ; x) − f(x)| ≤ H1
n(f ; x)

and
Hq

n(f ;x) ≤ Hp
n(f ; x), 0 < q < p < ∞,

for all x ∈ R and n ∈ N0. The last inequalities show that examination of
the strong means of Fourier series is useful.

The purpose of this note is to show that investigation of the strong ap-
proximation connected with linear operators is also useful.
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1.2. In [2] were examined approximation properties of the Szász-Mirakjan
operators ([6])

(1) Sn(f ; x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
,

and the Baskakov operators ([1])

(2) Vn(f ; x) :=
∞∑

k=0

(
n − 1 + k

k

)
xk(1 + x)−n−k f

(
k

n

)
,

n ∈ N = {1, 2, ...}, x ∈ R0 = [0,∞), for the functions f belonging to the
polynomial weighted spaces Cp, p ∈ N0. The space Cp, p ∈ N0, is associated
with the weighted function

(3) w0(x) := 1, wp(x) := (1 + xp)−1 if p ≥ 1,

and it is the set of all real-valued functions f for which wpf is uniformly
continuous and bounded on R0 and the norm is defined by the formula

(4) ‖f‖p ≡ ‖f( · )‖p := sup
x∈R0

wp(x) |f(x)|.

The author proved in [2] that for every p ∈ N0 there exists a positive
constant M(p) depending only on p such that for every f ∈ Cp there holds

(5) wp(x) |Vn(f ;x)−f(x)| ≤ M(p) ω2

(
f ;

√
(x + x2)/n

)
n ∈ N, x ∈ R0,

where ω2(f ; ·) is the second modulus of smoothness of f . From (5) it follows
that

(6) lim
n→∞

Vn(f ; x) = f(x), x ∈ R0, f ∈ Cp,

and this convergence is uniform on every interval [x1, x2], x1 ≥ 0.
The analogous results for the Szász-Mirakyan operators are given in [2]

also.
In this note we introduce certain class of linear operators in the spaces

Cp and we define the strong differences for them. We give two theorems and
some corollaries on these strong differences.

We shall denote by Mk(α, β), k ∈ N , suitable positive constants depend-
ing only on indicated parameters α, β.

2. Definitions and preliminary results

2.1. Let Ω be the set of all infinite matrices A = [ank], n ∈ N , k ∈ N0, of
functions in C0 having the following properties:

(i) ank(x) ≥ 0 for x ∈ R0, n ∈ N , k ∈ N0,
(ii)

∑∞
k=0 ank(x) = 1 for x ∈ R0, n ∈ N ,
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(iii) for every n, r ∈ N the series
∑∞

k=0 krank(x) is uniformly convergent
on R0 and its sum is a function belonging to the space Cr,

(iv) for every r ∈ N there exists positive constant M1(r,A) independent
on x ∈ R0 and n ∈ N such that for the functions

(7) Tn,2r(x; A) :=
∞∑

k=0

ank(x)
(

k

n
− x

)2r

, x ∈ R0,

(belonging to C2r) there holds

‖Tn,2r( · ; A)‖2r ≤ M1(r,A) n−r, n ∈ N.

Choosing A ∈ Ω and p ∈ N0 we define for f ∈ Cp the following positive
linear operators

(8) Ln(f ; A; x) :=
∞∑

k=0

ank(x) f

(
k

n

)
, n ∈ N, x ∈ R0.

The properties (i)-(iv) of the matrix A imply that the operators Ln(f ; A)
are well-defined and

(9) Ln(1; A; x) = 1 for x ∈ R0, n ∈ N,

and by (8) and (9) we have

(10) Ln(f ; A; x) − f(x) =
∞∑

k=0

ank(x)
(

f

(
k

n

)
− f(x)

)
.

For Ln(f ; A) and f ∈ Cp we define the strong difference with the power
q > 0 as follows:

(11) Hq
n(f ;A;x) :=

{ ∞∑

k=0

ank(x)
∣∣∣∣f

(
k

n

)
− f(x)

∣∣∣∣
q
} 1

q

, x ∈ R0, n ∈ N.

Then we see that by the properties (i)-(iv) of A the Hq
n(f ; A) are well-

defined for every f ∈ Cp, p ∈ N0, and q > 0. Moreover (10) and (11) imply
that

Hq
n(f ; A; x) = {Ln (|f(t) − f(x)|q; A; x)}

1
q ,(12)

|Ln(f ; A; x) − f(x)| ≤ H1
n(f ; A;x),(13)

and by the Hölder inequality and (12) and (9)

(14) Hq
n(f ; A; x) ≤ Hr

n(f ;A;x), 0 < q < r < ∞,

for every f ∈ Cp, x ∈ R0 and n ∈ N.
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2.2. First we shall give some properties of the operators Ln(f ; A).

Lemma 2.1. Let A ∈ Ω, p ∈ N0 and q > 0 be fixed. Then there exists
M2 ≡ M2(p, q, A) > 0 such that

(15) ‖
(
Ln

(
(wp(t))−q; A; ·

)) 1
q ‖p ≤ M2, n ∈ N,

and for every f ∈ Cp

(16) ‖ (Ln (|f |q; A; · ))
1
q ‖p ≤ M2 ‖f‖p, n ∈ N.

Proof. a) Let q = 1. From (3), (8) and (9) we get

Ln(1/wp(t);A; x) = 1 + Ln (tp; A; x)

≤ 1 + 2p (Ln (|t − x|p; A; x) + xp)

≤ 2p
(
(wp(x))−1 + Ln (|t − x|p; A; x)

)
, x ∈ R0, n ∈ N.

By the Hölder inequality and (9), we have

Ln (|t − x|p;A;x) ≤
(
Ln

(
(t − x)2p; A; x

)) 1
2

and by the inequality (wp(x))2 ≤ w2p(x) for x ∈ R0, we get

wp(x) Ln(1/wp(t);A; x) ≤ 2p
(
1 +

(
w2p(x) Ln

(
(t − x)2p; A;x

)) 1
2

)
.

Applying (7) and the inequality given in (iv), we obtain

wp(x) Ln(1/wp(t);A;x) ≤ M2(p,A) for x ∈ R0, n ∈ N,

which by (4) implies (15).

b) Let q ≥ 2 be integer. From (3) we get the following inequalities

(17) (wp(x))q ≤ wpq(x), (wp(x))−q ≤ 2q(wpq(x))−1,

for x ∈ R0. Applying (17) we can write

wp(x)
(
Ln

(
(wp(t))−q; A; x

)) 1
q ≤ 2 (wpq(x)Ln (1/wpq(t);A; x))

1
q

≤ 2 (‖Ln (1/wpq(t);A; · ) ‖pq)
1
q ,

and we can apply (15) for the last norm. This implies (15).

c) Let 0 < q 6∈ N . Then by the Hölder inequality and (9) we get
(
Ln

(
(wp(t))−q; A; x

)) 1
q ≤

(
Ln

(
(wp(t))−r; A; x

)) 1
r , x ∈ R0,

for every 0 < q < r < ∞. In particular setting r = [q] + 1 ([q] denotes the
integral part of q), we have

∥∥∥
(
Ln

(
(wp(t))−q; A; ·

)) 1
q

∥∥∥
p
≤

∥∥∥
(
Ln

(
(wp(t))−r; A; ·

)) 1
r

∥∥∥
p
,
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and by the case b) we obtain (15) for 0 < q 6∈ N. Thus the proof of (15) is
completed.

If f ∈ Cp and q > 0, then by (8) and (4) we get
∥∥∥(Ln (|f |q ; A; · ))

1
q

∥∥∥
p
≤ ‖f‖p

∥∥∥
(
Ln

(
(wp(t))−q; A; ·

)) 1
q

∥∥∥
p
,

and by (15) we obtain (16). ¤
Lemma 2.2. Let A, p and q be as in Lemma 2.1. Then there exists M3 ≡
M3(p, q, A) > 0 such that

(18) wp(x)
{

Ln

((
|t − x|
wp(t)

)q

; A; x
)} 1

q

≤ M3

(
Ln

(
(t − x)2s; A; x

)) 1
2s

for all x ∈ R0 and n ∈ N , where

(19) s =

{
q if q ∈ N,

[q] + 1 if 0 < q 6∈ N.

Proof. By (8) and by the Hölder inequality we get

wp(x)
(

Ln

((
|t − x|
wp(t)

)q

; A; x
)) 1

q

≤ wp(x)
(
Ln

(
(wp(t))−2q; A; x

)) 1
2q ×

×
(
Ln

(
(t − x)2q; A; x

)) 1
2q

for all x ∈ R0, n ∈ N . Applying (15) and the inequality

(20) (Ln (|t − x|q;A;x))
1
q ≤ (Ln (|t − x|r; A; x))

1
r , x ∈ R0, n ∈ N,

for 0 < q < r < ∞, we easily obtain the desired estimation (18). ¤
Lemma 2.2 and the property (iv) of A imply the following

Corollary 1. For every matrix A ∈ Ω, p ∈ N0 and q > 0 there exists
M4 ≡ M4(p, q, A) > 0 such that

wp(x)
{

Ln

((
|t − x|
wp(t)

)q

; A; x
)} 1

q

≤ M4
1 + x√

n

for all x ∈ R0 and n ∈ N .

3. Theorems and corollaries

3.1. First we shall give two theorems on the strong differences Hq
n(f ; A)

defined by (11). We shall use the modulus of continuity of f ∈ Cp ([3])

(21) ω(f ; t) = sup
0≤h≤t

‖∆hf( · )‖p, t ≥ 0,

where ∆hf(x) = f(x + h) − f(x).
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It is known ([3]) that limt→0+ ω(f ; t) = 0 for every f ∈ Cp, p ∈ N0.
Let C1

p be the class of all f ∈ Cp having the first derivative on R0 and
f ′ ∈ Cp.

Theorem 3.1. Suppose that A ∈ Ω, p ∈ N0 and q > 0. Then there exist
M5 ≡ M5(p, q, A) > 0 such that for every f ∈ C1

p there holds

(22) wp(x) Hq
n(f ; A;x) ≤ M5 ‖f ′‖p (Tn,2s(x; A))

1
2s ,

for all x ∈ R0 and n ∈ N , where Tn,2s( · ; A) is defined by (7) and s is given
by (19).

Proof. For f ∈ C1
p and t, x ∈ R0 we have

|f(t) − f(x)| =
∣∣∣∣
∫ t

x
f ′(u)du

∣∣∣∣ ≤ ‖f ′‖p

(
1

wp(t)
+

1
wp(x)

)
|t − x|.

From this we get

Hq
n(f ; A; x) ≤ ‖f ′‖p

(
Ln

((
1

wp(t)
+

1
wp(x)

)q

|t − x|q; A; x
)) 1

q

and further

wp(x) Hq
n(f ; A; x) ≤ 2 ‖f ′‖p

{
wp(x)

(
Ln

((
|t − x|
wp(t)

)q

; A; x
)) 1

q

+

+ (Ln (|t − x|q; A; x))
1
q

}

for x ∈ R0 and n ∈ N. Appling Lemma 2.2 and (7) and the inequality (20)
with r = 2q, we obtain

wp(x) Hq
n(f ; A; x) ≤ 2

∥∥f ′∥∥
p
(Tn,2s(x; A))

1
2s (M3(p, q, A) + 1)

for x ∈ R0, n ∈ N and s defined by (19). Thus the proof of (22) is completed.
¤

Theorem 3.2. Let A ∈ Ω, p ∈ N0 and q > 0. Then there exists M6 ≡
M6(p, q, A) = const. > 0 such that for every f ∈ Cp we have

(23) wp(x) Hq
n(f ; A; x) ≤ M6 ω

(
f ;

1 + x√
n

)
,

for all x ∈ R0 and n ∈ N , where ω(f ; · ) is the modulus of continuity of f ,
defined by (21).

Proof. Let q ≥ 1. We shall apply the Stieklov function fh for f ∈ Cp:

fh(x) :=
1
h

∫ h

0
f(x + u)du, x ∈ R0, h > 0.
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From this formula and (21) we get for h > 0 :

‖f − fh‖p ≤ ω(f ; h),(24)

‖f ′
h‖p ≤ h−1 ω(f ; h),(25)

i.e. fh ∈ C1
p if f ∈ Cp. It is obvious that

|f(t) − f(x)| ≤ |f(t) − fh(t)| + |fh(t) − fh(x)| + |fh(x) − f(x)|
for x, t ∈ R0 and h > 0. This fact and (12), (8) and (9) and the Minkowski
inequality imply that

Hq
n(f ; A; x) ≤ (Ln (|f(t) − fh(t)|q; A; x))

1
q +

+ (Ln (|fh(t) − fh(x)|q; A; x))
1
q + |fh(x) − f(x)|

:=
3∑

i=1

Zn,i(x),

for x ∈ R0, n ∈ N and h > 0. By (24) we have

‖Zn,3( · )‖p ≤ ω(f ; h), h > 0.

Applying (16) and (24), we get

‖Zn,1( · )‖p ≤ M2(p, q, A) ‖f − fh‖p ≤ M2(p, q, A) ω(f ;h), h > 0.

By Theorem 3.1 and (25) we have

wp(x) Zn,2(x) ≤ M5 ‖f ′
h‖p (Tn,2s(x; A))

1
2s

≤ M5 h−1 ω(f ; h) (Tn,2s(x; A))
1
2s .

From the above and by the property (iv) of A we obtain

wp(x) Hq
n(f ; A; x) ≤ M6(p, q, A) ω(f ; h)

(
1 + h−1 1 + x√

n

)
.

Setting h = 1+x√
n

, we obtain (23) for q ≥ 1.

If 0 < q < 1 then by (14) we have

Hq
n(f ; A; x) ≤ H1

n(f ; A; x), x ∈ R0, n ∈ N,

and by (23) for q = 1 we get (23) for 0 < q < 1. ¤
Theorem 3.2 implies the following

Corollary 2. If the assumptions of Theorem 3.2 are satisfied, then for every
f ∈ Cp, p ∈ N0, we have

lim
n→∞

Hq
n(f ; A; x) = 0 at every x ∈ R0.

This convergence is uniform on every interval [x1, x2], x1 ≥ 0.
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Remark. The inequality (13) shows that results given for Hq
n(f ; A) in Theo-

rem 3.1, Theorem 3.2 and Corollary 2 concern also the difference |Ln(f ; A;x)
−f(x)|. Thus the strong approximation for considered operators is more
general.

3.2. Now we shall give three examples of operators of the Ln(f ; A) type
defined by (8).

1. The Szász-Mirakyan operators Sn, n ∈ N , defined by (1) are generated
by the matrix A1 = [ank(x)] with

ank(x) = e−nx (nx)k

k!
, n ∈ N, k ∈ N0, x ∈ R0.

It is easily verified that A1 ∈ Ω, i.e. the A1 satisfies the conditions (i) - (iv).

2. The Baskakov operators with Vn, n ∈ N , defined by (2), are connected
with the matrix A2 on the elements

ank(x) =
(

n − 1 + k
k

)
xk (1 + x)−n−k, n ∈ N, k ∈ N0, x ∈ R0.

We can prove that A2 ∈ Ω also.

3. The Bernstein operators

Bn(f ; x) :=
n∑

k=0

(
n
k

)
xk (1 − x)n−k f

(
k

n

)
, n ∈ N,

defined for continuous functions f on the interval [0, 1] are operators of the
type Ln(f ; A) with the matrix A3 = [ank(x)] where

ank(x) =





(
n

k

)
xk(1 − x)n−k if 0 ≤ k ≤ n,

0 if k > n,

for n ∈ N . Here for considered functions f( · ) and an( · ) we set: f(x) = f(1)
and ank(x) = ank(1) for all x > 1. We can verify that A3 ∈ Ω.

Hence the above lemmas, theorems and corollaries concern also the strong
approximation of functions by the Szász-Mirakyan, Baskakov and Bernstein
operators.

We remark also that the order of the strong differences given in Theorem
3.2 and Corollary 2 are similar to (5) and (6) for the Baskakov operators.
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