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1. Introduction

Let GQ be the absolute Galois group of the rational number field Q. In
this paper we closely study the action of GQ on an element of the Teichmüller
modular group which can be viewed simply as the order 5 rotation of the
Riemann sphere marked at the 5th-roots of unity. Especially, we explicitly
compute the conjugating factor of the action in terms of the Galois repre-
sentation in π1(P1−{0, 1,∞},−→01). The overall meaning of this computation
can be explained most naturally from the point of view, or the framework,
of Grothendieck-Teichmüller theory. In this introduction we will content
ourselves with recalling the least necessary background, relying on refer-
ences for technical detail. We postpone until §6 of the present paper a short
discussion of the why and what for.

Let M0,n (resp. M0,[n]) be the fine moduli space of sphere with n labeled
(resp. unlabeled) marked points, viewed as a Q-scheme (resp. stack). Let
Γn

0 (resp. Γ[n]
0 ) be the topological (resp. orbifold) fundamental group of

M0,n (resp. M0,[n]) as a complex manifold (resp. orbifold), regarding Q as

embedded in C. Finally, let Γ̂n
0 and Γ̂[n]

0 be the profinite completions of these
groups, which one can regard as the geometric fundamental groups of M0,n

and M0,[n] respectively. There is a canonical outer action of GQ on Γ̂[n]
0 ,

which preserves the pure subgroup Γ̂n
0 .

39
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In this situation, V.Drinfeld introduced the Grothendieck-Teichmüller
group ĜT , whose action on Γ̂n

0 extends that of GQ as proved by Ihara,
Ihara-Matsumoto ([Dr], [I1], [IM]). In particular M0,4 is isomorphic to P1

Q \
{0, 1,∞}, so that its topological fundamental group Γ4

0 is isomorphic to F2,
the free group on two generators. More precisely we regard M0,4 as the
punctured projective t-line P1

t and let x (resp. y, z) denote a loop based at
the tangential base point

−→
01t and circling once counterclockwise around 0

(resp. 1, ∞). We then write F2 = 〈x, y, z | xyz = 1〉; This defines an action
of GQ and ĜT on the geometric fundamental group of M0,4 (' F̂2) based at
−→
01t, and we get inclusions: GQ ⊂ ĜT ⊂ Aut(F̂2).

An element σ of ĜT has defining parameters (λσ, fσ) ∈ Ẑ∗× F̂2 such that
σ(x) = xλσ and fσ describes the action of σ on the path p between

−→
01t and

−→
10t (essentially the open interval (0, 1)); in fact, by the definition of fσ, we
have σ(p) = f−1

σ p (cf. the Appendix). These parameters are subject to the
following equations:

(I) f(x, y)f(y, x) = 1 in F̂2,

(II) f(x, y)xmf(z, x)zmf(y, z)ym = 1 in F̂2, where m = (λ − 1)/2,

(III) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1 in Γ̂5
0,

where xij denotes the standard generator of Γ5
0 which braids only the strands

i and j, and f(xij , xkl) denotes the image of f = f(x, y) under the homo-
morphism F̂2 → Γ̂5

0 mapping x 7→ xij , y 7→ xkl; we refer to [Dr], [LS1,2], [N]
for details and references.

For σ ∈ GQ, we have λσ = χ(σ) (the cyclotomic character), and we write
λσ or χ(σ) indifferently; we also occasionally drop the mention of σ whenever
it is clear from the context, writing simply λ, f for λσ, fσ (and the same
for analogous parameters which we introduce below). See [I1], [LS1-2], [N-
I,II], [F], and several other places for detail on the above standard situation.
The Appendix below explains compatibility of conventions/symbols of most
references.

The automorphism groups Aut(M0,4) and Aut(M0,5) (all automorphism
groups of the moduli spaces are intended over Q), especially the latter one
plays an important role in this paper. As is well-known, Aut(M0,n) ' Sn

for n ≥ 5, where the permutation group Sn describes the permutation of
the marked points. For n = 4, Aut(M0,4) ' S3, where S3 can be viewed as
permuting the points 0, 1, ∞ after the identification M0,4 ' P1

t \ {0, 1,∞}.
The group Aut(M0,4) is generated by the 2- and 3-cycles θ and ω acting
as θ : t 7→ 1 − t and ω : t 7→ (1 − t)−1, which have been used in [LS2]
and [NT]. They induce automorphisms of the geometric fundamental group
F̂2 of M0,4, which we denote θ, ω. The main point of the present paper
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is to achieve, in the two-dimensional case of M0,5, some results already
proved for M0,4 (cf. [NT]); this will require substantially more complicated
computations. The important new automorphism in this situation is the
5-cycle in S5 ' Aut(M0,5); indeed, S5 is generated by the 5-cycle together
with the stabilizer of any of the 5 points. It turns out to be convenient to
use the cube of the standard 5-cycle; we set ρ = (14253) ∈ Aut(M0,5), and
denote by ρ = ρ∗ the corresponding automorphism of Γ5

0 and Γ̂5
0.

We may now recall the following

Theorem 1 ([LS2], Theorem 2). Let σ ∈ ĜT with parameters (λ, f) =
(λσ, fσ). Then there exist elements g and h ∈ F̂2 and k ∈ Γ̂5

0 such that we
have the following equalities, of which the first two take place in F̂2 and the
third in Γ̂5

0:

f = θ(g)−1g(I′)

fx
λ−1

2 =

{
ω(h)−1h if λ ≡ 1 mod 3,

ω(h)−1 y−1 h if λ ≡ −1 mod 3;
(II′)

f(x12, x23) =

{
ρ(k)−1k if λ ≡ ±1 mod 5,

ρ(k)−1 x34x
−1
51 x45x

−1
12 k if λ ≡ ±2 mod 5.

(III′)

Note that in fact, x34x
−1
51 x45x

−1
12 = x25x45 in Γ5

0. The first expression was
emphasized in [LS2] because it uses the same generators xi,i+1 as relation
(III) above.

The elements g, h and k are closely connected with the ĜT -action on
certain paths joining the standard tangential base point to points of the
moduli spaces M0,4 and M0,5 with special automorphism. In the simplest
case, looking at M0,4, we see that the point 1

2 is a fixed point of θ and g

actually describes the action of ĜT on the path joining
−→
01t to that point.

We refer to [LS2] for more in this direction.
The problem that then naturally arises is whether it is possible to express

the elements g, h and k in terms of f . Put in a more general way: Is the
ĜT -action on the groupoid based at the automorphism points (whose very
existence is part of Theorem 1) computable in terms of the action based at
infinity (which lead to the definition of ĜT in the first place). For Galois
elements σ, this question was answered in the one-dimensional case of M0,4,
i.e. the elements g and h associated to σ were expressed in terms of f , as
follows.

Theorem 2 ([NT]). Let B̂3 be the profinite braid group generated by the
symbols τ1, τ2 with the defining relation τ1τ2τ1 = τ2τ1τ2. For an integer
a > 1, let ρa : GQ → Ẑ be the Kummer 1-cocycle defined by ( n

√
a)σ−1 = ζ

ρa(σ)
n
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(σ ∈ GQ, n ≥ 1, ζn = exp(2πi/n)). Then, the image of GQ ↪→ ĜT satisfies
the following equations:

g(τ2
1 , τ2

2 ) = η2ρ2−ρ3f(τ1, η)τ−2ρ2+3ρ3
1 ,(GF0)

g(τ2
1 , τ2

2 ) = f(τ2
1 , η)τ4ρ2

1 ,(GF1)

h(τ2
1 , τ2

2 ) = (ξ±)ρ2+
λ∓1−6ρ3

4 f(τ1, ξ±)τ
3ρ3−2ρ2−λ∓1

2
1 ,(HF0)

h(τ2
1 , τ2

2 ) = (ξ±)
λ∓1−6ρ3

4 f(τ2
1 , ξ±)τ

3ρ3−λ∓1
2

1 ,(HF1)

where, in the first two equations η denotes τ1τ2τ1, and in the last two equa-
tions, ξ+, ξ− denote τ1τ2, τ2τ1 respectively, and the sign ∓ is taken according
as λ ≡ ±1 mod 6 respectively.

In the statement above, the elements τ2
1 and τ2

2 generate a free profinite
group (a copy of F̂2) which one can regard as the profinite fundamental
group of M0,4/Q. Note that putting the relations of Theorem 2 together
yields several relations involving f alone; it is not known whether any of
these hold true in all of ĜT . For instance, one can insert g and h (as given
by (GF1) and (HF1)) into their respective defining properties in Theorem
1. This produces the following relations:

Theorem 3 ([NT], Corollary C). With notation as in Theorem 2, the fol-
lowing equations hold for the image of GQ ↪→ ĜT :
(I′) (Harmonic equation) f(τ2

1 , τ2
2 ) = τ−4ρ2

2 f(τ2
2 , η)−1f(τ2

1 , η)τ4ρ2
1 .

(II′) (Equianharmonic equation)

f(τ2
1 , τ2

2 ) = τ
−3ρ3−λ−1

2
2 f(τ2

2 , τ1τ2)−1(τ1τ2)
λ−1

2 f(τ2
1 , τ1τ2)τ

3ρ3−λ−1
2

1 .

The main goal of the present paper is to prove analogs of these two the-
orems in the two-dimensional case, i.e. to express the element k ∈ Γ̂5

0 of
theorem 1 in terms of the parameter f , and to use this expression to obtain
a new relation on the parameter f . As in dimension 1, we achieve this only
in the Galois case, where the element (λ, f) lies in GQ ⊂ ĜT , the case for
general elements of ĜT being still unknown. The two-dimensional case is
not only substantially more involved, it also requires a new approach. In
this paper we will make use of a particular locus (actually a curve) of the
sort more generally defined in [L], to which we refer for motivation and more
on the subject. We make use of the basic idea that one can use the natu-
rality of the Galois action in order to get relations which may or may not
be satisfied by the whole of ĜT . Concretely speaking, and to take a simple
but typical case, if E is a (marked hyperbolic) curve defined over Q with a
morphism φ : E → Mg,n defined over the maximal cyclotomic field Qab, the
equivariance of the outer GQab-action leads to the commutativity condition:
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σ ◦φ∗ = φ∗ ◦σ for any σ ∈ GQab , where φ∗ is the morphism induced by φ on
the geometric fundamental groups. If one is willing to make the base points
precise, as we indeed will, one gets a commutativity condition on automor-
phisms of Γ̂g,n. In this paper, we actually work out the computation over
Q; then, the above equivariance has to be refined as σ ◦φ∗ = (φσ)∗ ◦σ. This
leads us not only to deal with more elaborate considerations on braid groups,
but also to deal with two-dimensional tangential base points at “symmetric
points” on the relevant moduli space (in particular, these points are located
“far from infinity”; cf. §3).

Let us now specialize to g = 0, n = 5 and choose a particular E . In our
case φ will be generically injective, so let us somewhat informally identify E
with its image in M0,5. Our choice of E will ensure the following properties:
First E is (globally) stable under the action of ρ; second the projection
of E to M0,[5] is a projective line with three marked (or deleted) points.
The first property implies that one of the marked points corresponds to a
marked sphere with 5-cyclic symmetry; the second ensures that we ‘know’
the Galois action on the fundamental groupoid of the projection. These two
key properties are what make it possible for us to prove two-dimensional
analogs of theorems 2 and 3 above.

Let us say a few words about how we came up with a curve satisfying
these properties, referring to [L] for a broader picture. Note that curves of
this type, which map to a projective line minus several points in the ordered
moduli space M0,5 and descend to a projective line minus three points in
M0,[5], have also been studied in some detail in [T]; however that paper
concentrates on the case where everything is defined over Q, which is not
the case of our locus E , defined over Q(ζ5).

The geometry here is best understood by going up to the Teichmüller
space T0,5. Choosing a preimage U of E , one can show that U ⊂ T0,5 is
actually a geodesic disk, that is a copy of the unit disk (or the Poincaré upper
half-plane) on which the Teichmüller metric coincides with the Poincaré
metric. The automorphism ρ acts on U , and it acts geodesically for the
Teichmüller metric; since the latter coincides with the Poincaré metric on
U and since ρ has finite order, it is actually a rotation, the center O ∈ U
corresponding to a marked sphere with 5-symmetry. Finally, ρ also acts
linearly on the tangent space to T0,5 at O, and the tangent vector to U at
that point is an eigenvector for that linearized action. Thus, forgetting about
Teichmüller space, one can think of E (whose precise definition is given in
§2.3 below) as an eigenlocus, that is, a certain arithmetic (i.e. defined over
a number field) geodesic curve in M0,5.

We now have to prepare some notation before stating our main result,
giving the value of kσ in terms of fσ for any σ ∈ GQ. Throughout this
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paper, we fix an embedding Q ↪→ C once and for all. We write ζn = e2πi/n

and µn = {1, ζn, . . . , ζn−1
n }.

Definition. We define a pair of Kummer characters χ13, χ45 : GQ → Ẑ by

{σ( n
√

u), σ( n
√

v)} = {ζχ13(σ)
2n

n
√

u, ζ
χ45(σ)
2n

n
√

v},

where u = 1
2(1 − ζ5)5, v = 1

2(1 − ζ2
5 )5 and the n-th roots denote the values

which are closest to 1 (principal branches).

Note that the set {u, v,−u,−v} of purely imaginary numbers forms a
GQ-orbit in Q, so that each of their n-th roots can be written uniquely in
the form ζa

2n
n
√

u or ζb
2n

n
√

v (a, b ∈ Z). Later, in §5.10 we will discuss natural
extensions of χ13, χ45 to functions from ĜT to Ẑ by using Ihara’s theory
[I2].

Let ϑ = τ1τ2τ3τ4 denote a standard order 5 element in Γ[5]
0 . We note

that the automorphism ρ of Γ[5]
0 is realized by conjugation by ϑ3, namely,

ρ(∗) = ϑ3(∗)ϑ−3.
We also need to introduce several specific braids which play important

roles in later sections. First we define the two involutive braids ε and ε′

ε = τ1τ2τ1τ
−1
4 , ε′ = τ−1

3 ετ3.

Then, define

Vλ :=

{
1 (λ ≡ ±1 mod 5);
V] := τ−1

4 τ−1
2 τ−1

3 ϑ2 (λ ≡ ±2 mod 5),

ελ :=





1 (λ ≡ 1 mod 5),
ε (λ ≡ −1 mod 5),
ε′ (λ ≡ −2 mod 5),
ε · ε′ (λ ≡ 2 mod 5),

Finally, ϑλ and Ωλ are defined by

{
ϑλ := ϑ3−2λ2

(τ2τ3)ϑ2λ2−2(τ2τ3)−1,

Ωλ := ϑλ3+λ+3(τ2τ3)ϑλ−λ3
(τ2τ3)−1.



EIGENLOCI OF 5 POINT CONFIGURATONS AND dGT 45

This being said, we can finally state

Theorem A. For σ ∈ GQ and k = k({xij}) as in theorem 1, we have

k({xij}) = Vλελϑ−6ρ2

λ f(τ13τ45, ϑ
3
λ)τχ13

13 τχ45
45 f(x12, x13)x

λ−1
2

12 .

We write λ = λσ(= χ(σ)), ρ2 = ρ2(σ) etc. Since this formula may appear
slightly off putting at first sight, it may be useful to graphically isolate its
core by stripping it from the cyclotomic and Kummer characters. In fact,
for any σ belonging to the large closed subgroup of GQ defined by χ(σ) = 1,
ρ2(σ) = χ13(σ) = χ45(σ) = 0, we simply get:

kσ({xij}) = f(τ13τ45, ϑ
3)f(x12, x13),

where we recall that ϑ = τ1τ2τ3τ4 is a standard order 5 rotation. This
skeletal form shows the geometric significance of the formula more clearly;
indeed, using the curve E , it is not difficult to establish geometrically, as we
show in §5 below. The reader might want to concentrate at first reading on
this simple case, in which all the local factors are trivial.

Just as Theorem 3 above is deduced from Theorem 2, one can derive from
Theorem A a relation involving f only, which is satisfied for any σ ∈ GQ
and which may or may not be satisfied for all σ ∈ ĜT .

Theorem B. The following “pentaharmonic” equation holds for every ele-
ment σ ∈ GQ:

f(x12, x23) = x
1−λ

2
45 f(x14, x45)τ

−χ45
23 τ−χ13

14 f(ρ(ϑ3
λ), τ23τ14)

· Ωλ · f(τ45τ13, ϑ
3
λ)τχ13

13 τχ45
45 f(x12, x13)x

λ−1
2

12 .

In some sense, the above formula comes from a decomposition of the stan-
dard pentagon into 5 pieces which are permuted under the action of ρ. Since
relation (III) in the original definition of ĜT comes directly from the simple
connectedness of that pentagon, the equation above deserves to be denoted
(1
5 III); indeed, taking its five versions (under the action of ρ) together does

yield the original relation (III).
Theorem B is a direct corollary of Theorem A and Theorem 1 (III′) above

which gives f in terms of k. One also has to make use of the following braid-
theoretic lemma which we include here for frequent reference throughout the
rest of the article. We skip the proof, which is an easy matter of checking
the identities algebraically, or alternatively, by braiding actual strands.
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Lemma (1.1).

ρ(V])ϑ−1V −1
] = x25x45 = x34x

−1
51 x45x

−1
12 .(1)

ε2 = ε′2 = 1, (εε′)2 6= 1, ε′ = τ2τ3ϑ
2 = τ2ϑ

2τ1,(2)

εϑε = ϑ−1, ετ13ε = x12τ13x
−1
12 , ετ45ε = τ45, ε′τ13ε

′ = τ45.(3)

ϑ5
λ = 1; in fact, ϑλ =

{
ϑ (λ ≡ ±1 mod 5);
ε′ϑε′ (λ ≡ ±2 mod 5).

(4)

Ωλ = ρ(ελ)−1ϑ3λ2−3ελ; in particular, ϑ = ρ(ε)−1ε. ¤(5)

2. A D5-covering of the projective line and eigenloci in M0,5

(2.1) In this section, we consider the covering map β : P1
t → P1

u of the
projective lines defined by

u = β(t) =
4t5

(t5 + 1)2
.

Over C, this is a Galois cover with Galois group isomorphic to the dihedral
group D5 of order 10. It is ramified only over u = 0, 1,∞ with preimages
{0,∞}, µ5, −µ5 whose ramification indices are 5, 2, 2 respectively. The
restriction of β to Lt := P1 − µ5 allows us to regard Lu := P1

u − {1} as an
orbifold quotient “P1

(5,∞,2)” of Lt which has fundamental group isomorphic
to the triangle group

∆(5,∞, 2) = 〈xu, yu, zu | xuyuzu = x5
u = z2

u = 1〉.

(2.2) Now consider β : P1
t → P1

u as a Q-morphism between the projective
lines P1

t and P1
u. Let p be the path from

−→
01u to

−→
10u along the real axis on

Lu and q be the path from
−→
01t to

−→
10t along the real axis on Lt. By taking

the Taylor expansions of β(t) at t = 0 and t = 1, we find that the tangential
base points are mapped to:

β(
−→
01t) =

1
4
−→
01u, β(

−→
10t) =

4
25

−→
10u.

Generally, for any positive rational number α, if δ denotes the infinitesimal
real segment connecting α

−→
01u to

−→
01u, then for all σ ∈ GQ, it is easy to check

that σ(δ) = δxρα
u , where ρα = ρα(σ) is the Kummer character on positive

roots of α; similarly, if δ goes from α
−→
10u to

−→
10u, we have σ(δ) = δp−1yρα

u p.
In our situation, write δ1 for the real segment from 1

4

−→
01u to

−→
01u and δ2 from

4
25

−→
10u to

−→
10u. Then, writing p′ = β(q) = δ1pδ−1

2 and using σ(p) = f(yu, xu)p,
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we find that

(2.2.1) σ(p′)p′−1 = δ1x
−2ρ2
u f(yu, xu)y−2ρ2+2ρ5

u δ−1
1

as an equality between loops in π1(Lu, 1
4

−→
01u). We refer to [N-I,II],[NT] for

more details on this sort of computation.

(2.3) Let M0,5 (resp. M0,[5]) be the moduli stack of the projective lines
with 5 ordered (resp. unordered) marked points. We shall write a point
(P1; a1, . . . , a5) of M0,5 (resp. a point (P1; {a1, . . . , a5}) of M0,[5]) simply as
(a1, . . . , a5) (resp. {a1, . . . , a5}). The obvious symmetrization of the marked
points gives an etale cover (in the sense of stacks) M0,5 → M0,[5].

We wish to fit the basic D5-cover Lt → Lu inside in this cover M0,5 →
M0,[5], by starting with the locus

E1 = (ζ4 + ζ−4t, 1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t)

in M0,5, where ζ = ζ5 = exp(2πi/5). This locus is globally invariant under
the action of the dihedral group D5 ⊂ S5 = Aut(M0,5) generated by (12345)
and (13)(45). Over C, it is isomorphic to a copy of P1

C − {1, ζ, ζ2, ζ3, ζ4}
parametrized by t; when t takes the five values 1, ζ, ζ2, ζ3, ζ4, the locus
meets a point at infinity of maximal degeneration in M0,5 as illustrated as
the following table.

t | 1 ζ ζ2 ζ3 ζ4

| (13)(45) (14)(23) (24)(51) (25)(34) (35)(12)

Here, (ij)(kl) means the maximal degeneration point of the stable 5-pointed
P1-tree such that the i-th and j-th marked points (resp. k-th and l-th
marked points) coincide. The locus E1 is self-crossing at t = 0,∞. It is
a cover of degree 10 of its image in the unordered moduli space M0,[5] =
M0,5/S5.

(2.4) Since the symmetric functions of the coordinates of points of E1

are in Q(t), the image of E1 in M0,[5] is invariant under the action of GQ.
However, E1 itself is not invariant under the action of GQ. It is mapped to
the loci

E1 =(ζ4 + ζ−4t, 1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t, );

E−1 =(ζ−4 + ζ4t, 1 + t, ζ−1 + ζt, ζ−2 + ζ2t, ζ−3 + ζ3t);

E2 =(ζ3 + ζ−3t, 1 + t, ζ2 + ζ−2t, ζ4 + ζ−4t, ζ + ζ−1t);

E−2 =(ζ−3 + ζ3t, 1 + t, ζ−2 + ζ2t, ζ−4 + ζ4t, ζ−1 + ζt)

according to whether λσ ≡ 1,−1, 2,−2 mod 5 respectively. Let us denote by
ψi the morphism Lt → Ei ⊂ M0,5 for i = ±1,±2 so that σψ1 = ψλσ(mod 5)
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(σ ∈ GQ). Their compositions with the projection π : M0,5 → M0,[5] all
coincide, and the four identical maps π ◦ ψi factor through β, so that they
can be written ψ ◦ β for a certain morphism ψ : Lu → M0,[5]. In summary,
we obtain the commutative diagram

Lt
ψi−−−−→ Ei ⊂ M0,5

β

y
yπ

Lu
ψ−−−−→ M0,[5]

for each i ∈ {±1,±2}. All the morphisms here except for ψi are defined
over Q.

For each i ∈ {±1,±2}, let πi
∗ denote the homomorphism

πi
∗ : π1(M0,5, ψi(

−→
01t)) → π1(M0,5, ψ(

1
4
−→
01u))

corresponding to the projection π. Because β(
−→
01t) = 1

4

−→
01u, the above dia-

gram translates into the top square of the following diagram of fundamental
groups:

π1(Lt,
−→
01t)

(ψi)∗−−−−→ π1(M0,5, ψi(
−→
01t))

β∗

y
yπi

∗

π1(Lu, 1
4

−→
01u)

ψ∗−−−−→ π1(M0,[5], ψ(1
4

−→
01u))

inn(δ1)

y
yinn(ψ(δ1))

π1(Lu,
−→
01u)

eψ−−−−→ π1(M0,[5], ψ(
−→
01u))

where
inn(δ1) : π1(Lu, 1

4

−→
01u) → π1(Lu,

−→
01u))

(resp. inn(ψ(δ1)) : π1(M0,[5], ψ(1
4

−→
01u)) → π1(M0,[5], ψ(

−→
01u)) )

is the obvious isomorphism obtained by composing each loop with the path
δ1 from 1

4

−→
01u to

−→
01u (resp. the path ψ(δ1) from ψ(1

4

−→
01u) to ψ(

−→
01u)), and ψ̃

is defined to be inn(δ−1
1 ) ◦ ψ∗ ◦ inn(ψ(δ1)).

Writing β̃ = β∗ ◦ inn(δ1), π̃i = πi
∗ ◦ inn(ψ(δ1)) and (by a slight abuse) ψi

instead of (ψi)∗, we have a commutative diagram

π1(Lt,
−→
01t)

ψi−−−−→ π1(M0,5, ψi(
−→
01t))

eβ

y
yeπi

π1(Lu,
−→
01u)

eψ−−−−→ π1(M0,[5], ψ(
−→
01u))



EIGENLOCI OF 5 POINT CONFIGURATONS AND dGT 49

which we will use to place the equality (2.2.1) inside the fundamental group
π1(M0,[5], ψ(

−→
01u)).

Lemma (2.5). Fix σ ∈ GQ and take i ∈ {±1,±2} congruent to λσ mod 5.
Then

π̃i

(
σ(ψ1(q)) · ψi(q)−1

)
= ψ̃(xu)−2ρ2f(ψ̃(xu), ψ̃(yu))−1ψ̃(yu)2ρ5−2ρ2

holds as an equality of loops of π1(M0,[5], ψ(
−→
01u)).

Proof. We have p′ = β(q), so the loop σ(p′)p′−1 ∈ π1(Lu, 1
4

−→
01u) on the

left-hand side of (2.2.1) can be written σ(β(q))β(q)−1 = β∗
(
σ(q)q−1

)
, since

σ commutes with β∗. Thus, (2.2.1) becomes the equality

β∗
(
σ(q)q−1

)
= δ1x

−2ρ2
u f(yu, xu)y−2ρ2+2ρ5

u δ−1
1

in π1(Lu, 1
4

−→
01u). Applying inn(δ1) to both sides yields

β̃
(
σ(q)q−1

)
= x−2ρ2

u f(yu, xu)y−2ρ2+2ρ5
u

in π1(Lu,
−→
01u). Applying ψ̃ to both sides to map the equality into

π1(M0,[5], ψ(
−→
01u)), and noting that σ commutes with ψ̃ and that by the

commutative diagram, β̃ψ̃ = ψiπ̃i, we obtain

π̃i

(
ψi(σ(q)q−1)

)
= ψ̃(yu)2ρ2−2ρ5f(ψ̃(xu), ψ̃(yu))ψ̃(xu)2ρ2 .

The right-hand side is as in the statement, and using ψi(σ(q)) = σ(ψ1(q)),
the left-hand side is equal to π̃i

(
σ(ψ1(q))ψi(q)−1

)
, which proves the lemma.

¤
(2.6) For later applications, we need to know more about the starting

and endpoints of the paths ψi(q) (i = ±1,±2) in M0,5(C). We saw that
these paths are different lifts of the same image in M0,[5], whose endpoints
are ψ(

−→
01u) and ψ(

−→
10u). As points of M0,5(C), we have ψ1(0) = ψ−1(0)

and ψ2(0) = ψ−2(0); the former standard 5-cyclic point we denote by
Q1 := (1, ζ, ζ2, ζ3, ζ4) and the latter “antipode” 5-cyclic point by Q2 :=
(1, ζ3, ζ, ζ4, ζ2).

The paths ψ1(q) and ψ−1(q) start at the same point Q1 but with different
directions ψ1(

−→
01t), ψ−1(

−→
01t). This has to be precisely estimated especially

when the ramification in M0,5 → M0,[5] is involved in arguments (see (3.2)
below). When t → 1, both paths approach the same maximal degeneration
point (13)(45), but the endpoints ψ1(

−→
10t) and ψ−1(

−→
10t) differ from each

other as tangential base points near (13)(45); we discuss this in detail in §4.
Similarly, the paths ψ2(q) and ψ−2(q) start from the same point Q2 with
different directions ψ2(

−→
01t), ψ−2(

−→
01t). They also approach the maximal
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degeneration point (13)(45) when t → 1, but again as shown in §4, they end
with different tangential base points ψ2(

−→
10t) and ψ−2(

−→
10t).

The tangential directions ψi(
−→
01t), ψi(

−→
10t) can be explicitly computed us-

ing the explicit expressions of the Ei, cf. (3.2). See the figure in (3.5) for a
visualization of these base points.

3. Definitions of necessary paths in M0,5

(3.1) In this section, we shall consider the images of the fundamental
groups π1(Ei) (i = ±1,±2) in π1(M0,5) by fixing base points and paths
connecting them. We employ the standard tangential base point A near the
maximal degenerate point (12)(45) on the moduli space M0,5 introduced by
Ihara; this base point corresponds to the planar tree

1

3 42

5

and can be represented by the point A = (1 − ε, 1,∞, 0, δ), where ε and δ
are small real numbers.

We introduce the standard braid τij(i, j∈ Z/5Z, i 6= j) of π1(M0,[5](C),A),
which interchanges the marked points ai and aj counterclockwise on P1(R)
(in the figure below, the circle represents P1(R) and its interior represents
the upper half-plane). Note in particular that the τi := τi,i+1 (i = 1, . . . , 4)
generate π1(M0,[5](C),A).

���
�

���
�

���
�

���
�

��	
	

τ 24
1

3

5

2

24

4

A generating system of the pure part π1(M0,5(C),A) is given by the collec-
tion of braids xij = τ2

ij (i, j ∈ Z/5Z) which coincide with those given in [N]
§3. The generating system here is slightly different from that used in [LS1].
We will make their compatibilities clear in the Appendix.
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(3.2) The points of maximal degeneration listed in the table of §2 are
cyclically transformed into each other by applications of the automorphism

ρ = (14253) ∈ Aut(M0,5).

The point of maximal degeneration (12)(45) and its images under ρ lie on
the rim of the real 2-dimensional “pentagonal” region of M0,5 consisting of
the points corresponding to spheres (P1; a1, . . . , a5) with a1, . . . , a5 lying on
R ∪ {∞} in that cyclic order. The 5-cyclic point Q1 = (1, ζ, ζ2, ζ3, ζ4) lies
in the center of this pentagon.

Letting v1 be the unique (up to homotopy) path from A to Q1 lying in
this simply connected pentagon, conjugating by v1 gives an isomorphism
of π1(M0,5, Q1) with π1(M0,5,A). As a movement of points on the sphere
(actually sliding without crossing along the real axis), ‘the’ path v1 from
A to Q1 is illustrated in the left-hand figure below. In this figure and all
the following ones, the circle can be viewed either as the unit circle or as
the real axis P1(R) on P1(C), seen from the north pole. Either way, P1(C)
equipped with the marked points shown on the circle corresponds to the
same tangential base point or 5-cycle) point on M0,5. Now, because Q1 is a
special orbifold point of M0,[5], when we wish to consider the image of v1 as
a path of the fundamental groupoid in the sense of stacks, we need to choose
a tangential direction from which v1 approaches Q1. We take a “shortening”
v̄1 of the path v1, connecting A to the tangential base point ψ1(

−→
01t) at Q1,

as illustrated in the right-hand figure below.

1
2

3

4

5v v1 1
1
2

3

4

5

Since the other 5-cyclic point Q2 does not lie in the pentagon, we do not have
a canonical choice of a path from A to Q2 = (ζ2, 1, ζ3, ζ, ζ4). We choose such
path v2 given by motion of points on P1 as in the left-hand figure below,
and also a “shortening” v̄−2 which starts at A and tangentially approaches
the point Q2 in the direction ψ−2(

−→
01t).
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5
1

2

3

v

4
5

1
2

3

v2

4

−2

Further descriptions of v̄1 and v̄−2 will be given in the proof of Lemma (3.4).

(3.3) At this stage, we review the definition of kσ({xij}) ∈ Γ̂5
0 for σ ∈ GQ

which was introduced in [LS2] by the Galois transforms of the path v1 in the
fundamental groupoid of M0,5. In this paper we employ another system of
convention for paths and generators (cf. Appendix), so the definition looks
slightly different from the original one in [LS2]. Firstly, if σ fixes the point
Q1 (i.e. if λσ ≡ ±1 mod 5), then we define kσ by

σ(v1) = kσ({xij})−1 · v1.

Next, if σ maps Q1 to Q2 (i.e. if λσ ≡ ±2 mod 5), then σ(v1) is a pro-path
from A to Q2. So in this case, we define kσ by

σ(v1) = kσ({xij})−1 · v2.

Now, we shall check that these kσ satisfy property (III′) of Theorem 1.
In the case λσ ≡ ±1 mod 5, it is a simple consequence of applying σ to
the homotopy equivalence p = v1ρ(v1)−1, where we recall that ρ is the
automorphism (14253) ∈ S5 of M0,5, ρ = ρ∗, and p denotes the standard
path (edge of the pentagon) from A to ρ(A). Indeed, we have

fσ(x12, x23) = p σ(p)−1 = p ρ(σ(v1))σ(v1)−1 = pρ(k−1
σ )p−1kσ = ρ(kσ)−1kσ.

Similarly, applying σ to p = v1ρ(v1)−1 when λσ ≡ ±2 mod 5 leads to

fσ(x12, x23) = ρ(kσ)−1(p ρ(v2)v−1
2 )kσ.

It remains only to identify the loop p ρ(v2)v−1
2 as an element of Γ5

0 =
π1(M0,5(C),A). Using the definition-drawing of v2 given in (3.2), but draw-
ing it “kinematically” as a braid moving downward with time, we find the
following illustration of p, followed by ρ(v2) followed by v−1

2 (cf. [LS2] p.592):
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p

35 4 2 1

ρ(    )

2v

v2

−1

(A)ρ

Q2

A

A

This braid is easily seen to be x25x45 = x34x
−1
15 x45x

−1
12 . Thus, for all σ ∈ GQ,

our kσ({xij}) satisfies the same property (III′) of Theorem 1 as the original
kσ of [LS2].

We next compute the Galois action on the path v̄1.

Lemma (3.4). There exists a unique path s1 (resp. s2) from ψ1(
−→
01t) to

ψ−1(
−→
01t) (resp. ψ−2(

−→
01t) to ψ2(

−→
01t)) such that, for σ ∈ GQ, we have

σ(v̄1) =





k−1
σ v̄1 (λσ ≡ 1 mod 5);

k−1
σ v̄1s1 (λσ ≡ −1 mod 5);

k−1
σ v̄−2 (λσ ≡ −2 mod 5);

k−1
σ v̄−2s2 (λσ ≡ 2 mod 5).

Proof. Introduce affine coordinates u, v of the structure ring of M0,5

by (0, u, 1, v−1,∞) ∈ M0,5. Then, on the locus near ψi(
−→
01t) on Ei (i ∈

{±1,±2} = (Z/5Z)×), these are expanded as u = ai + tfi(t), v = bi + tgi(t)
in the ring Q(ζ)[[t]], where ai, bi ∈ Q(

√
5), fi(t), gi(t) ∈ Q(

√
5)[[t]]. For each

i, the homomorphism

Q(
√

5)[[u − ai, v − bi]] −→ Q(ζ)[[t]] :

u − ai 7→ tfi(t),

v − bi 7→ tgi(t)

determines the location of ψi(
−→
01t) near the local ring of Q1 or Q2 according

to i = ±1 or ±2. We then have a path li from the Q(
√

5)-rational point
Q1 or Q2 to the Q(ζ)-rational tangential base point ψi(

−→
01t) as the one cor-

responding to the specialization homomorphism Q(ζ)[[t]] → Q(ζ) (t 7→ 0)
for each i ∈ (Z/5Z)×. From this definition, one sees that σ(li) = lλσi for
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σ ∈ GQ. The paths v̄1 and v̄−2 described in (3.2) are then formally defined
by v̄1 := v1 · l1, v̄−2 = v2 · l−2. Thus, for λσ ≡ ±1, we have

σ(v̄1) = σ(v1)σ(l1) = k−1
σ v1lλσ ,

and for λσ ≡ ±2, we have

σ(v̄1) = σ(v1)σ(l1) = k−1
σ v2lλσ .

Thus, setting s1 := l−1
1 · l−1 and s2 := l −1

−2 · l2 give the desired properties. ¤

With regard to the above lemma, we make the following

Definition (3.5). Set v̄−1 := v̄1s1, v̄2 := v̄−2s2, so that

σ(v̄1) = k−1
σ v̄i where i ≡ λσ mod 5.

The paths v̄1, v̄−1, v̄2, v̄−2, s1, s2, l1, l−1, l2, l−2, as well as the four
paths ψi(q) with each of their tangential endpoints ψi(

−→
01t) and ψi(

−→
10t), are

shown in the following figure, which gives a visualization of the identities
s1 = l−1

1 l−1, s2 = l−1
−2l2, v̄−1 = v̄1s1, v̄2 = v̄−2s2 etc.

(12)(45)

A

(10 )t

(10 )t

(13)(45)(10 )t

(10 )t

(01 )t (01 )t (01 )t(01 )t

Q Q

v

v

v1

v−2

2

_

_

_

_

1 2
1l l2

s1 s2

ψ
−2

ψ−1

ψ
21ψ

ψ
2
(q)

ψ
−1 ψ

2−2
ψψ

1

−2ll−1
−1

(q)
1

ψ
(q)

−2
ψψ−1 (q)

(3.6) The images of the paths v̄1, v̄−1, v̄2, v̄−2 on the unordered stack
M0,[5] are four different paths from A to the same endpoint ψ(1

4

−→
01u); by

composing with the infinitesimal path inn(ψ(δ1)) of (2.4), we consider them
as paths from A to ψ(

−→
01u) (without adding further notation). They induce
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four different homomorphisms of (orbifold) fundamental groups

π1(Lu,
−→
01u) −→ π1(M0,[5],A) (i = ±1,±2)

via γ 7→ v̄iψ̃(γ)v̄−1
i , where ψ̃ : π1(Lu,

−→
01u) → π1(M0,[5], ψ(

−→
01u)) is as defined

in (2.4). We are particularly interested in the braids associated to the images
ψ̃(xu) and ψ̃(yu) of the generators xu and yu of π1(Lu,

−→
01u); i.e. we want to

identify the braids associated to the elements

xu,i := v̄i ψ̃(xu) v̄−1
i , yu,i := v̄i ψ̃(yu) v̄−1

i (i = ±1,±2)

of π1(M0,[5], ψ(
−→
01u)) ' Γ[5]

0 .

Proposition (3.7). The table below shows how to identify xu,i, yu,i as braids
in Γ[5]

0 .

i | 1 −1 −2 2

xu,i | ϑ3 εϑ3ε V]ϑ
3V]

−1 V]εϑ
3εV]

−1

yu,i | τ13τ45 ετ13τ45ε V]τ13τ45V]
−1 V]ετ13τ45εV]

−1

where ϑ = τ1τ2τ3τ4, V] = τ−1
4 τ−1

2 τ−1
3 ϑ2, ε = τ1τ2τ1τ

−1
4 as in Lemma (1.1).

Proof. In all of the cases to be proved, we work by lifting the loops xu and
yu in Lu to paths xt and yt on Lt and then map these paths to M0,5 via
ψi and conjugate the results by v̄1 and v̄2. This gives paths in M0,5 which
map down to loops on M0,[5]; by “kinematic” parametrization, we are able
to determine these paths explicitly.

We approximate the small loop xu by the parametrization ε e2πis with
s ∈ [0, 1] for very small real ε. This means that upstairs in the space Lt,
the parameter t runs through one-fifth of the little circle, which we call xt;
it can be parametrized on Lt by t = εζs, s ∈ [0, 1].

The path yu in Lu lifts to the path yt on Lt given in the following figure:

L

Lu

t
y

yu

t

Let us begin with xu,1. The image of the little one-fifth circle xt in Lt

maps under ψ1 to
(
ζ4 + ζ−4+sε, 1 + ζsε, ζ + ζ−1+sε, ζ2 + ζ−2+sε, ζ3 + ζ−3+sε

)

in E1 ⊂ M0,5. For the purpose of visualization, we multiply each component
by ζ2s, which does not change the point in moduli space; for each s ∈ [0, 1],
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the same point is now given by
(
ζ4+2s+ζ−4+3sε, ζ2s+ζ3sε, ζ1+2s+ζ−1+3sε, ζ2+2s+ζ−2+3sε, ζ3+2s+ζ−3+3sε

)
.

Drawing the motion of each of the five points on the sphere as s varies from
0 to 1 yields the left-hand picture of ψ1(xt); we read off from the figure that
this braid is simply ϑ3. To compute xu,1, this braid must be conjugated
by the path v̄1 pictured in (3.2). Viewed as a braid, this path consists in
sliding the points of the tangential base point A apart from each other to a
tangential base point at the 5-cycle point Q1, so composing by it does not
change the braid (right-hand figure); therefore we obtain xu,1 = ϑ3.

v1
−1

v1
1

23

4 5 s=0

s=1

1
23

4 5

x(x  )ψ u,1(x  )ψ1 1t t

For i = −1, 2,−2, we proceed similarly. For xu,−1 (resp. xu,−2, xu,2) we
again parametrize the one-fifth circle xt by t = εζs, plug this into the ex-
pression for E−1 (resp. E−2, E2) and multiply the result by ζ2s exactly as for
i = 1; the resulting braids, conjugated by v̄1 and v̄2 respectively, are shown
in the following figure.

v2 v2

v2
−1

v2
−1

s=0

s=1

x

s=0

s=1

u,−1

−1

x

s=0

s=1

x

(x  ) (x  )(x  )
−1

ψ

v1

v1

u,2 u,−2

2
ψ

−2
ψt t t

1
23

5
4 5

4 3
1

2
1

2
3

5
4

We read the desired braids directly off from this figure. First, clearly xu,−1 =
ϑ2; note that this is equal to the expression εϑ3ε given in the statement of
the proposition, since ε2 = 1 and εϑε = ϑ−1 by Lemma 1.1 (2) and (3).
Next, as v2 is identified with the braid τ−1

4 τ−1
2 τ−1

3 (see the lower half of the
figure in (3.2)) and V] = τ−1

4 τ−1
2 τ−1

3 ϑ2, we obtain xu,−2 = V]ϑ
3V −1

] and
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xu,2 = V]ϑ
2V −1

] = V]εϑ
3εV −1

] . This completes the proof of the first line of
the table.

We use a similar procedure for the yu,i, except that it is actually easier
as no reparametrization is needed. Let us begin with i = 1. The path yt in
Lt maps into M0,5 as in the following figure; the left-hand side shows it as
movements of points on the sphere, and the right-hand side as the middle
section of a braid, which is conjugated by v̄1. In the right-hand figure, we
have not drawn the points exactly where they should lie with respect to the
equator, i.e. very near the equidistant points of Q1; we have shifted them
a little towards the back, so as to be able to read off more easily that the
braid yu,1 is exactly τ13τ45 = τ4τ

−1
1 τ2τ1.

1

2

3

4

5

u,1
y

s=0

s=1

1v

v1

ψ(y  )

−1

5
4

3
2

1

1 t

It remains to compute yu,−1, yu,−2 and yu,2. For yu,−1, the movement of
points and the braid (conjugated by v̄1) representing ψ−1(yt) are as follows:

s=0

s=1

1v

2

1

3

5

4

45
3 2

1

yu,−1(y  )ψ
−1

v−1
1

t

We read directly off the right-hand figure that yu,−1 is given by τ4τ1τ2τ
−1
1 .

But since ε = τ−1
4 τ1τ2τ1 and τ2τ

2
1 τ2τ

2
1 = τ2

4 , we see that

yu,−1 = εyu,1ε = ετ13τ45ε,

as in the table. For yu,−2 and yu,2, we proceed similarly, but taking care
to conjugate by v̄2 rather than v̄1; the figures corresponding to ψ−2(yt) and
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ψ2(yt) are as follows:

s=0

s=1

(y  )

5
4

3
2

1

t
2

1

5
3

4

y

v2

ψ
−2

v −1
2

u,−2

from which, recalling that V] = τ−1
4 τ−1

2 τ−1
3 ϑ2 and noting that ϑ2τ13τ45ϑ

−2 =
τ12τ35, we read off

yu,−2 = τ−1
4 τ−1

2 τ−1
3 τ12τ35τ3τ2τ4 = V]τ13τ45V

−1
] ,

and

s=0

s=1

v

2

45
3 2

1

y(y  )ψ

v−1

t

1

5
3

4

2

2

2

u,2

from which we read off

yu,2 = τ−1
4 τ−1

2 τ−1
3 τ−1

4 τ3τ4τ1τ3τ2τ4.

However, for the middle part of the braid, we have

ψ2(yt) = τ−1
4 τ3τ4τ1 = τ3τ4τ

−1
3 τ1 = ϑ2τ1τ2τ

−1
1 τ4ϑ

−2,

and thus,

yu,2 = V]τ1τ2τ
−1
1 τ4V

−1
] = V]ετ

−1τ2τ1τ4εV
−1
] = V]ετ13τ45εV

−1
]

by a simple computation of braids using ε = τ1τ2τ1τ
−1
4 and the identity

τ1τ
2
2 τ1τ

2
2 = τ2

4 . This concludes the proof of the proposition. ¤
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4. Local factors at the tangential base points

(4.1) In this section, we shall look closely at the tangential base points
ψi(

−→
10t) (i = ±1,±2) near the maximal degenerate point (13)(45). We shall

take a standard tangential base point B near the point (13)(45) given by the
ring of Puiseux series Q{{q1, q2}} :=

⋃′
N Q[[q1/N

1 , q
1/N
2 ]] (cf. [IN]), where the

coordinates q1, q2 are defined by

(a1, a2, a3, a4, a5) ∼ (q−1
2 , 1,∞, 0, q1).

Here ∼ means the equivalence of tuples by fractional transformations of
P1. We shall identify the tangent space at the maximal degenerate point
(13)(45) on M0,5 with C2 by the coordinates (q1, q2). The tangential base
point B is equivalent to that given by the tangent vector (1, 1) ∈ C2.

First, one can compute the case ψ1(
−→
10t) as follows.

(
ζ4 + ζ−4t, 1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t

)

∼

(
1

U(1 − t)
(
1 + O(1 − t)

) , 1,∞, 0, V (1 − t)
(
1 + O(1 − t)

)
)

,

where

U =
5

(1 − ζ)5
= −

(
1 +

√
5

2

)5/2

5−1/4i,

V =
5

(1 − ζ2)5
=

(
1 +

√
5

2

)−5/2

5−1/4i,

and 1 + O(1− t) designates some power series in Q(ζ)((1− t)) with constant
term 1.

Since the other tangential base points ψi(
−→
10t) (i = −1,±2) are Galois

conjugates of ψ1(
−→
10t), the corresponding tangent vectors are easy to identify.

We list the coordinates of the corresponding tangent vectors in the following
table:

| ψ1(
−→
10t) ψ−1(

−→
10t) ψ2(

−→
10t) ψ−2(

−→
10t)

q1 | V −V −U U

q2 | U −U V −V

(4.2) We shall connect these tangent vectors (V,U), (−V,−U), (−U, V ),
(U,−V ) with (1, 1) by the straight lines on C2. These lines give (etale
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homotopy) paths 



r1 : ψ1(
−→
10t) → B,

r−1 : ψ−1(
−→
10t) → B,

r2 : ψ2(
−→
10t) → B,

r−2 : ψ−2(
−→
10t) → B

on M0,5/Q. These paths determine specialization homomorphisms of
Q{{q1, q2}} to Q{{1 − t}} via the principal branches of roots N

√
V , N

√
U ,

N
√
−U , N

√
−V nearest to 1. For example, r1 represents the homomorphism

sending q
1/N
1 , q

1/N
2 to N

√
V (1−t)1/N , N

√
U(1−t)1/N respectively. The Galois

transformation of r1 is then given by the following

Lemma (4.3). For j = 1, 2, let Xj ∈ π1(M0,5,B) be the path corresponding
to the local monodromy q

1/n
j 7→ ζ−1

n q
1/n
j (n ≥ 1, ζn = exp(2πi/n)). For

σ ∈ GQ, define the values ρV (σ), ρU (σ) ∈ Ẑ by the Kummer property along
the principal (i.e., nearest to 1) branches of n-th roots of V and U :

σ( n
√

V )
n
√

σ(V )
= ζρV (σ)

n ,
σ( n

√
U)

n
√

σ(U)
= ζρU (σ)

n (n ≥ 1).

Then, we have

σ(r1) = ri · X−ρV (σ)
1 X

−ρU (σ)
2 (σ ∈ GQ),

where i ∈ {±1,±2} is determined by the condition i ≡ λσ mod 5.

Proof. Put σ(r1) = σ · r1 · σ−1 = ri · Xc1
1 Xc2

2 and apply both sides to the
functions q

1/n
1 separately. The left-hand side gives then ζ

ρV (σ)
n (σ(V ))1/n(1−

t)1/n, while the right-hand side gives ζ−c1
n (σ(V )(1 − t))1/n. This concludes

c1 = −ρV (σ). The same argument for q
1/n
2 determines the value of c2. ¤

(4.4) Set {
X1,i := (v̄iψi(q)ri)(X1)(v̄ψi(q)ri)−1,

X2,i := (v̄iψi(q)ri)(X2)(v̄ψi(q)ri)−1

to be the loops based at A obtained by conjugating the loops X1 and X2,
based at B, by the paths v̄iψi(q)ri from A to B. Then, in a similar way to
(3.6), we have the following expression of X1,i by braids in π1(M0,5,A):

i | 1 −1 −2 2

X1,i | x45 εx45ε V]x45V]
−1 V]εx45εV]

−1

X2,i | x13 εx13ε V]x13V]
−1 V]εx13εV]

−1
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We note that ε commutes with τ4 and hence with x45. Comparing the table
in (3.6), we note that

y2
u,i = X1,iX2,i (i = ±1,±2).

Before closing this section, we shall relate the above ρU , ρV with the
functions χ13, χ45 introduced in §1.

Lemma (4.5). As Ẑ-valued functions on GQ, we have

χ13 =





2(ρ5 − ρ2 − ρU ) +

{
0, (λ ≡ 1 mod 5)
−1 (λ ≡ −1 mod 5)

2(ρ5 − ρ2 − ρV ) +

{
0, (λ ≡ −2 mod 5)
−1 (λ ≡ 2 mod 5)

χ45 =





2(ρ5 − ρ2 − ρV ) +

{
0, (λ ≡ 1 mod 5)
1 (λ ≡ −1 mod 5)

2(ρ5 − ρ2 − ρU ) +

{
1 (λ ≡ −2 mod 5),
0 (λ ≡ 2 mod 5)

Proof. The proof is obtained from case-by-case examination of the branches
of n-th roots of quantities and of Galois actions on them. We treat the case
where λσ ≡ −2 mod 5. In this case, one has

σ( n
√

U)
n
√

V
=

σ( n
√

U)
n
√
−σ(U)

= ζ
ρU (σ)− 1

2
n .

This implies
σ( n

√
u)

n
√

v
= ζ

ρ5−ρ2−ρU+ 1
2

n

for all n ≥ 1, hence, χ45 = 2(ρ5 − ρ2 − ρU ) + 1. We leave it to the reader to
check the other cases. ¤

5. Path deformations and proof of Theorem A

(5.1) Recall that q is the path from
−→
01 to

−→
10 on Lt, and ψ1 : Lt → E1 ⊂

M0,5. Thus, ψ1(q) is its image on M0,5. We shall homotopically deform the
path ψ1(q) so as to run near to the maximal degenerate point (12)(45) as
follows. The starting point of ψ1(q) is a the tangential base point ψ1(

−→
01t)

neighboring the point t = 0 in E1, which we can normalize as follows:

Q1 = (
1

−ζ2 − ζ3
, 1,∞, 0,

1
1 − ζ2 − ζ3

) ∼ (0.6, 1,∞, 0, 0.4).
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The endpoint of ψ1(q) is the tangential base point ψ1(
−→
10t) given by

(1/ε, 1,∞, 0, δ) (for small positive real numbers ε and δ) neighboring the
maximally degenerate point (∞, 1,∞, 0, 0), i.e. (13)(45). Represented on
the sphere with marked points, the parametrized path ψ1(q) is as follows:

0.6 1 0 0.48
We see in this figure that the path ends at a tangential base point which
is not one of the standard (real) ones. We deform it to a homotopic path
drawn as

0.6 1 0 0.48

1 2 3 4 5

We can undo this path into three parts as follows:

0.6 0.4

1−ε δ

qq2 1
1 8 0

081

1 8 0

" V "

c    a

r

12

v

"U     "

1

-1

-1

-1

-1

1
-1

The first part is exactly the path v̄−1
1 ; it starts at the starting point of ψ(q),

namely at the tangential base point ψ(
−→
01t) near the 5-cycle point Q1, and
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ends at the tangential base point represented by A = (1 − ε, 1,∞, 0, δ) for
small positive real numbers ε and δ, neighboring the maximally degenerate
point (12)(45). The second part takes place in the neighborhood of infinity
of the moduli space, and consists in the commutativity move c−1

12 (a right half
twist, see for example [NS]), taking the point to (1, 1 + ε,∞, 0, δ) numbered
(2, 1, 3, 4, 5), followed by the associativity move a = a21,13 which brings this
point to B ∼ (1/ε, 1,∞, 0, δ) simply by sliding the second point along the
real axis from ε to 1/ε; the point B is a tangential base point near (13)(45).
The third part is a local path around (13)(45) going from B to the tangential
base point ψ1(

−→
10t), which by construction is exactly the path r−1

1 of (4.2).
Thus we obtain the decomposition

(5.2) ψ1(q) = v̄−1
1 · c−1

12 · a · r−1
1 .

We now come to the proof of the main result of this article.

(5.3) Proof of Theorem A : By (5.2), we have an equivalence of paths

v̄1 · ψ1(q) · r1 = c−1
12 · a

from A to B. On the right-hand side, the Galois action on those paths along
the 1-dimensional strata at infinity in M0,5 are well-known (cf. [NS]) and
may be calculated as:

(5.4) σ(c−1
12 a) = x

1−λσ
2

12 f(x12, x13)−1 · c−1
12 a

for σ ∈ GQ. To consider Galois transformations of the left-hand side, fix
σ ∈ GQ and take i ∈ {±1,±2} so that i ≡ λσ mod 5. Recall that by Lemma
(2.5), we have

σ
(
π̃i(ψ1(q))

)
= ψ̃(xu)−2ρ2f

(
ψ̃(xu), ψ̃(yu)

)−1
ψ̃(yu)2ρ5−2ρ2 π̃i

(
ψi(q)

)
.

Using this (and dropping the π̃i from the notation, as it is merely an inclusion
of groups), together with Definition (3.5) and Lemma (4.3), we find that the
Galois transformation of the left-hand side can be given as:

σ(v̄1 · ψ1(q) · r1) = kσ({xij})−1v̄i · ψ̃(xu)−2ρ2f
(
ψ̃(xu), ψ̃(yu)

)−1(5.5)

· ψ̃(yu)2ρ5−2ρ2 · ψi(q) · ri · X−ρV (σ)
1 X

−ρU (σ)
2

= σ(c−1
12 a)

= x
1−λσ

2
12 f(x13, x12)c−1

12 a

Summing up, we obtain

(5.6) kσ({xij}) = FiX
−ρV (σ)
1,i X

−ρU (σ)
2,i Sif(x12, x13)x

λσ−1
2

12 ,
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with

Fi : = v̄i · ψ̃(xu)−2ρ2f
(
ψ̃(yu), ψ̃(xu)

)
ψ̃(yu)2ρ5−2ρ2 · v̄−1

i ,

X1,i : = (v̄i · ψi(q)ri)(X1)(v̄iψi(q)ri)−1,

X2,i : = (v̄i · ψi(q)ri)(X2)(v̄iψi(q)ri)−1,

Si : = v̄i · ψi(q) · ri · a−1c12.

Given that Fi is exactly equal to

Fi = x−2ρ2
u,i f(yu,i, xu,i)y

2ρ5−2ρ2
u,i ,

we find, using the table of Proposition (3.6) and the identities f(ετ13τ45ε, ϑ
2)

= εf(τ13τ45, ϑ
3)ε and ε2 = 1, that

Fi =





ϑ−6ρ2f(τ13τ45, ϑ
3)(τ13τ45)2ρ5−2ρ2 (i = 1),

ϑ6ρ2εf(τ13τ45, ϑ
3)(τ13τ45)2ρ5−2ρ2ε (i = −1),

V]ϑ
−6ρ2f(τ13τ45, ϑ

3)(τ13τ45)2ρ5−2ρ2V]
−1 (i = −2),

V]ϑ
6ρ2εf(τ13τ45, ϑ

3)(τ13τ45)2ρ5−2ρ2εV]
−1 (i = 2).

In other words, for λ = λσ and heavily using Lemma (1.1) (2), (3) and (4)
(especially for λ ≡ ±2), we have

(5.7) Fi = Vλελϑ−6ρ2

λ f(τ13τ45, ϑ
3
λ) ·





(τ13τ45)2ρ5−2ρ2 (i = 1),
(τ13τ45)2ρ5−2ρ2ε (i = −1),
ε′(τ13τ45)2ρ5−2ρ2V]

−1 (i = −2),
ε′(τ13τ45)2ρ5−2ρ2εV]

−1 (i = 2).

Now, using the table in (4.4), we have

(5.8) X−ρV
1,i X−ρU

2,i =





τ−2ρU
13 τ−2ρV

45 (i = 1),
ετ−2ρU

13 τ−2ρV
45 ε (i = −1),

V]τ
−2ρU
13 τ−2ρV

45 V]
−1 (i = −2),

V]ετ
−2ρU
13 τ−2ρV

45 εV]
−1 (i = 2).

It remains to compute the Si. Since ψ1(q) = v̄−1
1 c−1

12 a r−1
1 , we see that

S1 = 1. In fact, we can treat all of the Si, i = ±1,±2 simultaneously by
drawing the paths ψi(q)ri with certain components normalized to 0, 1, ∞
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and proceeding as for i = 1:

3

1

2

4

5

3

1

5

4

3

2

15

4

3

2

1

5

Ψ2 2
(q)r−2(q)r−2Ψ

−1
(q)r

−1
(q)r

1 ΨΨ
1

4

2

From this drawing of ψ−1(q), we see that it is homotopic to v̄−1
1 c12a r−1

−1;
thus, S−1 = c12 · c12 = x12. For i = ±2, we compute Si by composing the
pictured paths as braids, starting with v̄2 (drawn in (3.2)), as follows:

1
234

5

1
352

4

1
234

5

1
352

4

S2

v

−1

2 2

−1

v−2

−2(q)r
−2

a  c
12

(q)r

2

Ψ Ψ

S−2

a  c 12

We read the braids immediately from this picture:

S−2 = τ−1
4 τ−1

2 τ−1
3 τ4τ3ϑ

−1τ1, S2 = τ−1
4 τ−1

2 τ−1
3 τ−1

4 τ−1
3 ϑ−1τ1.

Using simple braid relations, one can rewrite these expressions using the
important involutive braid ε′ = τ2ϑ

2τ1 (see Lemma (1.1)) which exchanges
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τ13 and τ45 by conjugation. We obtain:

(5.9) Si =





1, (i = 1),
x12, (i = −1),
V]τ13ε

′, (i = −2),
V]ετ

−1
45 ε′, (i = 2).

This, together with (3.2) and (5.4), after being collected into (5.5), reduces
the proof of Theorem A to checking

τχ13
13 τχ45

45 =





xρ5−ρ2−ρU
13 xρ5−ρ2−ρV

45 ·

{
1 (λ ≡ 1 mod 5),
τ−1
13 τ45 (λ ≡ −1 mod 5),

xρ5−ρ2−ρU
45 xρ5−ρ2−ρV

13 ·

{
τ45 (λ ≡ −2 mod 5),
τ−1
13 (λ ≡ 2 mod 5).

But this follows from Lemma (4.5). The proof of theorem A is thus com-
pleted. ¤

(5.10) In this subsection, we discuss how to extend the functions χ13, χ45

of §1 from GQ to ĜT by using Ihara’s theory [I2]. We assume basic properties
of the profinite free differential calculus. Consider the partial derivative
∂fσ(x,y)

∂y in the complete group algebra Ẑ[[F̂2]] for σ ∈ ĜT , and write its

image in Ẑ[x]/(x5 − 1) (with y = 1) as:

(5.10.1)
∂fσ(x, y)

∂y
≡ −

4∑

a=0

κa
5(σ)x−a mod (x5 − 1).

This formula defines the extension to ĜT of the coefficients κa
5 which appear

as the Soulé characters in the case where σ ∈ GQ. Indeed, by [I2], we know
that κ0

5 = −ρ5 on GQ ⊂ ĜT and

(5.10.2) ζ
κa
5(σ)

n =
σ

(
n

√
1 − ζλ−1

σ a
n

)

n
√

1 − ζa
n

(n ≥ 1, σ ∈ GQ)

for a = ±1,±2. Therefore, to extend χ13, χ45 to ĜT , it suffices to express
them in terms of κa

5’s (together with ρ2 whose extension to ĜT was discussed
in [LNS], [NS]). This can be done by looking closely at branches of roots.
In fact, we obtain the following equations of Ẑ-valued functions on GQ for
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which we omit to describe the detailed case-by-case examinations :

χ13 + 2ρ2 =





10κ1
5 + 2λ − 2 (λ ≡ 1 mod 5),

10κ1
5 − λ − 2 (λ ≡ −1 mod 5),

10κ1
5 − 2 (λ ≡ −2 mod 5),

10κ1
5 − λ − 2 (λ ≡ 2 mod 5),

(5.10.3)

χ45 + 2ρ2 =





10κ2
5 (λ ≡ 1 mod 5),

10κ2
5 − λ (λ ≡ −1 mod 5),

10κ2
5 − λ (λ ≡ −2 mod 5),

10κ2
5 + 2λ (λ ≡ 2 mod 5).

(5.10.4)

The meaning of this extension is that the equality in theorem A, which holds
whenever (λσ, fσ) is associated to an element of GQ, can now be posited as
a relation on elements of ĜT , which may or may not be satisfied by all
elements of ĜT .

6. Interpretation of results and some prospects

We have thus completed the proofs of theorems A,B. In this section,
we will add a few remarks about their overall meaning, especially in the
framework of Grothendieck-Teichmüller theory. Eigenloci can be defined in
general in the moduli stacks Mg,n (resp. Mg,[n]) of curves of genus g with n
labeled (resp. unlabeled) marked points; their main defining property is to
be stable (though not necessarily pointwise fixed, of course) under the action
of a finite subgroup of the modular group Γn

g (resp. Γn
g ) corresponding to

the automorphism group of some algebraic curve (see [L] for more detail).
Here we have used a very special case, namely a rational eigencurve E

(dimension 1 eigenlocus) in M0,5. Apart from the two key properties of E
mentioned in the Introduction, namely that E is stable under the action
of ρ and that its image in M0,[5] is a copy of P1 with a missing point
and two orbifold points, we have actually used a third geometric property,
namely that E intersects the divisor at infinity of M0,[5] at a point of maximal
degeneration. The equation of E = E(5) can immediately be generalized to
any n. Just write the same formula as in (2.3) above with ζ a primitive n-th
root of unity and n entries of the form zi(t) = ζi + ζ−it, i = 0, 1, . . . , n. The
corresponding eigencurve E(n) ⊂ M0,n still enjoys the two key properties,
but the third fails for n ≥ 5, a point to which we will briefly return below.

Let us briefly show that the method we used in this paper could have been
used in the lower dimensions n = 3, 4 in order to compute the elements gσ

and hσ in terms of fσ as was done in Theorem 2 of the Introduction); it turns
out that the method and the result is essentially similar to what was done in
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[NT]. First, we mention an easy fact, true for general n, which is implicitly
used below in the case n = 3. One can mark not just the n points zi(t) on
the sphere, but also one or both of the points 0 and/or ∞; these are the two
ramification points of the rotational symmetry of order n given by t 7→ ζnt.
Adding in one or both of these distinguished points defines eigencurves in
M0,n+1 and M0,n+2 whose automorphism groups decrease accordingly; for
instance, adding in the point ∞ decreases the automorphism group from a
dihedral group to a cyclic group, as the additional symmetry t 7→ 1/t no
longer preserves the set of marked points.

Let us proceed to gσ and hσ. Write z = (z1, z2, z3, z4) for a point on M0,4

and use the following definition of the cross-ratio:

[z1, z2, z3, z4] =
z2 − z1

z3 − z1
× z3 − z4

z2 − z4
,

so that z ∼ (0, z, 1,∞) where ∼ is equivalence under the PGL2 action and
z = [z1, z2, z3, z4]. Recall that θ (resp. ω) denotes the order 2 (resp. 3)
automorphism of P1 \ {0, 1,∞} given by z 7→ 1 − z (resp. z 7→ 1/(1 − z)).
Take n = 4, and let us study the order 2 symmetry θ.

The eigencurve E(4) parametrized by t reads:

(6.1) z(t) = (1 + t, i − it,−1 − t,−i + it).

Putting this into the standard cross-ratio form (0, z(t), 1,∞) as above, we
find that

(6.2) z(t) =
1
2
− it

1 − t2
.

There are four values of t for which the corresponding point of E(4) is
degenerate, namely t = ±1,±i. The corresponding points on M0,4 are
z(1) = z(−1) = ∞, z(i) = 1 and z(−i) = 0, so the image of the locus
E(4) (minus the degenerate points) in M0,4 simply coincides with M0,4. The
permutation group S4 acts on M0,4 via S3 = S4/V , where V is the group of
products of disjoint transpositions, which does not act effectively; the group
S3 is seen as permuting the points 0, 1 and ∞. Applying the 4-cycle (1234)
to E(4), we find that it acts via the involution t 7→ −t (its square belongs to
V ), so that it acts on z(t) via z(−t) = 1 − z(t) = θ(z(t)). Moreover, the
transformation t 7→ 1/t induces the transposition (24), and acts on z(t) via
z(1/t) = z(−t) = θ(z(t)). This means that the whole order 8 dihedral sub-
group D4 ⊂ S4 generated by the 4-cycle (1234) and the transposition (24)
(compare with the case n = 5 in §2.1) projects to a group of order 2 in S3

corresponding to the subgroup of the automorphisms of the line generated
by θ.

Because E(4) coincides with M0,4, its stabilizer coincides with the whole
of S3. Yet, by analogy with the case n = 5 (actually any n ≥ 5), and
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following the above, it is natural to single out the group generated by θ as
the ‘meaningful’ stabilizer. Mimicking the construction in §2.1, one then
introduces the u-line with u = β(t) = 4t(1 − t), which is a Belyi function
describing the invariants under θ. We are now precisely in the situation of
[NT] (§4) which produces equation (GF1) of Theorem 2 in the Introduction.
In turn, equation (GF0) of that same theorem is obtained using the whole
of S3 as the stabilizer (which it is!) and the attending invariants.

The case of hσ, with n = 3, can be treated much in the same way. Let ξ
denote a primitive third root of unity, and parametrize the eigenlocus E(3)

as follows:

(6.3) z(t) = (1 + t, ξ + ξ2t, ξ2 + ξt,∞),

where the point ∞ is added as explained above, so as to work in the non-
trivial moduli space M0,4 rather than the trivial space M0,3. In normalized
form one gets:

(6.4) z(t) = −ξ
1 − ξ2t

1 − ξt
.

The points t = 0,∞ give the two points of order three, and t 7→ ξ2t corre-
sponds to the action of ω: we have z(ξ2t) = ω(z(t)). One also computes
that z(1/t) = 1/z(t), corresponding to the transposition (23) of the points 0
and ∞. This time the dihedral group D3 ⊂ S4 associated with E(3) projects
to the whole of S3, and following the same procedure, one is led to look at an
order 6 cover describing the S3 invariants, as in [NT] (§3), that is to equation
(HF0) of Theorem 2. Equation (HF1) is derived by taking an intermediate
cover of order 3, corresponding to the invariants under the 3-cycle ([NT],
§5). Logically speaking, in order to retrieve this last equation, one could add
the point 0 in the definition of E(3), getting a curve in M0,5 with a stabilizer
cyclic of order 3, because the involution t 7→ 1/t does not apply anymore.
However one then has to compute in the fundamental group of M0,[5], which
is fairly artificial here.

We thus find that the consideration of the eigencurves E(3) and E(4) leads
to a computation of the parameters gσ and hσ in the Galois case, in terms
of fσ, which essentially coincide with the computations of [NT] given in
Theorem 2. The present paper has been devoted to E(5) and the computation
of kσ. To summarize, one can say that it completes the computation of the
Galois action on the automorphisms at the first two levels in terms of the
action on the groupoid at infinity. Indeed, g, h and k describe the action of
the Galois group on the automorphism groups of the curves on the moduli
spaces of dimensions 1 and 2. (This could and should be made a little more
precise, as we have considered only the genus 0 spaces (M0,[4] and M0,[5])
here, but in fact the genus 1 spaces (M1,1 and M1,[2]) are similar to the genus
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0 spaces, and in particular are uniformized by the same complex Teichmüller
spaces.) As for f , it describes the action on the groupoid at infinity of M0,4,
which is enough to describe the action at infinity on all the spaces Mg,n and
Mg,[n], based at the ‘standard tangential points’.

The elements gσ, hσ and kσ carry explicit information about the action of
ĜT on certain torsion elements of the mapping class groups. At present, not
much is known about the ĜT (resp. GQ) action on such elements; in general,
what can be said is as follows (cf. [S], [L]). Because we are considering the
ĜT action (and not the outer action), the choice of base point is important:
here, we take the standard tangential base point at infinity.

Armed with some material on stacks and their fundamental groups, it is
not difficult to prove the following general result (see [LV]): Let γ be a finite
order diffeomorphism of a topological surface of type (g, [n]), corresponding
to a torsion element γ ∈ Γ[n]

g (with the same name). One associates with the
conjugacy class of the cyclic group 〈γ〉 a nonempty closed integral substack
Mγ of the Q-stack Mg,[n], called the special locus of γ, whose closed points
correspond to algebraic curves having an automorphism which acts topolog-
ically like γ. This locus Mγ is defined over a finite extension k = k(γ) of Q
(where one needs to be a little careful about the notion of field of definition;
a formal way to put it is that the (coarse) moduli space associated to the
residual gerbe of the generic point of Mγ is isomorphic to Spec(k)). The
result then says that for σ ∈ Gk, σ preserves the conjugacy class of γ. This
is a completely general fact, coming from the behavior of stack inertia under
the Galois action.

In this context, one can view the work in [NT] and the present paper as
computing the conjugating factors of the finite order elements η = τ1τ2τ1,
ξ = τ1τ2 in Γ̂[4]

0 and ϑ = τ1τ2τ3τ4 in Γ̂[5]
0 under the GQ-action. Namely, for

all σ ∈ GQ, we have

η 7−→ τ−4ρ2
1 f(η, τ2

1 ) · ηλ · f(τ2
1 , η)τ4ρ2

1 ;(6.5.1)

ξ 7−→ τ
1−λ

2
−3ρ3

1 f(ξ, τ2
1 ) · ξλ · f(τ2

1 , ξ)τ
3ρ3+λ−1

2
1 ;(6.5.2)

ϑ 7−→ x
1−λ

2
12 f(x13, x12)τ

−χ45
45 τ−χ13

13 f(ϑ3
λ, τ13τ45)(6.5.3)

· ϑλ
λ · f(τ13τ45, ϑ

3
λ)τχ45

45 τχ13
13 f(x12, x13)x

λ−1
2

12 ,

where η = τ1τ2τ1, ξ = τ1τ2 ∈ B3 and ϑ = τ1τ2τ3τ4 ∈ Γ[5]
0 . See §1, Lemma

(1.1)(3) for recalling ϑλ.
Proof. Since (6.5.1-2) are easier, we only prove (6.5.3) here. First note that
a lift of ϑ3 on M0,5 gives the standard path from A to ρ(A). Therefore, one
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can comupute σ(ϑ3) after Theorem 1 (III′) and Lemma (1.1)(1) as follows:

σ(ϑ3) = f(x12, x23)−1ϑ3

=

{
k−1ϑ3k, (λ ≡ ±1 mod 5),
k−1V]ϑ

4V −1
] k (λ ≡ ±2 mod 5),

=





k−1ϑ3λk (λ ≡ 1 mod 5),
k−1εϑ3λεk (λ ≡ −1 mod 5),
k−1V]ϑ

3λV −1
] k (λ ≡ −2 mod 5),

k−1V]εϑ
3λεV −1

] k (λ ≡ 2 mod 5).

This together with Lemma (1.1)(4) and Theorem A computes the conjugat-
ing factor of ϑ3λ

λ in σ(ϑ3). As ϑ = (ϑ3)2, the conjugating factor of ϑλ
λ in

σ(ϑ) is the same. ¤

These hold for the Galois action, but what about the ĜT -action? We
have less information in this case; we only know that the following precise
version of the above conjugacy result holds in genus 0 for all σ ∈ ĜT : σ(γ)
is a conjugate of γχ(σ) for all finite-order γ ∈ Γ̂n

0 (in genus 0, the field of
definition k is cyclotomic). It turns out (see [S]) that in a sense we will not
explain here, the information contained in the automorphisms in genus 0
is enough to recover the information at infinity in all genera. Note again
that it is not known whether the relations in [NT] and the present paper
connecting g, h and k with f (as well as those involving f only, such as in
Theorems 3 and B) are satisfied in the original version of ĜT (defined in
[Dr], see also [F]).

7. Appendix: Dictionary of conventions for paths and
generators

In this Appendix, we introduce the “σ-convention” and the “τ -conven-
tion”, each of which consists of a coherent set of rules on path composition,
braid generator systems and associated definitions of ĜT -parameters. Both
conventions have been used in recent papers on Grothendieck-Teichmüller
theory, and the present paper is based on the τ -convention. We give a recipe
for translating formulas into each other so that the reader will be equipped
to easily read papers written in either convention.

[σ-convention]: Paths are composed from right to left. If γ1 is a path
from A to B and γ2 is a path from B to C, then γ2γ1 denotes the composed
path from A to C. Paths act on functions on the left. If γ is a path from
A to B, and if f is a germ of functions defined near A, then γ(f) means
the germ of functions near B analytically continued along γ. We call this
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the monodromy action of γ. If c is a small counterclockwise loop around
0 of the affine t-line A1(C), then c(t1/n) = ζnt1/n. Given an etale cover
φ : Y → X and a path γ on X from x0 to x1, then γ induces a bijection γ :
φ−1(x0) → φ−1(x1). In the monodromy action, we have (γγ′)(∗) = γ(γ′(∗)).
The standard generators x,y, z of π1(P1 − {0, 1,∞},−→01) with xyz = 1 are
taken as follows: x is a small counterclockwise loop around 0; y is a loop
running along the real segment [0,1], turning counterclockwise around 1 and
running back along the real segment; z is a loop running mainly on the lower
hemisphere and turning counterclockwise around ∞. Defining p as the path
from

−→
01 to

−→
10, we introduce the non-commutative proword fσ(∗, ∗) by the

equation in π1(P1 − {0, 1,∞},−→01): σ(p) = pfσ(x,y) for σ ∈ GQ. Pick n
points ai = ζi

n (i ∈ Z/nZ) on P1(C) ∼= S2. The standard generator system
{σij |1 ≤ i 6= j ≤ n} of the sphere braid group on a1, . . . , an is taken so that
σij interchanges ai and aj counterclockwise on the lower hemisphere. It is
written by the minimal standard generators as

σij = σ−1
i · · ·σ−1

j−1σjσj−1 · · ·σi (1 ≤ i < j ≤ n).

Here, braids, like paths, are composed from right to left, and drawn on
strands numbered from left to right, with σi denoting the braid in which
the i-th strand crosses to the right over the (i + 1)-st strand. We define the
pure braid xij := σ2

ij ; the elements σ24 and σ4 are shown as a movement of
points and a braid in the following figure.

���
�

���
�

���
�

���
�

��	
	

1

2 4

4

5

2

σ24

3

3 42 51

σ24

1 2 3 4 5

σ4

[τ -convention]: Paths are composed from left to right. If γ1 is a path from
A to B and γ2 is a path from B to C, then γ1γ2 denotes the composed path
from A to C. Paths act on functions on the left. If γ is a path from A to B,
and if f is a germ of functions defined near B, then γ(f) means the germ of
functions near A analytically continued along γ. We call this the monodromy
action of γ. If c is a small counterclockwise loop around 0 of the affine t-line
A1(C), then c(t1/n) = ζ−1

n t1/n. Given an etale cover φ : Y → X and a path γ
on X from x0 to x1, then γ induces a bijection γ : φ−1(x1) → φ−1(x0). In the
monodromy action, we have (γγ′)(∗) = γ(γ′(∗)). The standard generators
x, y, z of π1(P1−{0, 1,∞},−→01) with xyz = 1 are taken as follows: x is a small
counterclockwise loop around 0; y is a loop running along the real segment
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[0,1] and turning counterclockwise around 1; z is a loop running mainly on
the upper hemisphere and turning counterclockwise around ∞. Defining p as
the path from

−→
01 to

−→
10, we introduce the non-commutative proword fσ(∗, ∗)

by the equation in π1(P1 − {0, 1,∞},−→01): σ(p) = fσ(x, y)−1p for σ ∈ GQ.
The standard generator system {τij |1 ≤ i 6= j ≤ n} of the sphere braid
group on the above {a1, . . . , an} ⊂ P1(C) is taken so that τij interchanges
ai and aj counterclockwise on the upper hemisphere. It is written by the
minimal standard generators as:

τij = τ−1
i · · · τ−1

j−1τjτj−1 · · · τi (1 ≤ i < j ≤ n).

Note here that the braids are composed from left to right, and drawn on
strands numbered from right to left, with the generator τi crossing the i-th
strand to the left under the (i + 1)-st strand. We define the pure braid
xij := τ2

ij , and draw τ24 and τ4 below.
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Dictionary. We produce a dictionary between the above two conventions.
Our principle is to identify paths as monodromy operators on germs of func-
tions (i.e. we consider pictures of braids or loops only as “superficial expres-
sions” within each convention, and do not base our convention translations
on them). This helps us from extra-cares on reversing multiplication orders
in translations, by virtue of the above definitions of monodromy in both
conventions. So, p = p−1, x = x−1, y = y−1 while z = yz−1y−1. Then, for
σ ∈ GQ, σ(p) = pfσ(x,y) is equal to σ(p−1) = p−1fσ(x, y) = pfσ(x−1,y−1).
Therefore, as prowords of two non-commutative generators X,Y of F̂2, we
have

fσ(X, Y ) = fσ(X−1, Y −1).

It is obvious that the ĜT -relation (I) for fσ is equivalent to that for fσ. On
the other hand, the equivalence of the ĜT -relation (II) for fσ and that for fσ

is a(n easy but) non-trivial exercise. We leave it for interested readers. The
equivalence of the ĜT -relation (III) for both conventions can be assured
from the translation of braids as monodromy operators: σi = τ−1

i . This
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gives, in general,

σij = xi,i+1 · · ·xi,j−1τ
−1
ij x−1

i,j−1 · · ·x
−1
i,i+1,

τij = x−1
i,i+1 · · ·x

−1
i,j−1σ

−1
ij xi,j−1 · · ·xi,i+1

for 1 ≤ i < j ≤ n. Under the above translation rule, we have, for example,

fσ(x12,x23) = fσ(x−1
12 ,x−1

23 ) = fσ(x12, x23).

Thus, ĜT -equations in the sphere braid groups look same in both conven-
tions, as long as they involve only f -parameters and braid generators on
two consecutive strings. The relation (III) is a case in point. But recently,
more complicated equations have been studied in the theory of ĜT , which
involve more general types of generators or local factors with Kummer type
characters as exponents. To illustrate the situation, let us consider Theo-
rem A of this paper, for the case λ ≡ 1 mod 5 for simplicity. Then, in the
τ -convention, it reads:

kσ({xij}) = ϑ−6ρ2f(τ13τ45, ϑ
3)τχ13

13 τχ45
45 f(x12, x13)x

λ−1
2

12 .

where kσ({xij}) is defined by σ(v) = kσ({xij})−1v for a certain path v from
A to Q. The corresponding kσ should be defined by σ(v) = vkσ(xij) using
v = v−1. Then, kσ(x12,x23,x34,x45,x51) = kσ(x12, x23, x34, x45, x51). The
translation then gives us

kσ(xij) = ϑ−6ρ2fσ(x−1
12 σ13σ45x12, ϑ

2)x−1
12 σ−χ13

13 σ−χ45
45 fσ(x12,x13)x

3−λ
2

12

where ϑ = σ1σ2σ3σ4 = τ−1
1 τ−1

2 τ−1
3 τ−1

4 = τ1τ2τ3τ4 = ϑ.
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