
Math. J. Okayama Univ. 46 (2004), 9–16

ON SIMPLE-INJECTIVE MODULES

Takeshi SUMIOKA and Takashi TOKASHIKI

Throughout this paper, rings are associative with identity and modules
are unitary. For terminologies and notations we shall follows [1].

Let R be a ring and LR a right R-module. Then a right R-module MR

is said to be L-simple-injective (resp. L-FI-injective) if for any submodule
K of LR, any homomorphism θ : K → M with image simple (resp. finitely
generated) can be extended to a homomorphism η : L → M . The definition
of “simple-injective modules” was introduced by Harada [8]. Trivially, any
L-injective module is L-FI-injective and any L-FI-injective module is L-
simple-injective. In case R is a semiprimary ring, any finitely cogenerated
L-simple-injective right R-module is L-injective (see e.g. [3, Proposition 2]
or [10, Lemma 2.1]). In this paper, we shall give other conditions for an
R-simple-injective module to be injective (or R-FI-injective). A module MR

is called semicompact if any finitely solvable system (xi, Xi)i∈I of M with
Xi = lM (Ai) for some Ai ⊆ R is solvable, where lM (Ai) = {x ∈ M | xAi =
0}. For a module MR with P = EndMR, if P M is linearly compact, then
MR is trivially semicompact.

In this paper, for an R-simple-injective module MR with essential socle,
we shall show that MR is R-FI-injective if P M is AB-5*, where P = EndMR

(Theorem 4), and show that MR is injective if and only if MR is semicop-
mact (Theorem 9). These results are obtained as special cases of certain
results using bilinear maps, which are generalizations of Theorem 3.2 and
Proposition 4.1 in Ánh, Helbera and Menini [2].

Let P and Q be rings, and P M , NQ and P UQ a left P -module, a right
Q-module and a P -Q-bimodule, respectively, and let ϕ : M × N → U be
a P -Q-bilinear map. Then we say that (P M, NQ) is a pair with respect to
U (or ϕ) or simply a pair (see [10]). For elements x ∈ M , y ∈ N and
subsets X ⊆ M , Y ⊆ N , by xy we denote the element ϕ(x, y), and by
rN (X) (resp. lM (Y )) we denote the right (resp. left) annihilator module
{y ∈ N | Xy = 0} (≤ NQ) (resp. {x ∈ M | xY = 0} (≤ P M)). Moreover
for an element x ∈ M , submodules Z ≤ Y ≤ NQ and a homomorphism
θ : Y → U by x̂ : N → U we denote the left multiplication map by x and
by θ|Z we denote the restriction map of θ to Z.

Let (P M,NQ) be a pair with respect to U . Then UQ is said to be (M, N)-
injective if the following condition (∗) holds for any submodule K of NQ and
any homomorphism θ : K → U .

(∗) θ : K → U is given by left multiplication by an element of M .
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Moreover UQ is said to be (M, N)-FI-injective (resp. (M,N)-CI-injective
or (M, N)-simple-injective) if the condition (∗) holds for any K(≤ NQ) and
any homomorphism θ : K → U whose image is finitely generated (resp.
cyclic or simple).

Let P MR and LR be a P -R-bimodule and a right R-module, respectively,
and let (P L∗, LR) be a pair with respect to a natural map ψ : L∗ × L →
M , where P L∗ = HomR(L, M). Then (L∗, L)-injectivity of MR implies L-
injectivity of MR and in particular (in case L = R) (M,R)-injectivity of MR

implies injectivity of MR.
Let (P M, NQ) be a pair, and y ∈ N and K ≤ NQ. Then by y−1K we

denote the following right ideal of Q; y−1K = {a ∈ Q | ya ∈ K}.

Lemma 1. Let (P M, NQ) be a pair with respect to U and y ∈ N and
K ≤ NQ. Then the following hold.

(1) lM (K)y ≤ lU (y−1K) = {θ(y) | θ ∈ HomQ(yQ + K,U) and K ≤
Kerθ}.

(2) lM (K)y = lU (y−1K) if and only if any homomorphism θ : yQ+K →
U with K ≤ Kerθ is given by left multiplication by an element of M .

Proof. It is clear that lM (K)y ≤ lU (y−1K) and {θ(y) | θ ∈ HomQ(yQ +
K, U) and K ≤ Kerθ} ≤ lU (y−1K). For any element u ∈ lU (y−1K), a map
θ : yQ + K → U via θ(ya + z) = ua (a ∈ Q, z ∈ K) is well-defined and a
Q-homomorphism with θ(y) = u and K ≤ Kerθ since ya + z = 0 implies
ua ∈ u(y−1K) = 0. Hence (1) is obtained. Moreover (2) is an immediate
consequence of (1). ¤

Lemma 2. Let (P M,NQ) be a pair with respect to U . Then the following
are equivalent.

(1) UQ is (M,N)-FI-injective.
(2) UQ is (M,N)-CI-injective.
(3) lU (y−1K) = lM (K)y for any element y ∈ N and any submodule K

of NQ.

Proof. (2) ⇒ (1). Assume (2). Let Y and K be submodules of NQ with
Y = Σn

i=1yiQ and let θ : Y + K → U be a homomorphism with K ≤ Kerθ.
By induction on n, we show that θ is given by left multiplication by an
element of M . Put Y1 = Σn−1

i=1 yiQ and Y2 = ynQ. By the assumption (2),
θ|Y2+K = ẑ for some z ∈ M . Since (θ − ẑ)(Y2 + K) = 0, by inductional
assumption θ − ẑ : Y1 + (Y2 + K) → U is given by left multiplication ŵ by
some element w of M . Hence we have θ = x̂ with x = z + w.

The converse (1) ⇒ (2) is trivial and the equivalence (2) ⇔ (3) follows
from Lemma 1. ¤
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Let P M be a left P -module. Then a family {Li}i∈I of submodules of
M is called an inverse system of M if for any indices i, j ∈ I, there exists
an index k ∈ I such that Lk ≤ Li ∩ Lj . A module P M is said to be
AB5* if for any submodule K of M and any inverse system {Li}i∈I of M ,
∩i∈I(K + Li) = K + ∩i∈ILi holds. By [4, Theorem 6] (or [5, Lemma 2.2])
a module P M is AB5* if and only if there exists a pair (P M, NQ) with
some ring Q and some right Q-module NQ such that lMrN (X) = X and
rN lM (Y ) = Y hold for any submodules X ≤ P M and Y ≤ NQ. In Theorem
3 below, we consider a condition which is weaker than AB5*. The following
theorem is a generalization of [2, Theorem 3.2].

Theorem 3. Let (P M,NQ) be a pair with respect to U such that UQ has
essential socle. Then the following are equivalent.

(1) UQ is (M,N)-FI-injective.
(2) (i) UQ is (M, N)-simple-injective.

(ii) ∩i∈I(lM (K)y + Li) = lM (K)y +∩i∈ILi holds for any element y
of N , any submodule K of NQ and any inverse system {Li}i∈I

of P U with Li = lUrQ(Li) ≤ lU (y−1K) (i ∈ I) (see (1) of
Lemma 1).

Proof. (1) ⇒ (2). This follows immediately from Lemma 2.
(2) ⇒ (1). By Lemma 2, it suffices to show that UQ is (M, N)-CI-injective.

The proof is a modification of [2, Theorem 3.2]. Let θ : yQ + K → U be
a homomorphism with K ≤ Kerθ, where y ∈ N and K ≤ NQ, and put
W = {L ≤ P U | θ(y) ∈ lM (K)y + L and L = lUrQ(L) ≤ lU (y−1K)}. Then
W is non-empty since lUrQ(θ(y)) ∈ W . For any non-empty chain {Li}i∈I

in W , by (ii) we have θ(y) ∈ ∩i∈I(lM (K)y + Li) = lM (K)y + ∩i∈ILi and
∩i∈ILi = lU (Σi∈IrQ(Li)) ≤ lU (y−1K). Therefore by Zorn’s lemma there
exists a minimal element L in W . Hence for some elements x ∈ lM (K) and
u ∈ L, we have θ(y) = xy + u i.e. u = θ(y) − xy, and by minimality of L,
lUrQ(u) = L holds. Put A = rQ(u). We show that u = 0. Assume u 6= 0.
Since uQ has a non-zero socle, for some element a ∈ Q, uaQ is simple and
in particular a /∈ A. Put η = (θ − x̂)|(yaQ+yA+K). Since θ(y) − xy = u
and η(K) = 0, Imη = uaQ + uA = uaQ is simple. Hence by (i) there
exists an element w ∈ lM (K) such that η = ŵ. Put z = x + w. Then
z ∈ lM (K) and θ|(yaQ+yA+K) = ẑ and in particular (θ(y)−zy)(aQ+A) = 0.
Hence putting v = θ(y) − zy, we have θ(y) = zy + v ∈ lM (K)y + lUrQ(v).
But rQ(u) = A < aQ + A ≤ rQ(v), so lUrQ(v) < lUrQ(u) = L, which
contradicts the minimality of L. Thus we have that u = 0, so θ is given by
left multiplication by x ∈ M . ¤

As an immediate consequence of Theorem 3, we have;
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Theorem 4. Let MR be a module with P = EndMR and assume that P M
is AB-5*. If MR is an R-simple-injective module with essential socle, then
MR is R-FI-injective.

A module MR is called quasi-simple-injective (resp. quasi-FI-injective)
if MR is M -simple-injective (resp. M -FI-injective). Let MR be a module
with P = EndMR and consider a pair (P P ,MR) with respect to a map
ϕ : P × M → M via ϕ(a, x) = ax. Then by Theorem 3, we have;

Proposition 5. Let MR be a module with P = EndMR and assume that
P M is AB5*. If MR is a quasi-simple-injective module with essential socle,
then MR is quasi-FI-injective.

Let P M be a module. A class (xi, Xi)i∈I (where xi ∈ M and Xi ≤ P M
for any i ∈ I) is called solvable if there exists an x ∈ M such that x−xi ∈ Xi

for any i ∈ I, and it is called finitely solvable if (xi, Xi)i∈F is solvable for
any finite subset F of I. For a class A of submodules of P M , P M is said
to be A-linearly compact if any finitely solvable system (xi, Xi)i∈I of P M
with Xi ∈ A is solvable. A module P M is said to be linearly compact if it is
C-linearly compact for the class C of submodules of P M . If P M is linearly
compact, then it is clearly A-linearly compact for any class A of submodules
of P M .

Let (P M, NQ) be a pair. Then by Al(M,N) we denote the class {X ≤
P M | X = lMrN (X)} of submodules of P M .

Remark 1. Let (P M, NQ) be a pair with respect to a P -Q-bilinear map
ϕ : M × N → U and X a submodule of P M with X = lMrN (X). Then for
a pair (P X,NQ) with respect to the restriction map ϕ|X×N , in case P M is
Al(M, N)-linearly compact, P X is Al(X,N)-linearly compact.

Let (P M,NQ) be a pair with respect to U . Then UQ is said to be (M, N)-
F-injective if for any finitely generated submodule K of NQ, any homomor-
phism θ : K → U is given by left multiplication by an element of M . Every
(M,N)-FI-injective module is clearly (M, N)-F-injective. As a characteri-
zation of an (M, N)-injective module, we have the following theorem, which
is essentially proved by Matlis [9, Propositions 2 and 3] (also see [11, Propo-
sition 1.1] and [2, Proposition 4.1]). However, for the benefit of reader we
provide a proof.

Theorem 6. (see [9], [11] or [2]). Let (P M, NQ) be a pair with respect to
U . Then the following are equivalent.

(1) UQ is (M,N)-injective.
(2) (i) UQ is (M, N)-F-injective.

(ii) P M is Al(M,N)-linearly compact.
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Proof. (1) ⇒ (2). We only show (ii) since (i) is trivial. Let (xi, Xi)i∈I

be a finitely solvable system in P M with Xi = lMrN (Xi). Then the map
θ : Σi∈IrN (Xi) → U via θ(Σyi) = Σxiyi (yi ∈ rN (Xi)) is well-defined
and we have (θ − x̂i)(rN (Xi)) = 0 for each i ∈ I. Hence by assumption
(θ− x̂0)(Σi∈IrN (Xi)) = 0 for some x0 ∈ M . Therefore (x0 −xi)rN (Xi) = 0,
so x0 − xi ∈ lMrN (Xi) = Xi for each i ∈ I. Thus (xi, Xi)i∈I is solvable.

(2) ⇒ (1). Let Y ≤ NQ and θ : Y → U a homomorphism and put
W = {K ≤ YQ | K is finitely generated}. By (i), for every K ∈ W there is
an xK ∈ M such that (θ− x̂K)(K) = 0. Since (xK , lM (K))K∈W is a finitely
solvable system of P M , by (ii) there is an x0 ∈ M such that (x0−xK)K = 0
for every K ∈ W . Hence (θ− x̂0)(K) = 0 for every K ∈ W , so θ = x̂0. Thus
UQ is (M, N)-injective. ¤

Lemma 7. Let (P M, NQ) be a pair with respect to U such that P M is
Al(M, N)-linearly compact. Then ∩i∈I(My + Li) = My + ∩i∈ILi holds
for any element y of N and any inverse system {Li}i∈I of P U with Li =
lUrQ(Li) (i ∈ I).

Proof. It suffices to show that ∩i∈I(My + Li) ≤ My + ∩i∈ILi since the
converse is clear. Let v ∈ ∩i∈I(My + Li). Then for each i ∈ I, there is an
element xi ∈ M such that v−xiy ∈ Li. Put Xi = {x ∈ M | xy ∈ Li}. Then
(xi, Xi)i∈I is a finitely solvable system of M since for any finite subset F of
I, there is an element j ∈ I with Lj ≤ Li (i ∈ F ), so (xj − xi)y = (xjy −
v) − (xiy − v) ∈ Li. Hence (xi, Xi)i∈I is solvable since Xi = lM (yrQ(Li)).
It follows that there exists an element x0 ∈ M such that for each i ∈ I,
(x0 − xi)y ∈ Li, so v − x0y = (v − xiy) − (x0 − xi)y ∈ Li. Thus v =
x0y+(v−x0y) ∈ My+∩i∈ILi and we have ∩i∈I(My+Li) ≤ My+∩i∈ILi. ¤

The following theorem is a generalization of [2, Proposition 4.1].

Theorem 8. Let (P M,NQ) be a pair with respect to U such that UQ has
essential socle. Then the following are equivalent.

(1) UQ is (M,N)-injective.
(2) (i) UQ is (M,N)-simple-injective.

(ii) P M is Al(M,N)-linearly compact.

Proof. (1) ⇒ (2). (i) Trivial. (ii) By Theorem 6.
(2) ⇒ (1). Let K be a submodule of NQ and consider the pair

(P lM (K), NQ) with respect to U induced from the pair (P M, NQ) with re-
spect to U . Then by Remark 1 and Lemma 7 we have ∩i∈I(lM (K)y +Li) =
lM (K)y + ∩i∈ILi for any element y of N and any inverse system {Li}i∈I

of P U with Li = lUrQ(Li) (i ∈ I). Hence by Theorem 3 UQ is (M, N)-FI-
injective, so by Theorem 6 UQ is (M, N)-injective. ¤
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Recall that a right R-module MR is semicopmact if P M is A-linearly
compact for the class A = {X ≤ P M | X = lMrR(X)}, where P = EndMR

(see [9] or [11] ). By Theorem 8, we have;

Theorem 9. Let MR be a module with essential socle. Then the following
are equivalent.

(1) MR is injective.
(2) MR is R-simple-injective and semicompact.

Corollary 10. Let MR be a module with P = EndMR and assume that P M
is linearly compact. If MR is an R-simple-injective module with essential
socle, then MR is injective.

Applying Theorem 8 to a pair (P P, MR) with respect to a map ϕ : P ×
M → M via ϕ(a, x) = ax, we have;

Proposition 11. (cf. Proposition 5). Let MR be a module with P = EndMR

and assume that P P is linearly compact. If MR is a quasi-simple-injective
module with essential socle, then MR is quasi-injective.

Remark 2. A ring R is called a dual ring if lRrR(I) = I and rRlR(K) = K
hold for any left ideal I and any right ideal K of R. In [6, Proposition
5.2], Hajarnavis and Norton showed that for any dual ring R, RR is R-FI-
injective and in [6, Example 6.1] they gave an example of a commutative
dual ring which is not self-injective. Hence there exists an R-FI-injective
right R-module which is not injective. Every right R-module with socle
zero is trivially R-simple-injective. Hence for the ring Z of integers, ZZ is a
trivial Z-simple-injective module which is not Z-FI-injective. The authors
however know no example of an R-simple-injective right R-module MR with
essential socle such that MR is not R-FI-injective.

Examples. By the example below, we see the following (1) and (2);
(1) There exists a pair (P M,NQ) with respect to U such that UQ is

injective but it is not (M, N)-simple-injective.
(2) There exists a pair (P M,NQ) with respect to U such that UQ is an

(M,N)-injective module with essential socle and P M is Al(M,N)-linearly
compact but P M is not linearly compact (cf. Theorem 8).

In [7, Example], Harada constructed a semiprimary left QF-3 ring which
is not right QF-3 (also see [12, Example 2]). Let D be a division ring and
DLD a bimodule with dim(DL) = ∞. Put L∗ = HomD(DL, DD) and

R =




D L D
O D L∗

O O D


 , e =




1 0 0
0 0 0
0 0 0


 , f =




0 0 0
0 0 0
0 0 1


 .



ON SIMPLE-INJECTIVE MODULES 15

Put P = eRe(' D) and Q = fRf(' D) and let (P eR, RfQ) be a pair with
respect to ϕ : eR × Rf → eRf via ϕ(ea, bf) = eabf . Let L = ⊕i∈IDxi

(xi 6= 0) and let yi (i ∈ I) and y be elements in L∗ such that xiyi = 1
(i ∈ I), xjyi = 0 (j 6= i) and xiy = 1 (i ∈ I) and put Y = [DV D]T ≤ RfQ

and Z = [DWD]T ≤ RfQ, where V = ⊕i∈IyiD ≤ L∗
D, W = V + yD ≤

L∗
D and [−]T denotes the transposed matrix of [−]. Then as is easily seen

leR(Y ) = 0. Since by assumption, I is an infinite set, we have y /∈ V , so
Z/YQ ' eRfQ(' Q) . Let θ : Z → eRf be an epimorphism with Kerθ = Y .
If θ = x̂ for some element x ∈ eR, then xY = θ(Y ) = 0 hence x = 0, a
contradiction. Therefore eRfQ is not (P eR,RfQ)-simple-injective. On the
other hand, eRfQ is injective over the division ring Q(' D). Next consider
a pair (RR,RfQ) with respect to ψ : R×Rf → Rf via ψ(a, bf) = abf . Since
RRf ' HomP (eR, eRf), RRf is an injective (i.e. an (RR, RfQ)-injective)
module with essential socle, so by Theorem 8 RfQ is Ar(R, Rf)-linearly
compact, where Ar(R,Rf) = {Y ≤ RfQ | Y = rRf lR(Y )}. But RfQ is not
linearly compact since dim(RfQ) = ∞.
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[2] P. N.Ánh, D. Herbera and C. Menini, Baer and Morita duality, J. Algebra 232
(2000) 462–484.

[3] Y. Baba and K. Oshiro, On a theorem of Fuller, J. Algebra 154 (1993), 86–94.
[4] G. M. Brodskii, Lattice anti-isomorphisms of modules and the AB5* condition, First

Internationnal Tainan-Moscow Algebra Workshop, Tainan, 1994 (de Gruyter, Berlin,
1996) pp. 171–175.

[5] G. M. Brodskii and R. Wisbauer, On duality theory and AB5* modules, J. Pure
and Applied Algebra 121 (1997) 17–27.

[6] C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra
93 (1985) 253–266.

[7] M. Harada, QF-3 and semi-primary PP-rings II, Osaka J. Math. 3 (1966) 21–27.
[8] M. Harada, Note on almost relative projectives and almost relative injectives, Osaka

J. Math. 29 (1992) 435–446.
[9] E. Matlis, Injective modules over Prufer rings, Nagoya Math. J. 15 (1959) 57–69.

[10] M. Morimoto and T. Sumioka, Semicolocal pairs and finitely cogenerated injective
modules, Osaka J. Math. 37 (2000) 801–810.

[11] W. Xue, Characterizations of Morita duality, Algebra Colloq. 2 (1995) 339–350.
[12] W. Xue, Characterizations of Morita duality via idempotents for semiperfect rings,

Algebra Colloq. 5 (1998) 99–110.

Takeshi Sumioka
Department of Mathematics

Osaka City University
Osaka 558-8585, Japan

e-mail address: sumioka@sci.osaka-cu.ac.jp



16 T. SUMIOKA AND T. TOKASHIKI

Takashi Tokashiki
Department of Mathematics

Osaka City University
Osaka 558-8585, Japan

e-mail address: tokashik@sci.osaka-cu.ac.jp

(Received June 30, 2003 )


