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ON SIMPLE-INJECTIVE MODULES

TAKESHI SUMIOKA AND Takasui TOKASHIKI

Throughout this paper, rings are associative with identity and modules
are unitary. For terminologies and notations we shall follows [1].

Let R be a ring and Lg a right R-module. Then a right R-module Mg
is said to be L-simple-injective (resp. L-Fl-injective) if for any submodule
K of Lg, any homomorphism 6 : K — M with image simple (resp. finitely
generated) can be extended to a homomorphism 7 : L — M. The definition
of “simple-injective modules” was introduced by Harada [8]. Trivially, any
L-injective module is L-Fl-injective and any L-Fl-injective module is L-
simple-injective. In case R is a semiprimary ring, any finitely cogenerated
L-simple-injective right R-module is L-injective (see e.g. [3, Proposition 2]
or [10, Lemma 2.1]). In this paper, we shall give other conditions for an
R-simple-injective module to be injective (or R-FI-injective). A module Mg
is called semicompact if any finitely solvable system (z;, X;);cs of M with
X; = lp(A;) for some A; C R is solvable, where [y/(4;) = {x € M | zA; =
0}. For a module M with P = EndMpg, if pM is linearly compact, then
Mp, is trivially semicompact.

In this paper, for an R-simple-injective module Mg with essential socle,
we shall show that Mg is R-FI-injective if pM is AB-5%, where P = EndMp
(Theorem 4), and show that Mp is injective if and only if Mp is semicop-
mact (Theorem 9). These results are obtained as special cases of certain
results using bilinear maps, which are generalizations of Theorem 3.2 and
Proposition 4.1 in Anh, Helbera and Menini 2].

Let P and () be rings, and pM, Ng and pUg a left P-module, a right
@-module and a P-Q-bimodule, respectively, and let ¢ : M x N — U be
a P-Q-bilinear map. Then we say that (pM, Ng) is a pair with respect to
U (or ¢) or simply a pair (see [10]). For elements z € M, y € N and
subsets X C M, Y C N, by zy we denote the element ¢(z,y), and by
rn(X) (resp. Iy (Y)) we denote the right (resp. left) annihilator module
{y € N| Xy =0} (< Ng) (resp. {x € M | 2Y =0} (< pM)). Moreover
for an element x € M, submodules Z <Y < Ng and a homomorphism
0:Y - Ubyz: N — U we denote the left multiplication map by = and
by 0|7 we denote the restriction map of 6 to Z.

Let (pM, Ng) be a pair with respect to U. Then Uy is said to be (M, N)-
injective if the following condition (*) holds for any submodule K of Ng and
any homomorphism 6 : K — U.

() 60:K — U is given by left multiplication by an element of M.
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Moreover Ug is said to be (M, N)-Fl-injective (resp. (M, N)-Cl-injective
or (M, N)-simple-injective) if the condition (x) holds for any K (< Ng) and
any homomorphism 6 : K — U whose image is finitely generated (resp.
cyclic or simple).

Let pMp and Lk be a P-R-bimodule and a right R-module, respectively,
and let (pL*,LR) be a pair with respect to a natural map ¢ : L* x L —
M, where pL* = Hompg(L, M). Then (L*, L)-injectivity of Mp implies L-
injectivity of Mg and in particular (in case L = R) (M, R)-injectivity of Mp
implies injectivity of Mg.

Let (pM, Ng) be a pair, and y € N and K < Ng. Then by y 1K we
denote the following right ideal of Q; y 'K = {a € Q | ya € K }.

Lemma 1. Let (pM,Ng) be a pair with respect to U and y € N and
K < Ng. Then the following hold.

(1) (K)y < l(y™'K) = {0(y) | 0 € Homg(yQ + K,U) and K <
Kerf}.

(2) Iy (K)y = ly(y~ 1K) if and only if any homomorphism 0 : yQ+ K —
U with K < Kerf is given by left multiplication by an element of M.

Proof. Tt is clear that Iy(K)y < ly(y 1K) and {0(y) | 0 € Homg(yQ +
K,U) and K < Kerf} < ly(y~!1K). For any element u € ly(y~ 1K), a map
0:yQ+ K — U via 0(ya + z) = ua (a € Q, z € K) is well-defined and a
Q-homomorphism with 6(y) = u and K < Kerf since ya + z = 0 implies
ua € u(y 1K) = 0. Hence (1) is obtained. Moreover (2) is an immediate
consequence of (1). O

Lemma 2. Let (pM, Ng) be a pair with respect to U. Then the following
are equivalent.

(1) Ug is (M, N)-Fl-injective.

(2) Ug is (M N)-Cl-injective.

(3) ly(y 'K) = Iy (K)y for any element y € N and any submodule K
Of NQ.

Proof. (2) = (1). Assume (2). Let Y and K be submodules of Ng with
Y =32 y,Qand let 6 : Y + K — U be a homomorphism with K < Ker6.
By induction on n, we show that 0 is given by left multiplication by an
element of M. Put Y7 = ¥/ 'y;Q and Y3 = y,Q. By the assumption (2),
0ly,+x = % for some z € M. Since (0 — 2)(Yo + K) = 0, by inductional
assumption § — z : Y7 + (Y5 + K) — U is given by left multiplication w by
some element w of M. Hence we have § = & with z = z + w.

The converse (1) = (2) is trivial and the equivalence (2) < (3) follows
from Lemma 1. O



ON SIMPLE-INJECTIVE MODULES 11

Let pM be a left P-module. Then a family {L;};c; of submodules of
M is called an inverse system of M if for any indices 7,j € I, there exists
an index k£ € I such that Ly, < L; N L;. A module pM is said to be
AB5* if for any submodule K of M and any inverse system {L;};c; of M,
Nier(K + L;) = K 4 NjerL; holds. By [4, Theorem 6] (or [5, Lemma 2.2])
a module pM is AB5* if and only if there exists a pair (pM, Ng) with
some ring () and some right @-module N¢g such that {yry(X) = X and
Nl (Y) =Y hold for any submodules X < pM and Y < Ng. In Theorem
3 below, we consider a condition which is weaker than AB5*. The following
theorem is a generalization of [2, Theorem 3.2].

Theorem 3. Let (pM,Ng) be a pair with respect to U such that Ug has
essential socle. Then the following are equivalent.

(1) Ug is (M, N)-Fl-injective.

(2) (i) Ug is (M, N)-simple-injective.

(ii) Nier(Im(K)y + L) = Ly (K)y + NierL; holds for any element y
of N, any submodule K of Ng and any inverse system {L;}icr
of pU with L; = lyrg(L;) < ly(y 'K) (i € I) (see (1) of
Lemma 1).

Proof. (1) = (2). This follows immediately from Lemma 2.

(2) = (1). By Lemma 2, it suffices to show that Ug is (M, N)-Cl-injective.
The proof is a modification of [2, Theorem 3.2]. Let 0 : y@Q + K — U be
a homomorphism with K < Kerf), where y € N and K < Ng, and put
W ={L<pU|0(y) €ly(K)y+ L and L =lyrg(L) <ly(y 'K)}. Then
W is non-empty since lyrg(6(y)) € W. For any non-empty chain {L;}icr
in W, by (ii) we have H(y) S ﬂie[(lM(K)y + Li) = ZM(K)y 4+ NjerL; and
NicrLi = ly(Zierrq(Ls)) < Iy(y~'K). Therefore by Zorn’s lemma there
exists a minimal element L in W. Hence for some elements x € 3/(K) and
u € L, we have 0(y) = xy + u i.e. v = 6(y) — xy, and by minimality of L,
lyrg(u) = L holds. Put A = rg(u). We show that u = 0. Assume u # 0.
Since u@ has a non-zero socle, for some element a € @, ua@ is simple and
in particular a ¢ A. Put n = (0 — 2)|(ye@+ya+k)- Since 0(y) — vy = u
and n(K) = 0, Imn = wa@ + uA = wa@ is simple. Hence by (i) there
exists an element w € Iy (K) such that n = w. Put z = x + w. Then
z € Iy (K) and 0|(yq+ya+ k) = £ and in particular (6(y) — zy)(aQ+ A) = 0.
Hence putting v = 0(y) — zy, we have 0(y) = zy + v € Iy (K)y + lyrg(v).
But rg(u) = A < aQ + A < rg(v), so lyrg(v) < lyrg(u) = L, which
contradicts the minimality of L. Thus we have that u = 0, so @ is given by
left multiplication by z € M. O

As an immediate consequence of Theorem 3, we have;
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Theorem 4. Let Mg be a module with P = EndMpg and assume that pM
1s AB-5% If Mg is an R-simple-injective module with essential socle, then
My is R-FIl-injective.

A module Mp is called quasi-simple-injective (resp. quasi-FI-injective)
if Mp is M-simple-injective (resp. M-FI-injective). Let Mg be a module
with P = EndMp and consider a pair (pP, Mp) with respect to a map
p: P x M — M via ¢p(a,z) = ax. Then by Theorem 3, we have;

Proposition 5. Let Mgr be a module with P = EndMpg and assume that
pM is AB5*. If Mg is a quasi-simple-injective module with essential socle,
then Mg is quasi-Fl-injective.

Let pM be a module. A class (z;, X;)icr (where z; € M and X; < pM
for any i € I) is called solvable if there exists an x € M such that z—x; € X;
for any ¢ € I, and it is called finitely solvable if (z;, X;);cr is solvable for
any finite subset F' of I. For a class A of submodules of pM, pM is said
to be A-linearly compact if any finitely solvable system (x;, X;);er of pM
with X; € A is solvable. A module pM is said to be linearly compact if it is
C-linearly compact for the class C of submodules of pM. If pM is linearly
compact, then it is clearly A-linearly compact for any class A of submodules
of PM.

Let (pM,Ng) be a pair. Then by A;(M,N) we denote the class {X <
pM | X = lyrn(X)} of submodules of pM.

Remark 1. Let (pM,Ng) be a pair with respect to a P-Q-bilinear map
¢: M x N — U and X a submodule of pM with X = lj/rn(X). Then for
a pair (pX, Ng) with respect to the restriction map ¢|xxn, in case pM is
A;(M, N)-linearly compact, pX is A;(X, N)-linearly compact.

Let (pM, Ng) be a pair with respect to U. Then Uy is said to be (M, N)-
F-injective if for any finitely generated submodule K of Ng, any homomor-
phism 0 : K — U is given by left multiplication by an element of M. Every
(M, N)-Fl-injective module is clearly (M, N)-F-injective. As a characteri-
zation of an (M, N)-injective module, we have the following theorem, which
is essentially proved by Matlis [9, Propositions 2 and 3] (also see [11, Propo-
sition 1.1] and [2, Proposition 4.1]). However, for the benefit of reader we
provide a proof.

Theorem 6. (see [9], [11] or [2]). Let (pM,Ng) be a pair with respect to
U. Then the following are equivalent.
(1) Ug is (M, N)-injective.
(2) () Ug ts (M, N)-F-injective.
(ii) pM is Aj(M, N)-linearly compact.
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Proof. (1) = (2). We only show (ii) since (i) is trivial. Let (z;, X;)ier
be a finitely solvable system in pM with X; = lp;rn(X;). Then the map
0 : Yierrn(X;) — U via 0(2y;) = Yy (v € ra(X;)) is well-defined
and we have (0 — %;)(rn(X;)) = 0 for each ¢ € I. Hence by assumption
(0 —20)(Zierrn(X;)) = 0 for some xg € M. Therefore (xo—z;)rn(X;) =0,
so xg — x; € lyrn(X;) = X; for each i € I. Thus (x;, X;)ier is solvable.

(2) = (1). Let Y < Ng and § : Y — U a homomorphism and put
W ={K <Yg | K is finitely generated}. By (i), for every K € W there is
an rx € M such that ( —2x)(K) = 0. Since (zx, ly(K))kew is a finitely
solvable system of pM, by (ii) there is an z¢g € M such that (zo—zx)K =0
for every K € W. Hence (0 —¢)(K) = 0 for every K € W, so § = . Thus
Uq is (M, N)-injective. O

Lemma 7. Let (pM,Ng) be a pair with respect to U such that pM is
Ay(M, N)-linearly compact. Then Nier(My + L;) = My + NierL; holds
for any element y of N and any inverse system {L;}ic; of pU with L; =
lUT‘Q(Li) (Z € I).

Proof. Tt suffices to show that Ner(My + L;) < My + NjerL; since the
converse is clear. Let v € Njer(My + L;). Then for each i € I, there is an
element x; € M such that v —a;y € L;. Put X; ={z € M |zy € L;}. Then
(4, Xi)ier is a finitely solvable system of M since for any finite subset F of
I, there is an element j € I with L; < L; (i € F'), so (xj — x;)y = (zjy —
v) — (x;y —v) € L;. Hence (x4, X;)ier is solvable since X; = lp(yrq(Li)).
It follows that there exists an element xy € M such that for each ¢ € I,
(xo — zi)y € Li, so v —xoy = (v — xy) — (x0 — )y € L. Thus v =
xoy+(v—zoy) € My+N;erL; and we have Njer(My+L;) < My+NierL;. O

The following theorem is a generalization of [2, Proposition 4.1].

Theorem 8. Let (pM, Ng) be a pair with respect to U such that Ug has
essential socle. Then the following are equivalent.
(1) Ug is (M, N)-injective.
(2) () Ug ts (M, N)-simple-injective.
(ii) pM is Aj(M, N)-linearly compact.

Proof. (1) = (2). (i) Trivial. (ii) By Theorem 6.

(2) = (1). Let K be a submodule of Ng and consider the pair
(plam(K), Ng) with respect to U induced from the pair (pM, Ng) with re-
spect to U. Then by Remark 1 and Lemma 7 we have N;er(Ip(K)y+ L;) =
Im(K)y + NierL; for any element y of N and any inverse system {L;}icr
of pU with L; = lyrg(L;) (¢ € I). Hence by Theorem 3 Ug is (M, N)-FI-
injective, so by Theorem 6 Ug is (M, N )-injective. O
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Recall that a right R-module Mpg is semicopmact if pM is A-linearly
compact for the class A ={X < pM | X = lyrr(X)}, where P = EndMp
(see [9] or [11] ). By Theorem 8, we have;

Theorem 9. Let Mg be a module with essential socle. Then the following
are equivalent.

(1) Mg is injective.

(2) Mg is R-simple-injective and semicompact.

Corollary 10. Let Mg be a module with P = End Mg and assume that p M
is linearly compact. If Mg is an R-simple-injective module with essential
socle, then Mg s injective.

Applying Theorem 8 to a pair (pP, Mp) with respect to a map ¢ : P x
M — M via ¢(a,x) = ax, we have;

Proposition 11. (cf. Proposition 5). Let Mg be a module with P = End Mg
and assume that pP is linearly compact. If Mg is a quasi-simple-injective
module with essential socle, then Mg is quasi-injective.

Remark 2. A ring R is called a dual ring if Igrr(I) = I and rrig(K) = K
hold for any left ideal I and any right ideal K of R. In [6, Proposition
5.2], Hajarnavis and Norton showed that for any dual ring R, Rp is R-FI-
injective and in [6, Example 6.1] they gave an example of a commutative
dual ring which is not self-injective. Hence there exists an R-Fl-injective
right R-module which is not injective. Every right R-module with socle
zero is trivially R-simple-injective. Hence for the ring Z of integers, Zz is a
trivial Z-simple-injective module which is not Z-FI-injective. The authors
however know no example of an R-simple-injective right R-module Mp with
essential socle such that Mp is not R-FI-injective.

Ezamples. By the example below, we see the following (1) and (2);

(1) There exists a pair (pM, Ng) with respect to U such that Ug is
injective but it is not (M, N)-simple-injective.

(2) There exists a pair (pM, Ng) with respect to U such that Ug is an
(M, N)-injective module with essential socle and pM is A;(M, N)-linearly
compact but pM is not linearly compact (cf. Theorem 8).

In [7, Example|, Harada constructed a semiprimary left QF-3 ring which
is not right QF-3 (also see [12, Example 2]). Let D be a division ring and
pLp a bimodule with dim(pL) = co. Put L* = Homp(pL, pD) and

D L D
R: O D L* ,62
O O D

O O =
o OO

0
0|, f=000
0 00 1
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Put P =eRe(~ D) and Q = fRf(~ D) and let (peR, Rfg) be a pair with
respect to ¢ : eR X Rf — eRf via ¢(ea,bf) = eabf. Let L = @;c;Dx;
(x; # 0) and let y; (i € I) and y be elements in L* such that z;y; = 1
(i€l),zjy;=0(j#4) and z;y =1 (i € I) and put Y = [DVD]T < Rfg
and Z = [DWD]T < Rfg, where V. = ®c;y;D < L%, W =V +yD <

* and [—]7 denotes the transposed matrix of [—]. Then as is easily seen
ler(Y) = 0. Since by assumption, [ is an infinite set, we have y ¢ V| so
Z]Yg ~eRfo(~Q) . Let 0 : Z — eRf be an epimorphism with Kerf =Y.
If & = & for some element = € eR, then 2Y = 0(Y) = 0 hence z = 0, a
contradiction. Therefore eRfg is not (peR, Rfq)-simple-injective. On the
other hand, eRfq is injective over the division ring Q(~ D). Next consider
a pair (rR, Rfqg) with respect toy : RxRf — Rf viat(a,bf) = abf. Since
rRf ~ Homp(eR,eRf), rRf is an injective (i.e. an (rR, Rfq)-injective)
module with essential socle, so by Theorem 8 Rfg is A,(R, Rf)-linearly
compact, where A.(R,Rf) ={Y < Rfg | Y =rrslr(Y)}. But Rfg is not
linearly compact since dim(Rfg) = oo.
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