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“HASSE PRINCIPLE” FOR FINITE p-GROUPS WITH
CYCLIC SUBGROUPS OF INDEX p?

MicHITAKU FUMA AND YasusHi NINOMIYA

1. INTRODUCTION

Let G be a group. A map f: G — G satisfying f(zy) = f(x)f(y)* for
every x,y € G, where f(y)* = xf(y)r 1, is called a cocycle of G. Let f be a
cocycle of G. If, for every = € G, there exists a € G such that f(z) = a'a®
then f is called a local coboundary, and if there exists a € G such that
f(z) = a~'a® for every x € G then f is called a (global) coboundary.
G is said to enjoy “Hasse principle” if every local coboundary of G is a
coboundary. Abelian groups trivially enjoy “Hasse principle”. It is known
that a finite group G enjoys “Hasse principle” if and only if every conjugacy
preserving automorphism of G is an inner automorphism ([6], Theorem 3.1).

Some types of groups enjoying “Hasse principle” are known ([1], [2], [3],
[5], [6], [7], [8], [9]). For finite p-groups, it is known that the following groups
enjoy “Hasse principle”.

(1) finite p-groups with cyclic subgroups of index p ([1]);
(2) extraspecial p-groups ([1]);
(3) finite p-groups of order p* (]2]).

Among the known results, the following are useful for our study:

Theorem 1 ([2]). Metacyclic groups enjoy “Hasse principle”.

Theorem 2 ([3]). Let H be a central subgroup of G. If G/H is generated by
xH and yH (z,y € G) and every element of G/H can be written as "y H,
then G enjoys “Hasse principle”.

Recently, M. Kumar and L. R. Vermani [3] proved that for an odd prime
p, every non-abelian finite p-group of order p™ having a normal cyclic sub-
group of order p”~2 but having no element of order p™~! enjoys “Hasse
principle”. Further they have described that there are fourteen 2-groups
(up to isomorphism) of order 2 of the above type and they showed that
twelve of them enjoy “Hasse principle” but remaining two do not enjoy
“Hasse principle”. In [4], for any prime p, all finite non-abelian p-groups
of order p™ having cyclic subgroups of order p™~2 but having no element
of order p™~1 are classified. From the result we see that there is a missing
group in a description in [3], which is given by

(a,b | 2" =1, 0t =a?", b lab = a™t)
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(see [4], Remark 3 (1)). This group is metacyclic, and so enjoys “Hasse
principle”. Further, two groups given in [3], Theorem 3.4 are isomorphic
(see [4], Remark 3 (2)).

In this note we report that every non-abelian p-group of order p” having
a cyclic subgroup of order p™~2 but having no normal cyclic subgroup of
order p™~2 and no element of order p™~! enjoys “Hasse principle”. From
now on suppose that G is a non-abelian p-group of this type.

(I) For an odd prime p, there are seven possibilities about G. Using
notation given in [4], we here list these groups:

Gi=(r,y 2|2 " =1, yP =2/ =1, ay =y, 2" 'vz =y,

yz=zy) (m=>3);

Gs = (z,y,2 |a?" " =1, yp = 2P = 1, xy = yz, 2 ‘ez =y,

sy ="y (m > 4);

G6 = <£E,y,2,’ | xp’”*2 = 17 yp =2 = 1’ Y = yzx, z_lxz =2y,

2lyz=a""y) (m>4),
where r is a quadratic nonresidue mod p.

m—2 _ m—3
G7:<x7y7z|xp :17 yp:szl,y 1$y:$1+p s

zlaz=wy, yz=2zy) (m>4);
Go=(z,y| 2" =1, y*" =1, y~lay = 2'*P) (m >5);

Gio=(z,y|a” =1, 27" =y?° y~lay=2""P) (m>6);

Gll = <m,y,z | x9 = 1a y3 = 17 23 = x3’ Y = yx, Z_l.’L‘Z =2y,

2 lyz = %)

By Theorem 2, GGy enjoys “Hasse principle”, and because Gg and G1¢ are
metacyclic by Theorem 1, they also enjoy “Hasse principle”.

(IT) For p = 2, there are twelve possibilities about G. Again, using nota-
tion in [4], we list these groups:

Gs = (z,y, 2 | 2" = Ly?=22=1, ay=yx, 2" 'wz = ay,

yz=zy) (m=4);
Go=(z,y|a®" " =1,y =1, a7 gz =y™') (m>5);

G13 = <.Z‘,y,2 | xZM72 = 17 2 2

y' ==z

yz=zy) (m>25);
1
z

2m—2

G14:<$7.%Z’$ =1L Yy =
2 lez=a"ly, y
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m—2 _ m—3
G17:<$,y72|$2 :17 y2:,22:]_7y 1{L‘y:$1+2 )

oz =wy, yz=2zy) (m>5);

m—2 _
G18:<$7y72|x2 :17 y2:17 Z2Zy>y Ty =T )

ez =a271ly) (m>5);

G21 = <.’L',y ‘ x2m_2 = 17 x2m_3 = y47 1‘71y$ = y71> (m 2 6)7

Goo = (z,y, # | 22" = 1, y» =22 =1, zy = yz,
oz =Py, 2 lyz =22 y) (m > 6);
m—2
G23:<x,y,z|x2 :17 Z/QZZQZL Y = yx,

Loz = 272" Yy 27 lyz = 22" y) (m > 6);

AN VA
2'm72 2 2 -1 1 2'm73
G24:<$,y,Z|ZL' :17y:ZZ]-ay ﬂfy:55+ )
m—4
zlez =27 Ny, yz = zy)  (m > 6);
2m—2 2 2 2m=3 1 142m—3
G25:<[E,y,2”.’IJ :17y :l,Z =T y Y xy:er )

plaz =27y g = 2y) (m > 6);

Gag = <$7y72 | a® = 1, y2 =1, 22 = .’E4, y_ll’y = :1:57
2oz = xy, yz = 29)

By Theorem 2, G5, G13 and G4 enjoy “Hasse principle”. Because Gg
and Gap are metacyclic, they also enjoy “Hasse principle”.

In what follows, we denote by Aut. G and Inn G the set of automorphisms
which preserves each conjugacy class of G and the inner automorphism group
of G, respectively.

2. THE CASE p ODD

In [2], it has been shown that if every f € Aut.G that fixes one of the
generating elements of G is in Inn G, then G enjoys “Hasse principle”. Let p
be an odd prime. We here show that the groups G5, Gg, G7 and G171 given
in (I) enjoy “Hasse principle”.

G5 and Gg enjoy “Hasse principle”.
Proof. Let f € Aut.G5 such that f(z) = z. Then there exist a = z'y/ 2",
b=a"yz € G5 with 0 <i,r < p™ 2,0 < j,k,s,t < p such that f(z) =
alza, f(y) = b~'yb, and so

flz)=2"%y a7z alyl b = 27 Fa”,

f(y) — thyfsxfr y - xryszt — thyzt.
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— _ -3
As 212z = zy and 27 lyz = 2" "y we have

_ _ m—3 k(k—1) m-—3
ok ok — (24 (k=1))p e S

We alsso have 2z tyzt = :ctpm%y. Therefore f(x) = zt k(k;l)pmisyh fly) =
"""y, Since f is an automorphism,
F) 7 (@) f(2) = (" ez) = fay) = f(2)f(y)-
We have
FE) T @) () = 2 @y
_ (Zflmz)l+k(k2_1)pm_3(Z—lyz)k

k(k—1) _3
_ O EEE S ik

k(k—1) m-3 m—3
fl@)fly) = a2 7" gkt Ty

B(k—1)\ m—
— Ry Syitk

Therefore the following congruence holds:

14+ (k: + k(k2_1)>pm3 =1+ (t + k(k2_1)>pm3 (mod p™~2).

From this it follows that £ = ¢ (mod p). Then because 0 < k,t < p, we
have k = t. Thus we have f(x) = 2z Fx2¥, f(y) = 27 Rz, f(2) = z7F22".
This shows that f € InnGs, and so G5 enjoys “Hasse principle”. By an
analogous argument we can show that Gg enjoys “Hasse principle”. U

In the rest of the paper, we proceed with a similar argument as above.
Given f € Aut. G, the image f(g) of g € G will be denoted by g.

Gr enjoys “Hasse principle”.

Proof. Let f € Aut.Gy such that Z = z. Then there exist a = x'y’2*,
b=a"y*zt € Gy with0 <i,r < p™ 2,0 < j,k,s,t < psuch that T = a"'za,
7 = b~ lyb. We then have T = 2! TP yk 5 = 277"y 7 = 2. Since
f is an automorphism, z 17z = 7. Because 7y = zttU—rP" Pyktl
771z 7 = 2P Yk we have

=—1 m73:0

z1Zz =7y < rp m=2y,

(mod p

Thus we have T = :J:ijm*gyk,y = y,Z = 2. Therefore setting u = y/2*, we

have

fl@)=uleu, fly)=ulyu, f(z)=u 2,

and so f € Inn G7. O

G11 enjoys “Hasse principle”.
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Proof. Let f € Aut.G11 such that Z = z. Then there exist a = a:iyjzk,
b=a"y2t € Gy with 0 <i,r <9,0< j k,s,t <3 such that T = a 'za,
7 = b lyb. We then have T = z!T3kk-Dyk 7 — 26ty 5 — 2 Since
f is an automorphism, z'Zz = Ty. Because Ty = gt t6t+3k(k=1) kt+1

71z 7 = g 1HOkH3k(—1) k+1 we have 27127 = T <= k = t. Thus we have
y*, 7 = 2%y, Z = 2. Therefore setting u = 2

T — pl+3k(k-1) k’ we have
flx)=ulau, fly)=ulyu, f(z)=u""zu,

and so f € Inn G1;. O

3. THE CASE p =2

We here show that the groups Gi7, Gis, Gao, Ga4, G2 and Gog given in
(IT) enjoy “Hasse principle”.

G117 enjoys “Hasse principle”.

Proof. Let f € Aut. Gy such that Z = z. Then there exist a = z'y72F, b =
z"yszt € Gy with 0 < i,r < 2™ 2 0 < j,k,s,t < 2 such that T = a~'za,
7 = b~lyb. We then have T = 272" "y* 5 = 272" %y 7 = 2. Since f is

. —_ = — — N ; m—3
an automorphism, we have z 'Zz = Ty. Because Ty = a!TUH7)2" " ykt+1

—_— ] — jom—3 — = — —_

z7lgz = 2T yk L 77137 = Ty <= r = 0 (mod 2). Thus we have
. . m73 _ _ . .

T = 212" yk 5 =y, 7 = 2. Therefore setting u = y72*, we have
T=u"'ou, ¥ =u"'yu, Z=u"'2u, and so f € Inn Gy7. O

G1s enjoys “Hasse principle”.

Proof. Let f € Aut.Gig such that Z = z. Then there exist a = x'y’ 2,
b = a"y*zt € Gig with 0 < i,r < 2772, 0 < j,k,s,t < 2 such that

T =a 'za, = b 'yb. We then have T = A S A O e R L
Y = x’"2m_dy, Z = z. Since f is an automorphism, we have z> = 7. Be-
cause y = 2% = xﬂm_sy, z2 =y <= r =0 (mod 2). Thus we have Z =

gI2" TNk HR22 Tk g 7 = 5 Therefore setting u = yi 2*,
1

we have T = v 'zu, § = utyu, Z=u"'zu, and so f € Inn G1s. g
Gog enjoys “Hasse principle”.

Proof. Let f € Aut, G such that Z = z. Then there exist a = x'y/2*, b =
2"y*zt € Gog with 0 < 4,7 < 2™72,0 < j, k,s,t < 2 such that T = a~'za,

_ _ — —4 _ -3 _ . .
7 = b lyb. We then have T = 2!7*2" "¢F 5 = 22" "y, Z = 2. Since f is
. 11— — _ -4 _
an automorphism, we have z7'zz = 7'1t2" " 7. Because
. m—4 m—3 m—4 1 m—3 m—4
A T S +(1+k)2 Ytk zmlgz = gl +(1+k)2 yl+k
1 =142m—4

zZTxZ=7T y<—k=t.
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— m—4 — m—3 _ .
Thus we have T = 21T "yk 7§ = k2" 7y, 2 z. Therefore setting
u=2zF zu, = u yu, Z=u"'zu, and so f € InnGgy. O
Gas enjoys “Hasse principle”.

, we have 7 = v~ !

Proof. Let f € Aut. Gag such that Z = z. Then there exist a = z'y/2F, b =

2"y*zt € Gog with 0 < 4,7 < 2™72, 0 < j, k,s,t < 2 such that T = o~ 'za,
7 = b~ lyb. We then have

s ) (k
- m71+2m—4y (k

. . . — ] — . m—4 __
Since f is an automorphism, we have z717%z = 7112 If k=0,

0) e
1)7 y_x

Yy
j—1+2m*4§ _ m—1+2m*4+t2m*3 : 7 lgz — 142" 4
Therefore 717z =7 12" "= t=0. If k=1,

571+2m—4 7= x1+(t71)2m—37 “lms .
Therefore Z7'7 2

— m—4 __
zz =1 12" 7 <=t = 1. Thus we have

{J} (k = 0) kom—3
g2t

, Yy==x Yy, Z=2=z.
y (k=1)

8|

Therefore setting u = z*, we have T = v 'zu, § = v 'yu, Z = v~ '2u, and
so f € Inn Gag.

O
Gy enjoys “Hasse principle”.

Proof. Let f € Aut. Ga4 such that Z = z. Then there exist a = z'y72F, b =

"yt € Gog with 0 < i,r < 2772, 0 < j,k,s,t < 2 such that T = a 'za,
7 = b~ lyb. We then have

; -3
— $1+]2m (k 0) T2m73
Tr = _ oy —
$_1+2m 4+j2m By 1

Since f is an automorphism, we have Z

. -
o m—4 _ m—4 _\om—3 1 _ m—4_ ;om—3
IR g 2 T )2 sl 122

Y.
Therefore z 12z =7 112" "= r =0 (mod 2). If k = 1,
f—1+2m—4g — plt(r=52m=? _ x1+(r+j)2m_3’ s lgy 020 142
Therefore z717 7z =

T 2" = r =0 (mod 2). Thus we have

_ pHi2m? (k =0) B B
xTr = m— oy — s =, zZ=2z.
x_1+2 4+]2 3y (k — 1) y y
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Therefore setting u = y?, we have T = v lau, § = v tyu, Z = v '2u, and

so f € Inn Gy4. O
Gos enjoys “Hasse principle”.

Proof. Let f € Aut. Gos such that Z = z. Then there exist a = z'y/2*, b =
x"y2t € Gos with 0 < i,7 < 2m72 0 < j, k,s,t < 2 such that 7 = a"'za,
7 = b~ lyb. We then have

a1+ (k=0)
m71+2m—4+]’2m—3y (k 1

rom—3

T = y=x Yy, zZ=2Zz.

. . . ] — — n—4 __
Since f is an automorphism, we have z7'zz =z 172" " 73. If k =0,

_ m—4 _ m—4 . m—3 1 _ m—4_ ;om—3
A T e EA
1= J— m—4 _
Therefore 2717z =7 12" "y <= r =0 (mod 2). If k =1,
_ m—4 _i\om—3 \om—3 1 ;om—3
7142 Y= ml-i—(r 7)2 _ xl+(r+])2 .z los — 1452 _

—1z=5 _ =—142m~4

Therefore z7'7z2 =2 y <=1 =0 (mod 2). Thus we have

RrCi (k=0)

f: m— cm—= y Y = y z:zl
PR () vy=y

Therefore setting u = y?, we have T = v 'au, § = v tyu, Z = v '2u, and
so f € Inn Gas. O

Gag enjoys “Hasse principle”.

Proof. Let f € Aut.Gaog such that Z = z. Then there exist a = x'y’ 2,
b=a"y*zt € Gog with 0 < 4,7 < 8, 0 < j,k,s,t < 2 such that T = o 'za,
7 = b~ lyb. We then have T = z'¥y* 7 = 2%y, 7 = 2. Since f is
an automorphism, we have Z7'ZZ = Ty. Because Ty = z!T¥T4ryltk
7177 = 2'Tyth 77137 = 7y <= r = 0 (mod 2). Thus we have
7 = 2"t¥yk 5 =y, Z = 2. Therefore setting u = y?z*, we have T = v 'zu,

7 =u‘yu, Z=u"'zu, and so f € Inn Gag. g
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