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A NOTE ON COMMUTATIVE GELFAND THEORY FOR
REAL BANACH ALGEBRAS

Dedicated to Professor Saburou Saitoh on his 60th birthday (Kanreki)

SIN-E1 TAKAHASI, TakesHt MIURA AND OsaMu HATORI

ABSTRACT. Pfaffenberger and Phillips [2] consider a real and unital
case of the classical commutative Gelfand theorem and obtain two rep-
resentation theorems. One is to represent a unital real commutative
Banach algebra A as an algebra of continuous functions on the unital
homomorphism space ® 4. The other is to represent A as an algebra of
continuous sections on the maximal ideal space M4. In this note, we
point out that similar theorems for non-unital case hold and show that
two representation theorems are essentially identical.

1. PRELIMINARY AND RESULTS

Let B be a real commutative Banach algebra and ® g the set of non-zero R-

algebra homomorphism ¢: B — C. Then we have ||¢]| o sup|q<1 [¢(a)] <
1 for each ¢ € ®p. Actually, suppose that there exists an a € B such that
lall < 1 and |¢(a)| = 1. Set § = —argp(a) and then e?p(a) = 1. Also set

b= ia"cosn@ and ¢ = ia”sinn@.

n=1 n=1

Elementary trigonometric identities lead to
b=acosf +abcos —acsinf and 0 =asinf + absinf — ¢ + accosb.

Apply ¢ to these equations, multiply the resulting second equation by i and
add it to the resulting first equation then we obtain

p(b) = p(a)e” + p(a)p(b)e’ —ip(c) +ip(a)p(c)e”,
so that 1 = 0, a contradiction (we referred the proof of [2, Proposition 1.1,
(b)]). Let B. be the complexification of B. Then ®p is a subset of the
closed unit ball of the dual space B.* and hence we can give ®p the relative
topology of B.* with the weak*-topology. Therefore, as well-known, ®p
is a locally compact Hausdorff space. We denote by C(®p) the algebra of
continuous complex-valued functions on @5 and set Co(Pp) = {f € C(Pp) :
f vanishes at infinity}. Then Co(®Pp) is a real commutative C*-algebra with
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supremum norm and a standard method leads to the following representation
theorem (cf. [2, Theorem 1.4]).

Theorem 1. Let B be a real commutative Banach algebra.

(1) The mapping Ag: B — Co(®5) given by Aa(b)(¢) = o(b) (¥ b(p))

for each p € ®p and each b € B is a norm-decreasing real algebra
homomorphism which is one-to-one if and only if B is semisimple.

(2) If B is unital, then Spg(b) = b(®p) for each b € B. Also, if B is
non-unital, then Spg(b) = b(®p) U {0} for each b € B.

We next provide a Gelfand theorem for real commutative Banach algebras
using the maximal regular ideal space Mp as a common domain of an algebra
of functions.

In the next section, we see that Ker ¢ is a maximal regular ideal of B for
each p € ®p. Following [2], we give Mp the quotient topology arising from
the map e: &5 — Mp defined by €(p) = Kerp, p € ®p. That is, Mp has
the strongest topology which makes the map € continuous. Let o: &5 — ®p
be the homeomorphism o(¢) = @. Then 02 = e, the identity, and we have
an action of Zy = {e,o} on ®p. Let f: ®p/Zy — Mp be the bijection
B(Zap) = Ker ¢ and then € = 3 o, where m: &5 — ®p/Zy is the natural
map. Then we have the following result from Lemmas 1 and 2 in the next
section.

Proposition 1. The space Mp is locally compact and Hausdorff, and the
map € is both open and closed. Moreover, 3: ®p/Zs — Mp is a homeomor-
phism.

From the above proposition, we know that Mp is just the quotient of ®p
under the (not necessarily free) action of Zs on ®p5. Let

o ={p € ®p: p(B) =R}, 8 = {p € dp:¢(B) =C},
ME={IecMp:B/I=R}and M5 ={I € Mp: B/I =C}.

Clearly @% is a closed subset of ®p and so @% is an open subset of ®pg.
Also, in the next section, we see that

ME = (@), M5 = ¢(2%), o5 = 0% U S and Mp = MU M.

Then M H,S is closed and Mg is open. Also B is called almost complex if
G = dp (cf. [1, 2]).
Now as usual in representing algebras as sections we form the set

Ez= | B/I,

IeMp
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where J denotes disjoint union. Of course, each B/I is a field and an algebra
over R, and we have an obvious map p: Eg — Mp. That is, p(I,b+ 1) =
I, (I € Mp,be B), where Ep ={(I,b+1):1 € Mp,be B}.

The problem is to topologize Ep in a reasonable way such that I — b+ 1
is a continuous section for each b € B. Following [2], let (C x ®p) =
(C x ®5) U (R x ®%) endowed with the relative topology in C x ®5. We
consider the map g: (C x ®p)’ — Ep defined by

g(z,¢) = (Ker p, b+ Ker ¢),

where b is chosen such that ¢(b) = z. Of course, this map is well-defined
and surjective. We give Eg the quotient topology induced by the map g
and denote by I'(Ep) the set of all continuous sections on Mp. Moreover,
we set
I'(Ep) = {s € T(Ep) : ||s] = sup [s(])] < oo}
IeMp

and

I'o(Ep) = {s € I'(Ep) : s vanishes at infinity, that is Ilim |s(I)| = 0},
—00

where [s(I)| = |¢(b)|,s(I) = (I,b+I),b € B and I = Ker¢ = Ker ¢. Then
we have the following representation theorem in a way similar to the proof
of [2, Theorem 3.5].

Theorem 2. Let B be a real commutative Banach algebra and let p: Eg —
Mpg be the associated bundle of real fields. Then
(1) T*(ER) is a real commutative Banach algebra given the supremum
norm and U'o(ER) is a closed subalgebra of it.
(2) Ayr: B — To(Ep) defined by Ay (b)(I) = (I,b+ 1), I € Mp is a
norm-decreasing algebra homomorphism with kernel, Rad B.

(3) Forbe B, [[An(b)] = limp, oo [[07]|/™.

Remark 1. Theorems 1 and 2 are non-unital versions of [2, Theorem 1.4

and 3.5].

We next see that these representation theorems are essentially identical.
To do this, set

Cn(®p) ={f € C(®p) : f(p) = flyp) for all p € Dp},

Ch(®p) = {f € Cn(®p) : || f]| < oo},
and
Cho(®p) ={f € Ch(®p) : f vanishes at infinity }.
Then we can easily see that C}’L(CI) B) is a unital real commutative Banach

algebra given the supremum norm and Cjp,o(®p) is a closed subalgebra of
it. Also Ag(B) C Cpo(®p) clearly holds.
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Now for each f € Cy(®p) we define f*(p) = f(p), (p € ®5). Then
C?(® ) becomes a unital real commutative C*-algebra under this involution
and C,o(®p) is a C*-subalgebra of C?(®p). Also let s € T'(Ep) and I €
Mp. Then s(I) = (I,b+1) for some b € B. Choose ¢ € ®p with I = Ker ¢.
Then there exists an element b € B such that p(b) = ¢(b). Set s*(I) = (I, b+
I). This is clearly well-defined and we see later that s* € T'(Ep) (Lemma
5). Therefore I'*(Ep) becomes a unital real commutative C*-algebra under
this involution and I'g(Ep) is a C*-subalgebra of I'*(Ep).

In this setting, we have the following:

Theorem 3. There is an isometric real algebra x-isomorphism p of T*(Eg)
onto C?(®p) such that p(Lo(ER)) = Cho(®g) and po Ay = Ag.

We know that the Gelfand representation theorems 1 and 2 are essentially
identical by the above theorem.
Combining [2, Theorem 5.3] and Theorem 3, we have the following:

Corollary 1. If B is a unital commutative almost complex C*-algebra, then
Ao: B — Cp(®p) is an isometric *-isomorphism.

2. KNOWN RESULTS AND LEMMAS

We will remind the reader of the following well-known results since they
are basic to all that we do.

Let ¢ € ®p. Since rangep is a non-zero real subalgebra of C, it must
be either R or C. In fact, let A = range ¢ and then A is a non-zero linear
subspace of C over R. Then dimA =1 or 2. If dim A = 2, then A = C. If
dim A = 1, then A = Ra for some non-zero complex number a € A. Since A
is an algebra, it follows that a? = ra for some r € R and then a € R. Hence
A must be R. We thus obtain that range ¢ = R < Ker ¢ has codimension
1 in B and range ¢ = C < Ker ¢ has codimension 2 in B. Moreover, Ker ¢
is a maximal regular ideal of B. Actually, choose e € B with ¢(e) = 1 and
hence B(1 —e) C Kery, namely, Ker ¢ is regular. Now let I be an ideal
of B with Kerp C I C B. Then I/Ker¢p is a non-zero real subalgebra
of B/Kerp. Take e € B and u € I with p(e) = 1 and u ¢ Ker . Since
B/Ker ¢ is a field and e+Ker ¢ is the identity of B/Ker ¢, we can find v € B
with (u + Ker p)(v 4+ Ker¢) = e + Ker ¢ and hence uv — e € Kerp. Then
e=w+e—uwel+Kerp=1Isothatb=be+b(l—e)el+Kerp=1
for each b € B. That is, we have B = [ and so Ker ¢ is maximal. Let I be a
maximal regular ideal of B. Since B/I is a real commutative normed division
algebra, it follows from the Gelfand-Mazur theorem that B/I = R or C and
then I has codimension 1 or 2. In case of codim I = 1, we have that B/I = R
as an algebra over R and this isomorphism is unique since R has no non-
trivial R-algebra automorphisms. Thus the composition ¢: B — B/I = R
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is the unique element of ® 5 with kernel I. Moreover we have range ¢ = R.
In case of codim I = 2, we have that B/I = C as an algebra over R and since
C has exactly one non-trivial R-algebra automorphism given by conjugation,
we see that there are exactly two elements ¢, @ € ®p with kernel I. Moreover
we have range ¢ = rangep = C.

Lemma 1. Let G be a finite group acting on a topological space Y and let
X =Y/G endowed with the quotient topology. Let p: Y — X be the natural
map. Then

(1) The map p is both open and closed.

(2) For each compact subset K in X, p~'(K) is also compact in'Y.
(3) If Y is locally compact, so is X.

(4) If Y is Hausdorff, so is X.

Proof. (1) Let U be an open (closed) subset of Y. Then the saturation
GU = Uge g(U) of U is clearly open (closed). Also since GU = p~!(p(U)),
it follows that p is open (closed).

(2) Let K be a compact subset of X and {yx} a net in p~!(K). Then
{p(yx)} is anet in K and so there is a subnet {yy/} of {yx} such that {p(y\)}
converges to some point of K, say Gy. Let Gy = {y,1(¥), - , gn—-1(v)},
where G = {e,g1," - ,gn_1}. Then we have Gy C p~!(K). Now, we as-
sert that a certain subnet of {yy } converges to one of y, g1(y), - , gn—1(y).
Suppose contrary. Then we can easily find an open neighborhood U of
y and a subnet {yy/} of {yyx} such that every yy» does not belong to
UUgU)U---Ugp1(U). Set V=UUgxU)U: - Ugyp-1(U) and so
V = GV. Also since V is an open neighborhood of y and p is open, p(V)
must be an open neighborhood of Gy. Hence there exists a point p(y,,~)
which belongs to p(V'). Therefore y, » must be in the saturation of V' namely
GV. However since V = GV and every y,» does not belong to GV, this is
a contradiction. We thus obtain that any net in p~!(K) has a subnet which
converges to some point in p~1(K), that is p~1(K) is compact.

(3) Since p is both open and closed by (1), X must be locally compact
from a standard topological argument.

(4) Suppose that Y is Hausdorff and let x1,z0 € X with 27 # z9. Let
y1 € p~!(z1) and yo € p~!(x2), and then y; # yo. Since G is finite, we can
find an open neighborhood U; of 1 and an open neighborhood U, of yo such
that g(U1) Nh(Us) = 0 for all g, h € G. Since p is open, p(Uy) and p(Us) are
disjoint open neighborhoods of z1 and xo, respectively. Consequently X is
also Hausdorft. O

Lemma 2. Let X be a topological space and let' Y and Z be two sets with
surjections 1y : X — Y and wz: X — Z. We give Y and Z the quotient
topologies induced by wy and 7z, respectively. Moreover, assume that my
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is both open and closed, and there is a bijection 0:Y — Z such that w; =
0 omy. Then my is also both open and closed, and 6 is a homeomorphism.

Proof. Let U be an open subset of X. Then
mz H(mz(U) = 7wy (07 (nz(V)))
= vy (07N (0(ny(U))))
= my (v (U))
and hence 7z~ !(7z(U)) is open since 7y is continuous and open. Therefore
mz is open by definition of the quotient topology. Similarly, we can prove

the closedness of 7. Now note that 7z (my ~}(K)) = 0(K) for each subset
K of Y. This implies that 6 is a homeomorphism. ([

Now, following [2], we give Ep the quotient topology induced by the map
g. There is also a natural action of Zs = {e,o} on (C x ®p)’, namely:
o(z,¢) = (2,¢). The following is a just [2, Lemma 3.2].

Lemma 3. There is a natural homeomorphism 0: (C x ®p)'/Zs — Ep
such that g = 0 o wg,, where wz, is the canonical map of (C x @) onto
(Cx ®p) /Zy. Thus g is both open and closed.

Lemma 4. Let Y be a topological space and X a set. Let p: Y — X be a
surjection. We give X the quotient topology induced by p. Let x € X and
y € p~Yx). If p is open and {V,} is a base of neighborhoods of y, then
{p(Va)} is a base of neighborhoods of x.

Proof. Let U be any neighborhood of x. Then p~!(U) is a neighborhood
of y and hence V,, C p~!(U) for some V,. Therefore we have p(V,) C
p(p~H(U)) = U and so {p(V,)} is a base of neighborhoods of . O

Lemma 5. If s € T'(Ep), then s* € I'(Ep), where s* is a section for
p: Ep — Mp defined in the preceding section.

Proof. Let s € I'(Ep). We show that s* is continuous. To do this, let
Iy € Mp be arbitrary and take an element ¢y € @5 with Iy = Ker ¢g. Also
take an element by € B with s(ly) = (Lo, by + Ip) and set zg = o(by). By
definition of s*, we have that s*(Iy) = (1o, bo+ 1) and Zg = o (bo) = wo(bo).
Then g(Zo, vo) = s*(Ip) € Ep. By Lemma 4, a basic neighborhood of s*(1)
in Ep is of the form ¢((O:(zy) x N)'), where O.(Zp) is an e-neighborhood
of Zg in C, N is a neighborhood of ¢y in @5 and (O (z5) x N)' = (O:(Zp) %
N)N(C x ®p)". Also we have

4((0-(70) x NY) = {(Kerp,b+ Ker ) : € N and (b) € O (70)}.
Let O(z9) be an e-neighborhood of 2y in C and then
9((Oc(20) x N)') = {(Ker p, b+ Kerp) : ¢ € N and ¢(b) € Oc(20)}
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is a neighborhood of s(Ip) because g(zo,¢0) = s(Ip) € Ep. Also since s is
continuous, we can find a neighborhood Vj of Iy in Mp such that s(V) C
9((O:(20) x N)). In this case, we have s*(Vj) C g((O:(20) x N)). In fact, let
I € Vj and take an element ¢ € ®p with I = Ker¢. Since s(I) = (I,b+I)
for some b € B, it follows from definition of s* that s*(I) = (I,b+ I) and
©(b) = ¢(b) for some b € B. Also since (Ker o, b+Ker ¢) € g((O:(20) x N)'),
it follows that ¢ € N and |¢(b)—20| < &, and hence |p(b)—Z5| = |o(b)—20| <
e. Consequently, s*(I) € g((O:(zg) x N)'). We thus see that s* is continuous
at each point in Mp. ]

3. PROOF OF THEOREM 3

Let s € I'(Ep) be arbitrary. For any ¢ € ®p, set I = Kery. Then
s(I) = (I,b+1I) for some b € B. We define fs(p) = ¢(b). This is, of course,
well-defined. Then we have that fs(¢) = fs(p) for all ¢ € &p. In fact, let
¢ € &p and put I = Kery and then I = Kerg. Since s(I) = (I,b+I)
for some b € B, it follows from definition of fs that fs(¢) = ¢(b) and
fs(@) = @(b). Therefore we have fs(@) = @(b) = p(b) = fs(v). We next
claim that fs is continuous on ®p. Let g € ®p and set Iy = Ker 9. Then
s(Io) = (Lo, bo + Ip) for some by € B. Put 2o = fs(p0)(= po(bo)). Let Us be
any e-neighborhood of zy. If ¢y € @ﬂg, we set Ng = @p. If g € (ID%, then
vo # o and hence there is by € B such that pg(b1) # ®o(b1), so we set
No = {p € ®p : [po(b1) — p(b1)| < 6/2}, where § = [po(b1) — Po(b1)| > 0.
Then Ny is an open neighborhood of ¢g. In case of ¢y € @%, we have
that if ¢ € Ny then ¢ ¢ Ny. In fact, assume that ¢ € Ny and ¢ €
No. Then |pg(b1) — @(b1)] < §/2 and |po(b1) — ¢(b1)| < 0/2, so we have
lpo(b1) —@o(b1)] < 0/2+ 0/2 = 4§, a contradiction. Now note from Lemma
3 that

g((U: x Np)") = {(Ker ¢, b+ Ker ¢) : ¢ € No,p(b) € U}

is an open neighborhood of s(Iy) in Ep, where (U. x Ny)' = (U x Np) N
(C x ®p)'. Since s is a continuous section, there exists a neighborhood Vj
of Iy such that s(Vp) C g((Us x Ng)'). Set Wy = e~ (Vo) N Ng and then it is
a neighborhood of ¢y € ®5. We see that fs(Wy) C Ue. In fact, let ¢ € Wy
be arbitrary. Then ¢ € e 1(Vj) and hence Ker ¢ € V. Therefore

s(Ker ) € s(Vo) C g((Ux x NoY') = {(Ker 4, b+ Ker) : v € No, (b) € U.}

and so s(Kery) = (Ker,b + Ker), for some b € B and ¢ € Ny with

4(b) € U.. Then Kerg = Kerg), fo() = (b) and fy(®) = p(b). It
P = ¢, then fs(¢) = @(b) = ¥(b) € U.. If ¥ # ¢, then ¢» = @ and hence
fs(9) = p(b) = ¥(b). In case of gy € ®F, we have 2y € R and hence U, is
conjugate invariant, so 1(b) € U, that is fs(¢) € U.. In case of ¢q € <I>(]C3,

since ¢ € Ny, we have @ € Ny. However since ¢ € Ny and ¥ = ¢, we have
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a contradiction. Therefore we must conclude that fs(Wy) C U.. We thus
obtain a natural map s — fs of I'(E) into Cp,(®p).

We next show that this map is surjective. To do this, let f € Cy(®Pp) be
arbitrary. For any I € Mp, choose ¢ € ®p with I = Ker . In this case,
we can take b € B with ¢(b) = f(p). In fact, if p € %, then ¢ = ¢ and
hence f(p) = f(¢) = f(y), so f(¢) € R. Moreover, ¢(B) = R and so we
can find such b € B. If ¢ € %, then p(B) = C and so there exists clearly
such b € B. Now we define s¢(I) = (I,b+ I). This is well-defined. In fact,

let v € @, I =Kerp,c € B and ¢(c) = f(¥). If ¢ # 1, then 1) = ¢ and so

p(c) = p(c) =¥(c) = f() = f(®) = () = »(b),
hence c—b € Ker ¢ = I. Similarly, we can treat the case ¢ = 1. This shows
that our definition is well-defined. Now we claim that s is a continuous
section for p: Ep — Mp. It suffices to see that sy is continuous. So let I €
Mp be arbitrary. Choose ¢y € ®p with Ker g = Iy and take by € B with
f(v0) = wo(bp) (we can of course take such by € B as observed above). Then
s¢(lo) = (Ker g, bg + Ker ¢g). Let 29 = @o(bg). Then we have f(pg) = 2o
and g(z0,p0) = s¢(lo) € Ep. By Lemma 4, a basic neighborhood of s¢ (/o)
in Ep is of the form ¢g((O; x N)'), where O, is an e-neighborhood of zy in
C, N is a neighborhood of ¢y in @5 and (O, x N)' = (O x N)N(C x ®p)’.
Also we have

g((O: x NY) = {(Ker o, b+ Kerp) : o € N and ¢(b) € O.}.

Since f is continuous, we can find a neighborhood Uy of ¢g in &5 so that
f(Uy) C Oz and Uy C N. Set Vy = ¢(Uy) and hence Vj is a neighborhood
of Iy in Mp since ¢: &g — Mp is open from Proposition 1. We assert
that sp(Vp) C g((O: x N)'). In fact, if I € Vp, then there exists ¢ € Uy
with I = ¢(¢) = Kery and so ¢ € N and f(¢) € O.. Now take b € B
with f(¢) = ¢(b). Then s¢(I) = (I,b+ 1) = (Ker, b+ Ker¢) and hence
s¢(I) € g((Os x N)'). Thus we have our assertion s¢(Vp) C g((O x N)').
Now to see fs, = f, let ¢ € ®p and take b € B with f(¢) = ¢(b). By
definition of the natural map, we have fs,(p) = ¢(b) and so fs, () = f(¢).
Consequently, fs, = f and so we have the natural map is surjective.

Now let s € T®(Eg). For any ¢ € ®p, set I = Kery. Then s(I) =
(I,b+1) and s*(I) = (I,b+1) for some b,b € B such that ¢(b) = (b). Hence
fs(0) = ¢(b) and so [f(@)| = |@(b)| = |s(I)| < [|s]|. Therefore |[fs]| < [|s]]
and so fs € C?(®p). Similarly, ||s|| < |/fs| and hence the restriction of this

natural map to I'’(Ep) is isometric. Moreover, since fs () = p(b) = fs(),

it follows that fs = f* and so the natural map is x-preserving. Also, we

can easily see that this natural map is a real algebra homomorphism.
Finally set p(s) = fs for each s € I'’(Ep). Then we can easily see that
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p(T*(ER)) = C2(®p) from the above observation. Moreover, p(TI'o(Eg)) =
Cho(®p). To see this, let f € Cpo(Pp) and § > 0. Set Ky = {p € ®p :
|f(¢)] > 6} and then Ky is compact. Set Ty = €(Kf) and so T is also
compact. Then we have Ty = {I € Mp : |sf(I)| > §}. In fact, let ¢ € K;
be arbitrary and set I = Kery. Take b € B with ¢(b) = f(¢) and then
s¢(I) = (I,b+I). By definition of |s¢(I)|, we have |s¢(I)| = |¢(b)| and so
|s¢(I)] > 6 since ¢ € Ky. That is Ty C {I € Mp : |sf(I)| > é}. Conversely,
let I € Mp with |sf(I)] > 6. Choose ¢ € ®p with I = Kert and take
c € B with ¢(c) = f(¢). Then we have |f(v)| = |¢(c)| = |sf(I)] > 0 and
so ¢ € Ky, namely I € Ty. Therefore we obtain the inverse inclusion. We
thus obtain that sy € I'g(Ep) and hence p(I'g(Ep)) O Cho(®p). Now let
s € To(Fp)and 6 > 0. Set Ts = {I € Mp : |s(I)] > ¢} and then Ty is
compact. Set K5 = {¢ € @5 : |fs(p)| > 6} and then we have K = e }(Ty),
similarly. Therefore we see from Lemma 1-(2) that K is compact and hence
p(To(EB)) C Cho(®p). This completes the proof.
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