A NOTE ON COMMUTATIVE GELFAND THEORY FOR REAL BANACH ALGEBRAS

Dedicated to Professor Saburou Saitoh on his 60th birthday (Kanreki)

SIN-EI TAKAHASI, TAKESHI MIURA AND OSAMU HATORI

ABSTRACT. Pfaffenberger and Phillips [2] consider a real and unital case of the classical commutative Gelfand theorem and obtain two representation theorems. One is to represent a unital real commutative Banach algebra A as an algebra of continuous functions on the unital homomorphism space Φ_A . The other is to represent A as an algebra of continuous sections on the maximal ideal space M_A . In this note, we point out that similar theorems for non-unital case hold and show that two representation theorems are essentially identical.

1. Preliminary and results

Let *B* be a real commutative Banach algebra and Φ_B the set of non-zero \mathbb{R} algebra homomorphism $\varphi \colon B \to \mathbb{C}$. Then we have $\|\varphi\| \stackrel{\text{def}}{=} \sup_{\|a\| \leq 1} |\varphi(a)| \leq 1$ for each $\varphi \in \Phi_B$. Actually, suppose that there exists an $a \in B$ such that $\|a\| < 1$ and $|\varphi(a)| = 1$. Set $\theta = -\arg \varphi(a)$ and then $e^{i\theta}\varphi(a) = 1$. Also set

$$b = \sum_{n=1}^{\infty} a^n \cos n\theta$$
 and $c = \sum_{n=1}^{\infty} a^n \sin n\theta$.

Elementary trigonometric identities lead to

 $b = a\cos\theta + ab\cos\theta - ac\sin\theta$ and $0 = a\sin\theta + ab\sin\theta - c + ac\cos\theta$.

Apply φ to these equations, multiply the resulting second equation by i and add it to the resulting first equation then we obtain

$$\varphi(b) = \varphi(a)e^{i\theta} + \varphi(a)\varphi(b)e^{i\theta} - i\varphi(c) + i\varphi(a)\varphi(c)e^{i\theta},$$

so that 1 = 0, a contradiction (we referred the proof of [2, Proposition 1.1, (b)]). Let B_c be the complexification of B. Then Φ_B is a subset of the closed unit ball of the dual space B_c^* and hence we can give Φ_B the relative topology of B_c^* with the weak*-topology. Therefore, as well-known, Φ_B is a locally compact Hausdorff space. We denote by $C(\Phi_B)$ the algebra of continuous complex-valued functions on Φ_B and set $C_0(\Phi_B) = \{f \in C(\Phi_B) :$ f vanishes at infinity}. Then $C_0(\Phi_B)$ is a real commutative C^* -algebra with

Mathematics Subject Classification. Primary: 46J25; secondary: 46M20.

Key words and phrases. real commutative Banach algebras, real algebra homomorphisms, commutative Gelfand theory.

supremum norm and a standard method leads to the following representation theorem (cf. [2, Theorem 1.4]).

Theorem 1. Let B be a real commutative Banach algebra.

- (1) The mapping $\Lambda_{\Phi} \colon B \to C_0(\Phi_B)$ given by $\Lambda_{\Phi}(b)(\varphi) = \varphi(b) \stackrel{\text{def}}{=} \hat{b}(\varphi))$ for each $\varphi \in \Phi_B$ and each $b \in B$ is a norm-decreasing real algebra homomorphism which is one-to-one if and only if B is semisimple.
- (2) If B is unital, then $\operatorname{Sp}_B(b) = \hat{b}(\Phi_B)$ for each $b \in B$. Also, if B is non-unital, then $\operatorname{Sp}_B(b) = \hat{b}(\Phi_B) \cup \{0\}$ for each $b \in B$.

We next provide a Gelfand theorem for real commutative Banach algebras using the maximal regular ideal space M_B as a common domain of an algebra of functions.

In the next section, we see that Ker φ is a maximal regular ideal of B for each $\varphi \in \Phi_B$. Following [2], we give M_B the quotient topology arising from the map $\epsilon \colon \Phi_B \to M_B$ defined by $\epsilon(\varphi) = \text{Ker } \varphi, \varphi \in \Phi_B$. That is, M_B has the strongest topology which makes the map ϵ continuous. Let $\sigma \colon \Phi_B \to \Phi_B$ be the homeomorphism $\sigma(\varphi) = \overline{\varphi}$. Then $\sigma^2 = e$, the identity, and we have an action of $\mathbb{Z}_2 = \{e, \sigma\}$ on Φ_B . Let $\beta \colon \Phi_B/\mathbb{Z}_2 \to M_B$ be the bijection $\beta(\mathbb{Z}_2\varphi) = \text{Ker } \varphi$ and then $\epsilon = \beta \circ \pi$, where $\pi \colon \Phi_B \to \Phi_B/\mathbb{Z}_2$ is the natural map. Then we have the following result from Lemmas 1 and 2 in the next section.

Proposition 1. The space M_B is locally compact and Hausdorff, and the map ϵ is both open and closed. Moreover, $\beta \colon \Phi_B/\mathbb{Z}_2 \to M_B$ is a homeomorphism.

From the above proposition, we know that M_B is just the quotient of Φ_B under the (not necessarily free) action of \mathbb{Z}_2 on Φ_B . Let

$$\Phi_B^{\mathbb{R}} = \{ \varphi \in \Phi_B : \varphi(B) = \mathbb{R} \}, \ \Phi_B^{\mathbb{C}} = \{ \varphi \in \Phi_B : \varphi(B) = \mathbb{C} \}, \\ M_B^{\mathbb{R}} = \{ I \in M_B : B/I \cong \mathbb{R} \} \text{ and } M_B^{\mathbb{C}} = \{ I \in M_B : B/I \cong \mathbb{C} \}.$$

Clearly $\Phi_B^{\mathbb{R}}$ is a closed subset of Φ_B and so $\Phi_B^{\mathbb{C}}$ is an open subset of Φ_B . Also, in the next section, we see that

$$M_B^{\mathbb{R}} = \epsilon(\Phi_B^{\mathbb{R}}), \ M_B^{\mathbb{C}} = \epsilon(\Phi_B^{\mathbb{C}}), \ \Phi_B = \Phi_B^{\mathbb{R}} \cup \Phi_B^{\mathbb{C}} \text{ and } M_B = M_B^{\mathbb{R}} \cup M_B^{\mathbb{C}}.$$

Then $M_B^{\mathbb{R}}$ is closed and $M_B^{\mathbb{C}}$ is open. Also *B* is called almost complex if $\Phi_B^{\mathbb{C}} = \Phi_B$ (cf. [1, 2]).

Now as usual in representing algebras as sections we form the set

$$E_B = \bigcup_{I \in M_B} B/I,$$

122

where \cup denotes disjoint union. Of course, each B/I is a field and an algebra over \mathbb{R} , and we have an obvious map $p: E_B \to M_B$. That is, p(I, b + I) = I, $(I \in M_B, b \in B)$, where $E_B \cong \{(I, b + I) : I \in M_B, b \in B\}$.

The problem is to topologize E_B in a reasonable way such that $I \mapsto b + I$ is a continuous section for each $b \in B$. Following [2], let $(\mathbb{C} \times \Phi_B)' = (\mathbb{C} \times \Phi_B^{\mathbb{C}}) \cup (\mathbb{R} \times \Phi_B^{\mathbb{R}})$ endowed with the relative topology in $\mathbb{C} \times \Phi_B$. We consider the map $g: (\mathbb{C} \times \Phi_B)' \to E_B$ defined by

$$g(z,\varphi) = (\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi),$$

where b is chosen such that $\varphi(b) = z$. Of course, this map is well-defined and surjective. We give E_B the quotient topology induced by the map g and denote by $\Gamma(E_B)$ the set of all continuous sections on M_B . Moreover, we set

$$\Gamma^{b}(E_{B}) = \{s \in \Gamma(E_{B}) : ||s|| = \sup_{I \in M_{B}} |s(I)| < \infty\}$$

and

 $\Gamma_0(E_B) = \{s \in \Gamma(E_B) : s \text{ vanishes at infinity, that is } \lim_{I \to \infty} |s(I)| = 0\},$

where $|s(I)| = |\varphi(b)|, s(I) = (I, b + I), b \in B$ and $I = \text{Ker } \varphi = \text{Ker } \overline{\varphi}$. Then we have the following representation theorem in a way similar to the proof of [2, Theorem 3.5].

Theorem 2. Let B be a real commutative Banach algebra and let $p: E_B \rightarrow M_B$ be the associated bundle of real fields. Then

- (1) $\Gamma^{b}(E_{B})$ is a real commutative Banach algebra given the supremum norm and $\Gamma_{0}(E_{B})$ is a closed subalgebra of it.
- (2) $\Lambda_M : B \to \Gamma_0(E_B)$ defined by $\Lambda_M(b)(I) = (I, b + I), I \in M_B$ is a norm-decreasing algebra homomorphism with kernel, Rad B.
- (3) For $b \in B$, $\|\Lambda_M(b)\| = \lim_{n \to \infty} \|b^n\|^{1/n}$.

Remark 1. Theorems 1 and 2 are non-unital versions of [2, Theorem 1.4 and 3.5].

We next see that these representation theorems are essentially identical. To do this, set

$$C_h(\Phi_B) = \{ f \in C(\Phi_B) : f(\bar{\varphi}) = \overline{f(\varphi)} \text{ for all } \varphi \in \Phi_B \},\$$
$$C_h^b(\Phi_B) = \{ f \in C_h(\Phi_B) : ||f|| < \infty \},\$$

and

 $C_{h,0}(\Phi_B) = \{ f \in C_h(\Phi_B) : f \text{ vanishes at infinity } \}.$

Then we can easily see that $C_h^b(\Phi_B)$ is a unital real commutative Banach algebra given the supremum norm and $C_{h,0}(\Phi_B)$ is a closed subalgebra of it. Also $\Lambda_{\Phi}(B) \subset C_{h,0}(\Phi_B)$ clearly holds.

Now for each $f \in C_h(\Phi_B)$ we define $f^*(\varphi) = \overline{f(\varphi)}$, $(\varphi \in \Phi_B)$. Then $C_h^b(\Phi_B)$ becomes a unital real commutative C^* -algebra under this involution and $C_{h,0}(\Phi_B)$ is a C^* -subalgebra of $C_h^b(\Phi_B)$. Also let $s \in \Gamma(E_B)$ and $I \in M_B$. Then s(I) = (I, b+I) for some $b \in B$. Choose $\varphi \in \Phi_B$ with $I = \text{Ker } \varphi$. Then there exists an element $\overline{b} \in B$ such that $\varphi(\overline{b}) = \overline{\varphi(b)}$. Set $s^*(I) = (I, \overline{b}+I)$. This is clearly well-defined and we see later that $s^* \in \Gamma(E_B)$ (Lemma 5). Therefore $\Gamma^b(E_B)$ becomes a unital real commutative C^* -algebra under this involution and $\Gamma_0(E_B)$ is a C^* -subalgebra of $\Gamma^b(E_B)$.

In this setting, we have the following:

Theorem 3. There is an isometric real algebra *-isomorphism ρ of $\Gamma^b(E_B)$ onto $C_h^b(\Phi_B)$ such that $\rho(\Gamma_0(E_B)) = C_{h,0}(\Phi_B)$ and $\rho \circ \Lambda_M = \Lambda_{\Phi}$.

We know that the Gelfand representation theorems 1 and 2 are essentially identical by the above theorem.

Combining [2, Theorem 5.3] and Theorem 3, we have the following:

Corollary 1. If B is a unital commutative almost complex C^* -algebra, then $\Lambda_{\Phi}: B \to C_h(\Phi_B)$ is an isometric *-isomorphism.

2. KNOWN RESULTS AND LEMMAS

We will remind the reader of the following well-known results since they are basic to all that we do.

Let $\varphi \in \Phi_B$. Since range φ is a non-zero real subalgebra of \mathbb{C} , it must be either \mathbb{R} or \mathbb{C} . In fact, let $A = \operatorname{range} \varphi$ and then A is a non-zero linear subspace of \mathbb{C} over \mathbb{R} . Then dim A = 1 or 2. If dim A = 2, then $A = \mathbb{C}$. If dim A = 1, then $A = \mathbb{R}^{a}$ for some non-zero complex number $a \in A$. Since A is an algebra, it follows that $a^2 = ra$ for some $r \in \mathbb{R}$ and then $a \in \mathbb{R}$. Hence A must be \mathbb{R} . We thus obtain that range $\varphi = \mathbb{R} \Leftrightarrow \operatorname{Ker} \varphi$ has codimension 1 in B and range $\varphi = \mathbb{C} \Leftrightarrow \operatorname{Ker} \varphi$ has codimension 2 in B. Moreover, $\operatorname{Ker} \varphi$ is a maximal regular ideal of B. Actually, choose $e \in B$ with $\varphi(e) = 1$ and hence $B(1-e) \subset \operatorname{Ker} \varphi$, namely, $\operatorname{Ker} \varphi$ is regular. Now let I be an ideal of B with $\operatorname{Ker} \varphi \subseteq I \subset B$. Then $I/\operatorname{Ker} \varphi$ is a non-zero real subalgebra of $B/\operatorname{Ker} \varphi$. Take $e \in B$ and $u \in I$ with $\varphi(e) = 1$ and $u \notin \operatorname{Ker} \varphi$. Since $B/\operatorname{Ker} \varphi$ is a field and $e + \operatorname{Ker} \varphi$ is the identity of $B/\operatorname{Ker} \varphi$, we can find $v \in B$ with $(u + \operatorname{Ker} \varphi)(v + \operatorname{Ker} \varphi) = e + \operatorname{Ker} \varphi$ and hence $uv - e \in \operatorname{Ker} \varphi$. Then $e = uv + e - uv \in I + \operatorname{Ker} \varphi = I$, so that $b = be + b(1 - e) \in I + \operatorname{Ker} \varphi = I$ for each $b \in B$. That is, we have B = I and so Ker φ is maximal. Let I be a maximal regular ideal of B. Since B/I is a real commutative normed division algebra, it follows from the Gelfand-Mazur theorem that $B/I \cong \mathbb{R}$ or \mathbb{C} and then I has codimension 1 or 2. In case of codim I = 1, we have that $B/I \cong \mathbb{R}$ as an algebra over \mathbb{R} and this isomorphism is unique since \mathbb{R} has no nontrivial \mathbb{R} -algebra automorphisms. Thus the composition $\varphi \colon B \to B/I \cong \mathbb{R}$

124

is the unique element of Φ_B with kernel *I*. Moreover we have range $\varphi = \mathbb{R}$. In case of codim I = 2, we have that $B/I \cong \mathbb{C}$ as an algebra over \mathbb{R} and since \mathbb{C} has exactly one non-trivial \mathbb{R} -algebra automorphism given by conjugation, we see that there are exactly two elements $\varphi, \bar{\varphi} \in \Phi_B$ with kernel *I*. Moreover we have range $\varphi = \text{range } \bar{\varphi} = \mathbb{C}$.

Lemma 1. Let G be a finite group acting on a topological space Y and let X = Y/G endowed with the quotient topology. Let $p: Y \to X$ be the natural map. Then

- (1) The map p is both open and closed.
- (2) For each compact subset K in X, $p^{-1}(K)$ is also compact in Y.
- (3) If Y is locally compact, so is X.
- (4) If Y is Hausdorff, so is X.

Proof. (1) Let U be an open (closed) subset of Y. Then the saturation $GU = \bigcup_{g \in G} g(U)$ of U is clearly open (closed). Also since $GU = p^{-1}(p(U))$, it follows that p is open (closed).

(2) Let K be a compact subset of X and $\{y_{\lambda}\}$ a net in $p^{-1}(K)$. Then $\{p(y_{\lambda})\}$ is a net in K and so there is a subnet $\{y_{\lambda'}\}$ of $\{y_{\lambda}\}$ such that $\{p(y_{\lambda'})\}$ converges to some point of K, say Gy. Let $Gy = \{y, g_1(y), \dots, g_{n-1}(y)\}$, where $G = \{e, g_1, \dots, g_{n-1}\}$. Then we have $Gy \subset p^{-1}(K)$. Now, we assert that a certain subnet of $\{y_{\lambda'}\}$ converges to one of $y, g_1(y), \dots, g_{n-1}(y)$. Suppose contrary. Then we can easily find an open neighborhood U of y and a subnet $\{y_{\lambda''}\}$ of $\{y_{\lambda'}\}$ such that every $y_{\lambda''}$ does not belong to $U \cup g_1(U) \cup \dots \cup g_{n-1}(U)$. Set $V = U \cup g_1(U) \cup \dots \cup g_{n-1}(U)$ and so V = GV. Also since V is an open neighborhood of y and p is open, p(V) must be an open neighborhood of Gy. Hence there exists a point $p(y_{\lambda_0''})$ which belongs to p(V). Therefore $y_{\lambda_0''}$ must be in the saturation of V namely GV. However since V = GV and every $y_{\lambda''}$ does not belong to GV, this is a contradiction. We thus obtain that any net in $p^{-1}(K)$ has a subnet which converges to some point in $p^{-1}(K)$, that is $p^{-1}(K)$ is compact.

(3) Since p is both open and closed by (1), X must be locally compact from a standard topological argument.

(4) Suppose that Y is Hausdorff and let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 \in p^{-1}(x_1)$ and $y_2 \in p^{-1}(x_2)$, and then $y_1 \neq y_2$. Since G is finite, we can find an open neighborhood U_1 of y_1 and an open neighborhood U_2 of y_2 such that $g(U_1) \cap h(U_2) = \emptyset$ for all $g, h \in G$. Since p is open, $p(U_1)$ and $p(U_2)$ are disjoint open neighborhoods of x_1 and x_2 , respectively. Consequently X is also Hausdorff.

Lemma 2. Let X be a topological space and let Y and Z be two sets with surjections $\pi_Y \colon X \to Y$ and $\pi_Z \colon X \to Z$. We give Y and Z the quotient topologies induced by π_Y and π_Z , respectively. Moreover, assume that π_Y is both open and closed, and there is a bijection $\theta: Y \to Z$ such that $\pi_Z = \theta \circ \pi_Y$. Then π_Z is also both open and closed, and θ is a homeomorphism.

Proof. Let U be an open subset of X. Then

$$\pi_{Z}^{-1}(\pi_{Z}(U)) = \pi_{Y}^{-1}(\theta^{-1}(\pi_{Z}(U)))$$

= $\pi_{Y}^{-1}(\theta^{-1}(\theta(\pi_{Y}(U))))$
= $\pi_{Y}^{-1}(\pi_{Y}(U))$

and hence $\pi_Z^{-1}(\pi_Z(U))$ is open since π_Y is continuous and open. Therefore π_Z is open by definition of the quotient topology. Similarly, we can prove the closedness of π_Z . Now note that $\pi_Z(\pi_Y^{-1}(K)) = \theta(K)$ for each subset K of Y. This implies that θ is a homeomorphism.

Now, following [2], we give E_B the quotient topology induced by the map g. There is also a natural action of $\mathbb{Z}_2 = \{e, \sigma\}$ on $(\mathbb{C} \times \Phi_B)'$, namely: $\sigma(z, \varphi) = (\bar{z}, \bar{\varphi})$. The following is a just [2, Lemma 3.2].

Lemma 3. There is a natural homeomorphism $\theta: (\mathbb{C} \times \Phi_B)'/\mathbb{Z}_2 \to E_B$ such that $g = \theta \circ \pi_{\mathbb{Z}_2}$, where $\pi_{\mathbb{Z}_2}$ is the canonical map of $(\mathbb{C} \times \Phi_B)'$ onto $(\mathbb{C} \times \Phi_B)'/\mathbb{Z}_2$. Thus g is both open and closed.

Lemma 4. Let Y be a topological space and X a set. Let $p: Y \to X$ be a surjection. We give X the quotient topology induced by p. Let $x \in X$ and $y \in p^{-1}(x)$. If p is open and $\{V_{\alpha}\}$ is a base of neighborhoods of y, then $\{p(V_{\alpha})\}$ is a base of neighborhoods of x.

Proof. Let U be any neighborhood of x. Then $p^{-1}(U)$ is a neighborhood of y and hence $V_{\alpha} \subset p^{-1}(U)$ for some V_{α} . Therefore we have $p(V_{\alpha}) \subset p(p^{-1}(U)) = U$ and so $\{p(V_{\alpha})\}$ is a base of neighborhoods of x. \Box

Lemma 5. If $s \in \Gamma(E_B)$, then $s^* \in \Gamma(E_B)$, where s^* is a section for $p: E_B \to M_B$ defined in the preceding section.

Proof. Let $s \in \Gamma(E_B)$. We show that s^* is continuous. To do this, let $I_0 \in M_B$ be arbitrary and take an element $\varphi_0 \in \Phi_B$ with $I_0 = \operatorname{Ker} \varphi_0$. Also take an element $b_0 \in B$ with $s(I_0) = (I_0, b_0 + I_0)$ and set $z_0 = \varphi_0(b_0)$. By definition of s^* , we have that $s^*(I_0) = (I_0, \overline{b_0} + I_0)$ and $\overline{z_0} = \overline{\varphi_0(b_0)} = \varphi_0(\overline{b_0})$. Then $g(\overline{z_0}, \varphi_0) = s^*(I_0) \in E_B$. By Lemma 4, a basic neighborhood of $s^*(I_0)$ in E_B is of the form $g((O_{\varepsilon}(\overline{z_0}) \times N)')$, where $O_{\varepsilon}(\overline{z_0})$ is an ε -neighborhood of $\overline{z_0}$ in \mathbb{C} , N is a neighborhood of φ_0 in Φ_B and $(O_{\varepsilon}(\overline{z_0}) \times N)' = (O_{\varepsilon}(\overline{z_0}) \times N) \cap (\mathbb{C} \times \Phi_B)'$. Also we have

 $g((O_{\varepsilon}(\overline{z_0}) \times N)') = \{(\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi) : \varphi \in N \text{ and } \varphi(b) \in O_{\varepsilon}(\overline{z_0})\}.$

Let $O_{\varepsilon}(z_0)$ be an ε -neighborhood of z_0 in \mathbb{C} and then

 $g((O_{\varepsilon}(z_0) \times N)') = \{(\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi) : \varphi \in N \text{ and } \varphi(b) \in O_{\varepsilon}(z_0)\}$

126

is a neighborhood of $s(I_0)$ because $g(z_0, \varphi_0) = s(I_0) \in E_B$. Also since s is continuous, we can find a neighborhood V_0 of I_0 in M_B such that $s(V_0) \subset g((O_{\varepsilon}(z_0) \times N)')$. In this case, we have $s^*(V_0) \subset g((O_{\varepsilon}(z_0) \times N)')$. In fact, let $I \in V_0$ and take an element $\varphi \in \Phi_B$ with $I = \operatorname{Ker} \varphi$. Since s(I) = (I, b + I) for some $b \in B$, it follows from definition of s^* that $s^*(I) = (I, \bar{b} + I)$ and $\varphi(\bar{b}) = \overline{\varphi(b)}$ for some $\bar{b} \in B$. Also since ($\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi) \in g((O_{\varepsilon}(z_0) \times N)')$, it follows that $\varphi \in N$ and $|\varphi(b) - z_0| < \varepsilon$, and hence $|\varphi(\bar{b}) - \overline{z_0}| = |\varphi(b) - z_0| < \varepsilon$. Consequently, $s^*(I) \in g((O_{\varepsilon}(\overline{z_0}) \times N)')$. We thus see that s^* is continuous at each point in M_B .

3. Proof of Theorem 3

Let $s \in \Gamma(E_B)$ be arbitrary. For any $\varphi \in \Phi_B$, set $I = \operatorname{Ker} \varphi$. Then s(I) = (I, b + I) for some $b \in B$. We define $f_s(\varphi) = \varphi(b)$. This is, of course, well-defined. Then we have that $f_s(\bar{\varphi}) = f_s(\varphi)$ for all $\varphi \in \Phi_B$. In fact, let $\varphi \in \Phi_B$ and put $I = \operatorname{Ker} \varphi$ and then $I = \operatorname{Ker} \overline{\varphi}$. Since s(I) = (I, b + I)for some $b \in B$, it follows from definition of f_s that $f_s(\varphi) = \varphi(b)$ and $f_s(\bar{\varphi}) = \bar{\varphi}(b)$. Therefore we have $f_s(\bar{\varphi}) = \bar{\varphi}(b) = \overline{\varphi(b)} = \overline{f_s(\varphi)}$. We next claim that f_s is continuous on Φ_B . Let $\varphi_0 \in \Phi_B$ and set $I_0 = \operatorname{Ker} \varphi_0$. Then $s(I_0) = (I_0, b_0 + I_0)$ for some $b_0 \in B$. Put $z_0 = f_s(\varphi_0) (= \varphi_0(b_0))$. Let U_{ε} be any ε -neighborhood of z_0 . If $\varphi_0 \in \Phi_B^{\mathbb{R}}$, we set $N_0 = \Phi_B$. If $\varphi_0 \in \Phi_B^{\mathbb{C}}$, then $\varphi_0 \neq \overline{\varphi_0}$ and hence there is $b_1 \in B$ such that $\varphi_0(b_1) \neq \overline{\varphi_0}(b_1)$, so we set $N_0 = \{ \varphi \in \Phi_B : |\varphi_0(b_1) - \varphi(b_1)| < \delta/2 \}, \text{ where } \delta = |\varphi_0(b_1) - \overline{\varphi_0}(b_1)| > 0.$ Then N_0 is an open neighborhood of φ_0 . In case of $\varphi_0 \in \Phi_B^{\mathbb{C}}$, we have that if $\varphi \in N_0$ then $\bar{\varphi} \notin N_0$. In fact, assume that $\varphi \in N_0$ and $\bar{\varphi} \in$ N_0 . Then $|\varphi_0(b_1) - \varphi(b_1)| < \delta/2$ and $|\varphi_0(b_1) - \varphi(b_1)| < \delta/2$, so we have $|\varphi_0(b_1) - \overline{\varphi_0}(b_1)| < \delta/2 + \delta/2 = \delta$, a contradiction. Now note from Lemma 3 that

$$g((U_{\varepsilon} \times N_0)') = \{(\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi) : \varphi \in N_0, \varphi(b) \in U_{\varepsilon}\}$$

is an open neighborhood of $s(I_0)$ in E_B , where $(U_{\varepsilon} \times N_0)' = (U_{\varepsilon} \times N_0) \cap (\mathbb{C} \times \Phi_B)'$. Since s is a continuous section, there exists a neighborhood V_0 of I_0 such that $s(V_0) \subset g((U_{\varepsilon} \times N_0)')$. Set $W_0 = \epsilon^{-1}(V_0) \cap N_0$ and then it is a neighborhood of $\varphi_0 \in \Phi_B$. We see that $f_s(W_0) \subset U_{\varepsilon}$. In fact, let $\varphi \in W_0$ be arbitrary. Then $\varphi \in \epsilon^{-1}(V_0)$ and hence Ker $\varphi \in V_0$. Therefore

$$s(\operatorname{Ker} \varphi) \in s(V_0) \subset g((U_{\varepsilon} \times N_0)') = \{(\operatorname{Ker} \psi, b + \operatorname{Ker} \psi) : \psi \in N_0, \psi(b) \in U_{\varepsilon}\}$$

and so $s(\operatorname{Ker} \varphi) = (\operatorname{Ker} \psi, b + \operatorname{Ker} \psi)$, for some $b \in B$ and $\psi \in N_0$ with $\psi(b) \in U_{\varepsilon}$. Then $\operatorname{Ker} \varphi = \operatorname{Ker} \psi$, $f_s(\varphi) = \varphi(b)$ and $f_s(\psi) = \psi(b)$. If $\psi = \varphi$, then $f_s(\varphi) = \varphi(b) = \psi(b) \in U_{\varepsilon}$. If $\psi \neq \varphi$, then $\psi = \overline{\varphi}$ and hence $f_s(\varphi) = \varphi(b) = \overline{\psi(b)}$. In case of $\varphi_0 \in \Phi_B^{\mathbb{R}}$, we have $z_0 \in \mathbb{R}$ and hence U_{ε} is conjugate invariant, so $\overline{\psi(b)} \in U_{\varepsilon}$, that is $f_s(\varphi) \in U_{\varepsilon}$. In case of $\varphi_0 \in \Phi_B^{\mathbb{C}}$, since $\varphi \in N_0$, we have $\overline{\varphi} \notin N_0$. However since $\psi \in N_0$ and $\psi = \overline{\varphi}$, we have

a contradiction. Therefore we must conclude that $f_s(W_0) \subset U_{\varepsilon}$. We thus obtain a natural map $s \mapsto f_s$ of $\Gamma(E_B)$ into $C_h(\Phi_B)$.

We next show that this map is surjective. To do this, let $f \in C_h(\Phi_B)$ be arbitrary. For any $I \in M_B$, choose $\varphi \in \Phi_B$ with $I = \operatorname{Ker} \varphi$. In this case, we can take $b \in B$ with $\varphi(b) = f(\varphi)$. In fact, if $\varphi \in \Phi_B^{\mathbb{R}}$, then $\varphi = \overline{\varphi}$ and hence $f(\varphi) = f(\overline{\varphi}) = \overline{f(\varphi)}$, so $f(\varphi) \in \mathbb{R}$. Moreover, $\varphi(B) = \mathbb{R}$ and so we can find such $b \in B$. If $\varphi \in \Phi_B^{\mathbb{C}}$, then $\varphi(B) = \mathbb{C}$ and so there exists clearly such $b \in B$. Now we define $s_f(I) = (I, b + I)$. This is well-defined. In fact, let $\psi \in \Phi_B, I = \operatorname{Ker} \psi, c \in B$ and $\psi(c) = f(\psi)$. If $\varphi \neq \psi$, then $\psi = \overline{\varphi}$ and so

$$\overline{\varphi(c)} = \bar{\varphi}(c) = \psi(c) = f(\psi) = f(\bar{\varphi}) = \overline{f(\varphi)} = \overline{\varphi(b)},$$

hence $c-b \in \text{Ker } \varphi = I$. Similarly, we can treat the case $\varphi = \psi$. This shows that our definition is well-defined. Now we claim that s_f is a continuous section for $p: E_B \to M_B$. It suffices to see that s_f is continuous. So let $I_0 \in$ M_B be arbitrary. Choose $\varphi_0 \in \Phi_B$ with $\text{Ker } \varphi_0 = I_0$ and take $b_0 \in B$ with $f(\varphi_0) = \varphi_0(b_0)$ (we can of course take such $b_0 \in B$ as observed above). Then $s_f(I_0) = (\text{Ker } \varphi_0, b_0 + \text{Ker } \varphi_0)$. Let $z_0 = \varphi_0(b_0)$. Then we have $f(\varphi_0) = z_0$ and $g(z_0, \varphi_0) = s_f(I_0) \in E_B$. By Lemma 4, a basic neighborhood of $s_f(I_0)$ in E_B is of the form $g((O_{\varepsilon} \times N)')$, where O_{ε} is an ε -neighborhood of z_0 in \mathbb{C} , N is a neighborhood of φ_0 in Φ_B and $(O_{\varepsilon} \times N)' = (O_{\varepsilon} \times N) \cap (\mathbb{C} \times \Phi_B)'$. Also we have

$$g((O_{\varepsilon} \times N)') = \{(\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi) : \varphi \in N \text{ and } \varphi(b) \in O_{\varepsilon}\}.$$

Since f is continuous, we can find a neighborhood U_0 of φ_0 in Φ_B so that $f(U_0) \subset O_{\varepsilon}$ and $U_0 \subset N$. Set $V_0 = \epsilon(U_0)$ and hence V_0 is a neighborhood of I_0 in M_B since $\epsilon \colon \Phi_B \to M_B$ is open from Proposition 1. We assert that $s_f(V_0) \subset g((O_{\varepsilon} \times N)')$. In fact, if $I \in V_0$, then there exists $\varphi \in U_0$ with $I = \epsilon(\varphi) = \operatorname{Ker} \varphi$ and so $\varphi \in N$ and $f(\varphi) \in O_{\varepsilon}$. Now take $b \in B$ with $f(\varphi) = \varphi(b)$. Then $s_f(I) = (I, b + I) = (\operatorname{Ker} \varphi, b + \operatorname{Ker} \varphi)$ and hence $s_f(I) \in g((O_{\varepsilon} \times N)')$. Thus we have our assertion $s_f(V_0) \subset g((O_{\varepsilon} \times N)')$. Now to see $f_{s_f} = f$, let $\varphi \in \Phi_B$ and take $b \in B$ with $f(\varphi) = \varphi(b)$. By definition of the natural map, we have $f_{s_f}(\varphi) = \varphi(b)$ and so $f_{s_f}(\varphi) = f(\varphi)$.

Now let $s \in \Gamma^b(E_B)$. For any $\varphi \in \Phi_B$, set $I = \text{Ker }\varphi$. Then s(I) = (I, b+I) and $s^*(I) = (I, \bar{b}+I)$ for some $b, \bar{b} \in B$ such that $\overline{\varphi(b)} = \varphi(\bar{b})$. Hence $f_s(\varphi) = \varphi(b)$ and so $|f_s(\varphi)| = |\varphi(b)| = |s(I)| \leq ||s||$. Therefore $||f_s|| \leq ||s||$ and so $f_s \in C_h^b(\Phi_B)$. Similarly, $||s|| \leq ||f_s||$ and hence the restriction of this natural map to $\Gamma^b(E_B)$ is isometric. Moreover, since $f_{s^*}(\varphi) = \varphi(\bar{b}) = \overline{f_s(\varphi)}$, it follows that $f_{s^*} = f_s^*$ and so the natural map is *-preserving. Also, we can easily see that this natural map is a real algebra homomorphism.

Finally set $\rho(s) = f_s$ for each $s \in \Gamma^b(E_B)$. Then we can easily see that

$$\begin{split} \rho(\Gamma^b(E_B)) &= C_h^b(\Phi_B) \text{ from the above observation. Moreover, } \rho(\Gamma_0(E_B)) = \\ C_{h,0}(\Phi_B). \text{ To see this, let } f \in C_{h,0}(\Phi_B) \text{ and } \delta > 0. \text{ Set } K_f = \{\varphi \in \Phi_B : |f(\varphi)| \geq \delta\} \text{ and then } K_f \text{ is compact. Set } T_f = \epsilon(K_f) \text{ and so } T_f \text{ is also compact. Then we have } T_f = \{I \in M_B : |s_f(I)| \geq \delta\}. \text{ In fact, let } \varphi \in K_f \text{ be arbitrary and set } I = \text{Ker } \varphi. \text{ Take } b \in B \text{ with } \varphi(b) = f(\varphi) \text{ and then } \\ s_f(I) = (I, b + I). \text{ By definition of } |s_f(I)|, \text{ we have } |s_f(I)| \geq \delta\}. \text{ Conversely, } \\ \text{let } I \in M_B \text{ with } |s_f(I)| \geq \delta. \text{ Choose } \psi \in \Phi_B \text{ with } I = \text{Ker } \psi \text{ and take } \\ c \in B \text{ with } \psi(c) = f(\psi). \text{ Then we have } |f(\psi)| = |\psi(c)| = |s_f(I)| \geq \delta \text{ and } \\ \text{so } \psi \in K_f, \text{ namely } I \in T_f. \text{ Therefore we obtain the inverse inclusion. We \\ \text{thus obtain that } s_f \in \Gamma_0(E_B) \text{ and hence } \rho(\Gamma_0(E_B)) \supset C_{h,0}(\Phi_B). \text{ Now let } \\ s \in \Gamma_0(E_B) \text{ and } \delta > 0. \text{ Set } T_s = \{I \in M_B : |s(I)| \geq \delta\} \text{ and then } T_s \text{ is } \\ \text{compact. Set } K_s = \{\varphi \in \Phi_B : |f_s(\varphi)| \geq \delta\} \text{ and then } W_s = \epsilon^{-1}(T_s), \\ \text{similarly. Therefore we see from Lemma 1-(2) \text{ that } K_s \text{ is compact and hence } \\ \rho(\Gamma_0(E_B)) \subset C_{h,0}(\Phi_B). \text{ This completes the proof.} \end{split}$$

ACKNOWLEDGEMENT. All the authors are partially supported by the Grantin-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

- [1] L. INGELSTAM, Real Banach algebras, Ark. Mat. 5(1964), 239–270.
- [2] W. E. PFAFFENBERGER AND J. PHILLIPS, Commutative Gelfand theory for real Banach algebras: Representations as sections of bundles, Can. J. Math. 44(1992), 342– 256.

Sin-Ei Takahasi Department of Basic Technology Applied Mathematics and Physics Yamagata University Yonezawa 992-8510, Japan

e-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp

Takeshi Miura Department of Basic Technology Applied Mathematics and Physics Yamagata University Yonezawa 992-8510, Japan *e-mail address*: miura@yz.yamagata-u.ac.jp

OSAMU HATORI DEPARTMENT OF MATHEMATICAL SCIENCE AND TECHNOLOGY NIIGATA UNIVERSITY NIIGATA 950-2181, JAPAN *e-mail address*: hatori@math.sc.niigata-u.ac.jp

> (Received May 12, 2003) (Revised October 29, 2003)