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A NOTE ON COMMUTATIVE GELFAND THEORY FOR
REAL BANACH ALGEBRAS

Dedicated to Professor Saburou Saitoh on his 60th birthday (Kanreki)

Sin-Ei TAKAHASI, Takeshi MIURA and Osamu HATORI

Abstract. Pfaffenberger and Phillips [2] consider a real and unital
case of the classical commutative Gelfand theorem and obtain two rep-
resentation theorems. One is to represent a unital real commutative
Banach algebra A as an algebra of continuous functions on the unital
homomorphism space ΦA. The other is to represent A as an algebra of
continuous sections on the maximal ideal space MA. In this note, we
point out that similar theorems for non-unital case hold and show that
two representation theorems are essentially identical.

1. Preliminary and results

Let B be a real commutative Banach algebra and ΦB the set of non-zero R-
algebra homomorphism ϕ : B → C. Then we have ‖ϕ‖ def= sup‖a‖≤1 |ϕ(a)| ≤
1 for each ϕ ∈ ΦB. Actually, suppose that there exists an a ∈ B such that
‖a‖ < 1 and |ϕ(a)| = 1. Set θ = − arg ϕ(a) and then eiθϕ(a) = 1. Also set

b =
∞∑

n=1

an cos nθ and c =
∞∑

n=1

an sinnθ.

Elementary trigonometric identities lead to

b = a cos θ + ab cos θ − ac sin θ and 0 = a sin θ + ab sin θ − c + ac cos θ.

Apply ϕ to these equations, multiply the resulting second equation by i and
add it to the resulting first equation then we obtain

ϕ(b) = ϕ(a)eiθ + ϕ(a)ϕ(b)eiθ − iϕ(c) + iϕ(a)ϕ(c)eiθ,

so that 1 = 0, a contradiction (we referred the proof of [2, Proposition 1.1,
(b)]). Let Bc be the complexification of B. Then ΦB is a subset of the
closed unit ball of the dual space Bc

∗ and hence we can give ΦB the relative
topology of Bc

∗ with the weak*-topology. Therefore, as well-known, ΦB

is a locally compact Hausdorff space. We denote by C(ΦB) the algebra of
continuous complex-valued functions on ΦB and set C0(ΦB) = {f ∈ C(ΦB) :
f vanishes at infinity}. Then C0(ΦB) is a real commutative C∗-algebra with
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supremum norm and a standard method leads to the following representation
theorem (cf. [2, Theorem 1.4]).

Theorem 1. Let B be a real commutative Banach algebra.

(1) The mapping ΛΦ : B → C0(ΦB) given by ΛΦ(b)(ϕ) = ϕ(b) (def= b̂(ϕ))
for each ϕ ∈ ΦB and each b ∈ B is a norm-decreasing real algebra
homomorphism which is one-to-one if and only if B is semisimple.

(2) If B is unital, then SpB(b) = b̂(ΦB) for each b ∈ B. Also, if B is
non-unital, then SpB(b) = b̂(ΦB) ∪ {0} for each b ∈ B.

We next provide a Gelfand theorem for real commutative Banach algebras
using the maximal regular ideal space MB as a common domain of an algebra
of functions.

In the next section, we see that Ker ϕ is a maximal regular ideal of B for
each ϕ ∈ ΦB. Following [2], we give MB the quotient topology arising from
the map ε : ΦB → MB defined by ε(ϕ) = Ker ϕ, ϕ ∈ ΦB. That is, MB has
the strongest topology which makes the map ε continuous. Let σ : ΦB → ΦB

be the homeomorphism σ(ϕ) = ϕ̄. Then σ2 = e, the identity, and we have
an action of Z2 = {e, σ} on ΦB. Let β : ΦB/Z2 → MB be the bijection
β(Z2ϕ) = Kerϕ and then ε = β ◦ π, where π : ΦB → ΦB/Z2 is the natural
map. Then we have the following result from Lemmas 1 and 2 in the next
section.

Proposition 1. The space MB is locally compact and Hausdorff, and the
map ε is both open and closed. Moreover, β : ΦB/Z2 → MB is a homeomor-
phism.

From the above proposition, we know that MB is just the quotient of ΦB

under the (not necessarily free) action of Z2 on ΦB. Let

ΦR
B = {ϕ ∈ ΦB : ϕ(B) = R}, ΦC

B = {ϕ ∈ ΦB : ϕ(B) = C},
MR

B = {I ∈ MB : B/I ∼= R} and MC
B = {I ∈ MB : B/I ∼= C}.

Clearly ΦR
B is a closed subset of ΦB and so ΦC

B is an open subset of ΦB.
Also, in the next section, we see that

MR
B = ε(ΦR

B), MC
B = ε(ΦC

B), ΦB = ΦR
B ∪ ΦC

B and MB = MR
B ∪ MC

B .

Then MR
B is closed and MC

B is open. Also B is called almost complex if
ΦC

B = ΦB (cf. [1, 2]).
Now as usual in representing algebras as sections we form the set

EB = ·
⋃

I∈MB

B/I,
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where ∪· denotes disjoint union. Of course, each B/I is a field and an algebra
over R, and we have an obvious map p : EB → MB. That is, p(I, b + I) =
I, (I ∈ MB, b ∈ B), where EB

∼= {(I, b + I) : I ∈ MB, b ∈ B}.
The problem is to topologize EB in a reasonable way such that I 7→ b+ I

is a continuous section for each b ∈ B. Following [2], let (C × ΦB)′ =
(C × ΦC

B) ∪ (R × ΦR
B) endowed with the relative topology in C × ΦB. We

consider the map g : (C × ΦB)′ → EB defined by

g(z, ϕ) = (Kerϕ, b + Kerϕ),

where b is chosen such that ϕ(b) = z. Of course, this map is well-defined
and surjective. We give EB the quotient topology induced by the map g
and denote by Γ(EB) the set of all continuous sections on MB. Moreover,
we set

Γb(EB) = {s ∈ Γ(EB) : ‖s‖ = sup
I∈MB

|s(I)| < ∞}

and

Γ0(EB) = {s ∈ Γ(EB) : s vanishes at infinity, that is lim
I→∞

|s(I)| = 0},

where |s(I)| = |ϕ(b)|, s(I) = (I, b + I), b ∈ B and I = Kerϕ = Ker ϕ̄. Then
we have the following representation theorem in a way similar to the proof
of [2, Theorem 3.5].

Theorem 2. Let B be a real commutative Banach algebra and let p : EB →
MB be the associated bundle of real fields. Then

(1) Γb(EB) is a real commutative Banach algebra given the supremum
norm and Γ0(EB) is a closed subalgebra of it.

(2) ΛM : B → Γ0(EB) defined by ΛM (b)(I) = (I, b + I), I ∈ MB is a
norm-decreasing algebra homomorphism with kernel, RadB.

(3) For b ∈ B, ‖ΛM (b)‖ = limn→∞ ‖bn‖1/n.

Remark 1. Theorems 1 and 2 are non-unital versions of [2, Theorem 1.4
and 3.5].

We next see that these representation theorems are essentially identical.
To do this, set

Ch(ΦB) = {f ∈ C(ΦB) : f(ϕ̄) = f(ϕ) for all ϕ ∈ ΦB},

Cb
h(ΦB) = {f ∈ Ch(ΦB) : ‖f‖ < ∞},

and
Ch,0(ΦB) = {f ∈ Ch(ΦB) : f vanishes at infinity }.

Then we can easily see that Cb
h(ΦB) is a unital real commutative Banach

algebra given the supremum norm and Ch,0(ΦB) is a closed subalgebra of
it. Also ΛΦ(B) ⊂ Ch,0(ΦB) clearly holds.
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Now for each f ∈ Ch(ΦB) we define f∗(ϕ) = f(ϕ), (ϕ ∈ ΦB). Then
Cb

h(ΦB) becomes a unital real commutative C∗-algebra under this involution
and Ch,0(ΦB) is a C∗-subalgebra of Cb

h(ΦB). Also let s ∈ Γ(EB) and I ∈
MB. Then s(I) = (I, b+I) for some b ∈ B. Choose ϕ ∈ ΦB with I = Kerϕ.
Then there exists an element b̄ ∈ B such that ϕ(b̄) = ϕ(b). Set s∗(I) = (I, b̄+
I). This is clearly well-defined and we see later that s∗ ∈ Γ(EB) (Lemma
5). Therefore Γb(EB) becomes a unital real commutative C∗-algebra under
this involution and Γ0(EB) is a C∗-subalgebra of Γb(EB).

In this setting, we have the following:

Theorem 3. There is an isometric real algebra ∗-isomorphism ρ of Γb(EB)
onto Cb

h(ΦB) such that ρ(Γ0(EB)) = Ch,0(ΦB) and ρ ◦ ΛM = ΛΦ.

We know that the Gelfand representation theorems 1 and 2 are essentially
identical by the above theorem.

Combining [2, Theorem 5.3] and Theorem 3, we have the following:

Corollary 1. If B is a unital commutative almost complex C∗-algebra, then
ΛΦ : B → Ch(ΦB) is an isometric ∗-isomorphism.

2. Known results and lemmas

We will remind the reader of the following well-known results since they
are basic to all that we do.

Let ϕ ∈ ΦB. Since rangeϕ is a non-zero real subalgebra of C, it must
be either R or C. In fact, let A = range ϕ and then A is a non-zero linear
subspace of C over R. Then dim A = 1 or 2. If dimA = 2, then A = C. If
dimA = 1, then A = Ra for some non-zero complex number a ∈ A. Since A
is an algebra, it follows that a2 = ra for some r ∈ R and then a ∈ R. Hence
A must be R. We thus obtain that rangeϕ = R ⇔ Kerϕ has codimension
1 in B and rangeϕ = C ⇔ Kerϕ has codimension 2 in B. Moreover, Kerϕ
is a maximal regular ideal of B. Actually, choose e ∈ B with ϕ(e) = 1 and
hence B(1 − e) ⊂ Kerϕ, namely, Kerϕ is regular. Now let I be an ideal
of B with Ker ϕ ( I ⊂ B. Then I/Kerϕ is a non-zero real subalgebra
of B/Kerϕ. Take e ∈ B and u ∈ I with ϕ(e) = 1 and u 6∈ Kerϕ. Since
B/Kerϕ is a field and e+Kerϕ is the identity of B/Kerϕ, we can find v ∈ B
with (u + Ker ϕ)(v + Kerϕ) = e + Ker ϕ and hence uv − e ∈ Kerϕ. Then
e = uv + e − uv ∈ I + Kerϕ = I, so that b = be + b(1 − e) ∈ I + Kerϕ = I
for each b ∈ B. That is, we have B = I and so Kerϕ is maximal. Let I be a
maximal regular ideal of B. Since B/I is a real commutative normed division
algebra, it follows from the Gelfand-Mazur theorem that B/I ∼= R or C and
then I has codimension 1 or 2. In case of codim I = 1, we have that B/I ∼= R
as an algebra over R and this isomorphism is unique since R has no non-
trivial R-algebra automorphisms. Thus the composition ϕ : B → B/I ∼= R



GELFAND THEORY FOR REAL BANACH ALGEBRAS 125

is the unique element of ΦB with kernel I. Moreover we have rangeϕ = R.
In case of codim I = 2, we have that B/I ∼= C as an algebra over R and since
C has exactly one non-trivial R-algebra automorphism given by conjugation,
we see that there are exactly two elements ϕ, ϕ̄ ∈ ΦB with kernel I. Moreover
we have range ϕ = range ϕ̄ = C.

Lemma 1. Let G be a finite group acting on a topological space Y and let
X = Y/G endowed with the quotient topology. Let p : Y → X be the natural
map. Then

(1) The map p is both open and closed.
(2) For each compact subset K in X, p−1(K) is also compact in Y .
(3) If Y is locally compact, so is X.
(4) If Y is Hausdorff, so is X.

Proof. (1) Let U be an open (closed) subset of Y . Then the saturation
GU = ∪g∈G g(U) of U is clearly open (closed). Also since GU = p−1(p(U)),
it follows that p is open (closed).

(2) Let K be a compact subset of X and {yλ} a net in p−1(K). Then
{p(yλ)} is a net in K and so there is a subnet {yλ′} of {yλ} such that {p(yλ′)}
converges to some point of K, say Gy. Let Gy = {y, g1(y), · · · , gn−1(y)},
where G = {e, g1, · · · , gn−1}. Then we have Gy ⊂ p−1(K). Now, we as-
sert that a certain subnet of {yλ′} converges to one of y, g1(y), · · · , gn−1(y).
Suppose contrary. Then we can easily find an open neighborhood U of
y and a subnet {yλ′′} of {yλ′} such that every yλ′′ does not belong to
U ∪ g1(U) ∪ · · · ∪ gn−1(U). Set V = U ∪ g1(U) ∪ · · · ∪ gn−1(U) and so
V = GV . Also since V is an open neighborhood of y and p is open, p(V )
must be an open neighborhood of Gy. Hence there exists a point p(yλ0

′′)
which belongs to p(V ). Therefore yλ0

′′ must be in the saturation of V namely
GV . However since V = GV and every yλ′′ does not belong to GV , this is
a contradiction. We thus obtain that any net in p−1(K) has a subnet which
converges to some point in p−1(K), that is p−1(K) is compact.

(3) Since p is both open and closed by (1), X must be locally compact
from a standard topological argument.

(4) Suppose that Y is Hausdorff and let x1, x2 ∈ X with x1 6= x2. Let
y1 ∈ p−1(x1) and y2 ∈ p−1(x2), and then y1 6= y2. Since G is finite, we can
find an open neighborhood U1 of y1 and an open neighborhood U2 of y2 such
that g(U1)∩h(U2) = ∅ for all g, h ∈ G. Since p is open, p(U1) and p(U2) are
disjoint open neighborhoods of x1 and x2, respectively. Consequently X is
also Hausdorff. ¤
Lemma 2. Let X be a topological space and let Y and Z be two sets with
surjections πY : X → Y and πZ : X → Z. We give Y and Z the quotient
topologies induced by πY and πZ , respectively. Moreover, assume that πY
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is both open and closed, and there is a bijection θ : Y → Z such that πZ =
θ ◦ πY . Then πZ is also both open and closed, and θ is a homeomorphism.

Proof. Let U be an open subset of X. Then

πZ
−1(πZ(U)) = πY

−1(θ−1(πZ(U)))
= πY

−1(θ−1(θ(πY (U))))
= πY

−1(πY (U))

and hence πZ
−1(πZ(U)) is open since πY is continuous and open. Therefore

πZ is open by definition of the quotient topology. Similarly, we can prove
the closedness of πZ . Now note that πZ(πY

−1(K)) = θ(K) for each subset
K of Y . This implies that θ is a homeomorphism. ¤

Now, following [2], we give EB the quotient topology induced by the map
g. There is also a natural action of Z2 = {e, σ} on (C × ΦB)′, namely:
σ(z, ϕ) = (z̄, ϕ̄). The following is a just [2, Lemma 3.2].

Lemma 3. There is a natural homeomorphism θ : (C × ΦB)′/Z2 → EB

such that g = θ ◦ πZ2, where πZ2 is the canonical map of (C × ΦB)′ onto
(C × ΦB)′/Z2. Thus g is both open and closed.

Lemma 4. Let Y be a topological space and X a set. Let p : Y → X be a
surjection. We give X the quotient topology induced by p. Let x ∈ X and
y ∈ p−1(x). If p is open and {Vα} is a base of neighborhoods of y, then
{p(Vα)} is a base of neighborhoods of x.

Proof. Let U be any neighborhood of x. Then p−1(U) is a neighborhood
of y and hence Vα ⊂ p−1(U) for some Vα. Therefore we have p(Vα) ⊂
p(p−1(U)) = U and so {p(Vα)} is a base of neighborhoods of x. ¤
Lemma 5. If s ∈ Γ(EB), then s∗ ∈ Γ(EB), where s∗ is a section for
p : EB → MB defined in the preceding section.

Proof. Let s ∈ Γ(EB). We show that s∗ is continuous. To do this, let
I0 ∈ MB be arbitrary and take an element ϕ0 ∈ ΦB with I0 = Ker ϕ0. Also
take an element b0 ∈ B with s(I0) = (I0, b0 + I0) and set z0 = ϕ0(b0). By
definition of s∗, we have that s∗(I0) = (I0, b0 +I0) and z0 = ϕ0(b0) = ϕ0(b0).
Then g(z0, ϕ0) = s∗(I0) ∈ EB. By Lemma 4, a basic neighborhood of s∗(I0)
in EB is of the form g((Oε(z0) × N)′), where Oε(z0) is an ε-neighborhood
of z0 in C, N is a neighborhood of ϕ0 in ΦB and (Oε(z0)×N)′ = (Oε(z0)×
N) ∩ (C × ΦB)′. Also we have

g((Oε(z0) × N)′) = {(Ker ϕ, b + Ker ϕ) : ϕ ∈ N and ϕ(b) ∈ Oε(z0)}.
Let Oε(z0) be an ε-neighborhood of z0 in C and then

g((Oε(z0) × N)′) = {(Ker ϕ, b + Kerϕ) : ϕ ∈ N and ϕ(b) ∈ Oε(z0)}
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is a neighborhood of s(I0) because g(z0, ϕ0) = s(I0) ∈ EB. Also since s is
continuous, we can find a neighborhood V0 of I0 in MB such that s(V0) ⊂
g((Oε(z0)×N)′). In this case, we have s∗(V0) ⊂ g((Oε(z0)×N)′). In fact, let
I ∈ V0 and take an element ϕ ∈ ΦB with I = Ker ϕ. Since s(I) = (I, b + I)
for some b ∈ B, it follows from definition of s∗ that s∗(I) = (I, b̄ + I) and
ϕ(b̄) = ϕ(b) for some b̄ ∈ B. Also since (Ker ϕ, b+Kerϕ) ∈ g((Oε(z0)×N)′),
it follows that ϕ ∈ N and |ϕ(b)−z0| < ε, and hence |ϕ(b̄)−z0| = |ϕ(b)−z0| <
ε. Consequently, s∗(I) ∈ g((Oε(z0)×N)′). We thus see that s∗ is continuous
at each point in MB. ¤

3. Proof of Theorem 3

Let s ∈ Γ(EB) be arbitrary. For any ϕ ∈ ΦB, set I = Kerϕ. Then
s(I) = (I, b + I) for some b ∈ B. We define fs(ϕ) = ϕ(b). This is, of course,
well-defined. Then we have that fs(ϕ̄) = fs(ϕ) for all ϕ ∈ ΦB. In fact, let
ϕ ∈ ΦB and put I = Kerϕ and then I = Ker ϕ̄. Since s(I) = (I, b + I)
for some b ∈ B, it follows from definition of fs that fs(ϕ) = ϕ(b) and
fs(ϕ̄) = ϕ̄(b). Therefore we have fs(ϕ̄) = ϕ̄(b) = ϕ(b) = fs(ϕ). We next
claim that fs is continuous on ΦB. Let ϕ0 ∈ ΦB and set I0 = Ker ϕ0. Then
s(I0) = (I0, b0 + I0) for some b0 ∈ B. Put z0 = fs(ϕ0)(= ϕ0(b0)). Let Uε be
any ε-neighborhood of z0. If ϕ0 ∈ ΦR

B, we set N0 = ΦB. If ϕ0 ∈ ΦC
B, then

ϕ0 6= ϕ0 and hence there is b1 ∈ B such that ϕ0(b1) 6= ϕ0(b1), so we set
N0 = {ϕ ∈ ΦB : |ϕ0(b1) − ϕ(b1)| < δ/2}, where δ = |ϕ0(b1) − ϕ0(b1)| > 0.
Then N0 is an open neighborhood of ϕ0. In case of ϕ0 ∈ ΦC

B, we have
that if ϕ ∈ N0 then ϕ̄ 6∈ N0. In fact, assume that ϕ ∈ N0 and ϕ̄ ∈
N0. Then |ϕ0(b1) − ϕ(b1)| < δ/2 and |ϕ0(b1) − ϕ(b1)| < δ/2, so we have
|ϕ0(b1) − ϕ0(b1)| < δ/2 + δ/2 = δ, a contradiction. Now note from Lemma
3 that

g((Uε × N0)′) = {(Ker ϕ, b + Kerϕ) : ϕ ∈ N0, ϕ(b) ∈ Uε}
is an open neighborhood of s(I0) in EB, where (Uε × N0)′ = (Uε × N0) ∩
(C × ΦB)′. Since s is a continuous section, there exists a neighborhood V0

of I0 such that s(V0) ⊂ g((Uε ×N0)′). Set W0 = ε−1(V0)∩N0 and then it is
a neighborhood of ϕ0 ∈ ΦB. We see that fs(W0) ⊂ Uε. In fact, let ϕ ∈ W0

be arbitrary. Then ϕ ∈ ε−1(V0) and hence Kerϕ ∈ V0. Therefore

s(Ker ϕ) ∈ s(V0) ⊂ g((Uε ×N0)′) = {(Ker ψ, b+Kerψ) : ψ ∈ N0, ψ(b) ∈ Uε}
and so s(Ker ϕ) = (Ker ψ, b + Ker ψ), for some b ∈ B and ψ ∈ N0 with
ψ(b) ∈ Uε. Then Ker ϕ = Kerψ, fs(ϕ) = ϕ(b) and fs(ψ) = ψ(b). If
ψ = ϕ, then fs(ϕ) = ϕ(b) = ψ(b) ∈ Uε. If ψ 6= ϕ, then ψ = ϕ̄ and hence
fs(ϕ) = ϕ(b) = ψ(b). In case of ϕ0 ∈ ΦR

B, we have z0 ∈ R and hence Uε is
conjugate invariant, so ψ(b) ∈ Uε, that is fs(ϕ) ∈ Uε. In case of ϕ0 ∈ ΦC

B,
since ϕ ∈ N0, we have ϕ̄ 6∈ N0. However since ψ ∈ N0 and ψ = ϕ̄, we have
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a contradiction. Therefore we must conclude that fs(W0) ⊂ Uε. We thus
obtain a natural map s 7→ fs of Γ(EB) into Ch(ΦB).

We next show that this map is surjective. To do this, let f ∈ Ch(ΦB) be
arbitrary. For any I ∈ MB, choose ϕ ∈ ΦB with I = Kerϕ. In this case,
we can take b ∈ B with ϕ(b) = f(ϕ). In fact, if ϕ ∈ ΦR

B, then ϕ = ϕ̄ and
hence f(ϕ) = f(ϕ̄) = f(ϕ), so f(ϕ) ∈ R. Moreover, ϕ(B) = R and so we
can find such b ∈ B. If ϕ ∈ ΦC

B, then ϕ(B) = C and so there exists clearly
such b ∈ B. Now we define sf (I) = (I, b + I). This is well-defined. In fact,
let ψ ∈ ΦB, I = Ker ψ, c ∈ B and ψ(c) = f(ψ). If ϕ 6= ψ, then ψ = ϕ̄ and so

ϕ(c) = ϕ̄(c) = ψ(c) = f(ψ) = f(ϕ̄) = f(ϕ) = ϕ(b),

hence c− b ∈ Kerϕ = I. Similarly, we can treat the case ϕ = ψ. This shows
that our definition is well-defined. Now we claim that sf is a continuous
section for p : EB → MB. It suffices to see that sf is continuous. So let I0 ∈
MB be arbitrary. Choose ϕ0 ∈ ΦB with Kerϕ0 = I0 and take b0 ∈ B with
f(ϕ0) = ϕ0(b0) (we can of course take such b0 ∈ B as observed above). Then
sf (I0) = (Ker ϕ0, b0 + Ker ϕ0). Let z0 = ϕ0(b0). Then we have f(ϕ0) = z0

and g(z0, ϕ0) = sf (I0) ∈ EB. By Lemma 4, a basic neighborhood of sf (I0)
in EB is of the form g((Oε × N)′), where Oε is an ε-neighborhood of z0 in
C, N is a neighborhood of ϕ0 in ΦB and (Oε ×N)′ = (Oε ×N)∩ (C×ΦB)′.
Also we have

g((Oε × N)′) = {(Ker ϕ, b + Ker ϕ) : ϕ ∈ N and ϕ(b) ∈ Oε}.

Since f is continuous, we can find a neighborhood U0 of ϕ0 in ΦB so that
f(U0) ⊂ Oε and U0 ⊂ N . Set V0 = ε(U0) and hence V0 is a neighborhood
of I0 in MB since ε : ΦB → MB is open from Proposition 1. We assert
that sf (V0) ⊂ g((Oε × N)′). In fact, if I ∈ V0, then there exists ϕ ∈ U0

with I = ε(ϕ) = Ker ϕ and so ϕ ∈ N and f(ϕ) ∈ Oε. Now take b ∈ B
with f(ϕ) = ϕ(b). Then sf (I) = (I, b + I) = (Ker ϕ, b + Kerϕ) and hence
sf (I) ∈ g((Oε × N)′). Thus we have our assertion sf (V0) ⊂ g((Oε × N)′).
Now to see fsf

= f , let ϕ ∈ ΦB and take b ∈ B with f(ϕ) = ϕ(b). By
definition of the natural map, we have fsf

(ϕ) = ϕ(b) and so fsf
(ϕ) = f(ϕ).

Consequently, fsf
= f and so we have the natural map is surjective.

Now let s ∈ Γb(EB). For any ϕ ∈ ΦB, set I = Kerϕ. Then s(I) =
(I, b+I) and s∗(I) = (I, b̄+I) for some b, b̄ ∈ B such that ϕ(b) = ϕ(b̄). Hence
fs(ϕ) = ϕ(b) and so |fs(ϕ)| = |ϕ(b)| = |s(I)| ≤ ‖s‖. Therefore ‖fs‖ ≤ ‖s‖
and so fs ∈ Cb

h(ΦB). Similarly, ‖s‖ ≤ ‖fs‖ and hence the restriction of this
natural map to Γb(EB) is isometric. Moreover, since fs∗(ϕ) = ϕ(b̄) = fs(ϕ),
it follows that fs∗ = fs

∗ and so the natural map is ∗-preserving. Also, we
can easily see that this natural map is a real algebra homomorphism.

Finally set ρ(s) = fs for each s ∈ Γb(EB). Then we can easily see that
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ρ(Γb(EB)) = Cb
h(ΦB) from the above observation. Moreover, ρ(Γ0(EB)) =

Ch,0(ΦB). To see this, let f ∈ Ch,0(ΦB) and δ > 0. Set Kf = {ϕ ∈ ΦB :
|f(ϕ)| ≥ δ} and then Kf is compact. Set Tf = ε(Kf ) and so Tf is also
compact. Then we have Tf = {I ∈ MB : |sf (I)| ≥ δ}. In fact, let ϕ ∈ Kf

be arbitrary and set I = Kerϕ. Take b ∈ B with ϕ(b) = f(ϕ) and then
sf (I) = (I, b + I). By definition of |sf (I)|, we have |sf (I)| = |ϕ(b)| and so
|sf (I)| ≥ δ since ϕ ∈ Kf . That is Tf ⊂ {I ∈ MB : |sf (I)| ≥ δ}. Conversely,
let I ∈ MB with |sf (I)| ≥ δ. Choose ψ ∈ ΦB with I = Ker ψ and take
c ∈ B with ψ(c) = f(ψ). Then we have |f(ψ)| = |ψ(c)| = |sf (I)| ≥ δ and
so ψ ∈ Kf , namely I ∈ Tf . Therefore we obtain the inverse inclusion. We
thus obtain that sf ∈ Γ0(EB) and hence ρ(Γ0(EB)) ⊃ Ch,0(ΦB). Now let
s ∈ Γ0(EB) and δ > 0. Set Ts = {I ∈ MB : |s(I)| ≥ δ} and then Ts is
compact. Set Ks = {ϕ ∈ ΦB : |fs(ϕ)| ≥ δ} and then we have Ks = ε−1(Ts),
similarly. Therefore we see from Lemma 1-(2) that Ks is compact and hence
ρ(Γ0(EB)) ⊂ Ch,0(ΦB). This completes the proof.
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