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ON A CLASS OF RINGS OF ORDER P 5

Chiteng’a John CHIKUNJI

Abstract. This paper describes all rings of order p5, of a certain class
of finite rings which satisfy the conditions that (i) the set of all zero-
divisors form an ideal M; (ii) M3 = (0); and (iii) M2 6= (0).

1. Introduction

Throughout this paper, all rings are finite, associative (however, not nec-
essarily commutative) and have an identity element denoted by 1. It is fur-
ther assumed that homomorphisms preserve 1, subrings have the same 1 and
modules are unital. In what follows Z will denote the ring of all integers, p
will be any prime integer ≥ 2. Recall that a finite ring with identity is called
a completely primary ring if the set M of all its zero-divisors forms an ideal.
Let R be a finite completely primary ring. Then R contains a subring Ro

such that Ro/pRo
∼= R/M, where pRo = (p), is the radical of Ro (see 2.4 in

the body of the paper). We use ann(M) to denote the two-sided annihilator
of M in a ring R; F the Galois field GF (q), where q = pr, for any positive
integer r; and if S is any set, |S| will denote the cardinal number of elements
in S. The notations dim(M/ann(M)) and dim(M2) will denote the dimen-
sions of M/ann(M) and M2 over the residue field Ro/pRo, respectively.
Furthermore, charR will denote the characteristic of any ring R.

In earlier papers, [1] and [2], we formulated the isomorphism problem of
a class of finite rings which satisfy the conditions that (i) the set of all zero-
divisors form an ideal M; (ii) M3 = (0); and (iii) M2 6= (0). These rings
are completely primary and we call a ring R which satisfies conditions (i),
(ii) and (iii), a ring with property(T). This paper describes all the rings of
this type of order p5 and obtains the number of non-isomorphic classes.

2. Preliminary results and definitions

For convenience of the reader, we shall gather in this section all definitions
and results which will be used in the sequel. The following results will be
assumed:

2.1. Let R be a finite ring. Then, there is no distinction between left and
right zero-divisors (units) and every element in R is either a zero-divisor or
a unit (see Section 4 in [4]).
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2.2. Let R be a finite completely primary ring, M the set of all the zero-
divisors in R, p a prime, k, n and r be positive integers. Then

(i) |R| = pnr;
(ii) M is the Jacobson radical of R;
(iii) Mn = (0);
(iv) |M| = p(n−1)r;
(v) R/M ∼= GF (pr), the finite field of pr elements; and
(vi) charR = pk, where 1 ≤ k ≤ n.

This is essentially Theorem 2 of [7].

2.3. Let R be as in 2.2. If n = k, then R = Zpk [b], where b is an element of
R of multiplicative order pr − 1; M = pR and Aut(R) ∼= Aut(R/pR). Such
a ring is called a Galois ring and denoted by GR(pkr, pk).

2.4. Let R be as in 2.2 and let charR = pk. Then R has a coefficient subring
Ro of the form GR(pkr, pk) which is clearly a maximal Galois subring of R.
This can easily be deduced from the main theorem in [3].

2.5. Let R and Ro be as in 2.2 and 2.4. If R
′
o is another coefficient subring

of R then there exists an invertible element x in R such that R
′
o = xRox

−1

(see theorem 8 in [7]).

The following result is due to Wirt [8].

2.6. Let R and Ro be as in 2.2 and 2.4. Then there exist m1, ..., mh ∈ M
and σ1, ..., σh ∈ Aut(Ro) such that

R = Ro ⊕ Rom1 ⊕ . . . ⊕ Romh (as Ro-modules),

miro = rσi
o mi, for all ro ∈ Ro and any i = 1, ..., h. Moreover, σ1, ..., σh are

uniquely determined by R and Ro.

By using the decomposition of R0⊗Z R0 in terms of Aut(Ro) and the fact
that R is a module over R0 ⊗Z R0, one may obtain the proof of 2.6.

We call σi the automorphism associated with mi and σ1, ..., σh the asso-
ciated automorphisms of R with respect to Ro.

2.7. Let R and Ro be as in 2.2 and 2.4. Let charR = pk. If m 6= 0 ∈ M and
pt is the additive order of m, for some positive integer t, then |Rom| = ptr.
This follows from the fact that Rom ∼= Ro/ptRo.

2.8. Let R be a completely primary ring described in 2.2 and let Ro be a
maximal Galois subring of R. Then, by 2.3, Ro = Zpk [b]. Let Ko =< b >
∪{0}. Then, it is easy to show that every element of Ro can be written
uniquely as

∑k−1
i=0 piλi, where λi ∈ Ko. Since R = Ro ⊕Rom1 ⊕ . . .⊕Romh

(by 2.6), it is easy to see that M = pRo ⊕ Rom1 ⊕ . . . ⊕ Romh.
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3. Rings with property(T)

Let R be a finite completely primary ring such that if M is the Jacobson
radical, then M3 = (0) and M2 6= (0). These rings were first studied by
the author in [1] and called them ”rings with property(T)”. Since R is such
that M3 = (0), by 2.2, charR is either p, p2 or p3. By 2.4, R contains
a coefficient subring Ro with charRo = charR, and with Ro/pRo equal to
R/M. Moreover, Ro is a Galois ring of the form GR(pkr, pk), k = 1, 2 or 3.

Let ann(M) denote the two-sided annihilator of M in R, which is of
course an ideal of R. As M3 = (0), it follows easily that M2 ⊆ ann(M).

We know from 2.6 that R = Ro ⊕
∑h

i=1 Romi, where mi ∈ M, and that
there exist automorphisms σ1, ..., σh ∈ Aut(Ro) such that miro = rσi

o mi,
for all ro ∈ Ro and for all i = 1, ..., h; and that the number h and the
automorphisms σi are uniquely determined by R and Ro. Again, since M3 =
(0), we have that p2mi = 0 , for all mi ∈ M. Further, pmi = 0 for all
mi ∈ ann(M). In particular, pmi = 0 for all mi ∈ M2.

Let d ≥ 0 denote the number of the mi ∈ {m1, m2, ...,mh} with pmi 6= 0.
Since R = Ro⊕

∑h
i=1 Romi and every element of Ro can be written uniquely

as
∑k−1

i=0 piλi, where λi ∈ Ko, and if |R| = pnr, then, since |Ko| = pr, it
follows that

n =

 h + 1 when charR = p
h + d + 2 when charR = p2

h + d + 3 when charR = p3.

Let K = R/M. If we define scalar multiplication on M/ann(M) by
(r + M) · (m + ann(M)) = r · m + ann(M), where r ∈ R, m ∈M, then
it is easy to verify that M/ann(M) is a vector space over K. Also, if
dimK(M/ann(M)) = s, then dimK(M2) ≤ s2. In particular, if dimK(M/
ann(M)) = 1, then dimK(M2) = 1.

4. Rings of characteristic P

In this section we assume R to be a completely primary ring of the in-
troduction, of order p5 and with charR = p. The goal is to determine all
isomorphism types for R. When charR = p, the maximal Galois subring
Ro of R is isomorphic to Fp, and it will be convenient to identify Fp with
Ro. Since |R| = p5, the additive group R+ must then be isomorphic to
Fp ⊕ Fp ⊕ Fp ⊕ Fp ⊕ Fp. Hence, there exist elements x1, x2, x3, x4 ∈ M
such that {1, x1, x2, x3, x4} is a basis for R+ as a free Ro−module. The
multiplication in R is then determined by the products xixj . We proceed
our argument by cases based upon the dimension, over Ro/pRo, of the vector
space M/ann(M). Cleary, Ro/pRo

∼= Fp.
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4.1. The case when dim(M/ann(M)) = 1.
Suppose that dim(M/ann(M)) = 1. Then dim(M2) = 1, and hence,

R+, as a free Ro−module, has a basis {1, x1, x2, x3, x4} with xiM =
Mxi=(0), for every i = 2, 3, 4; and x2

1 = ax2, 0 < a ≤ p−1. Thus, up to iso-
morphism, the ring R is given by the element a ∈ Fp. If {1, x

′
1, x

′
2, x

′
3, x

′
4}

is another basis for R+ with structural constant b ∈ F∗
p, then x

′
1 is a linear

combination of x1, x2, x3, x4. Since M3 = (0), we may assume that the
coefficients of x2, x3, x4 are zero and write x

′
1 = γx1, so that γ ∈ F∗

p is

the transition element from the basis {x1} of M/M2 to the basis {x′
1}.

Equally, let β ∈ F∗
p be the transition element from the basis {x2} of M2 to

{x′
2}. Now (x

′
1)

2 = bx
′
2. However, (x

′
1)

2 = γ2x2
1 = γ2ax2 = γ2aβx

′
2, so that

b = γ2aβ. By taking γ = β = 1, we see that the number of isomorphism
classes of rings of this type and of order p5, where dim(M/ann(M)) = 1,
is only 1, for any prime p.

4.2. The case when dim(M/ann(M)) = 2.
In this case, it is easy to see that dim(M2) = 1 or 2; and hence, R+, as

a free Ro−module, has a basis {1, x1, x2, y1, y2} with yiM = Myi= (0),
i = 1, 2; and either

(i) xixj = aijy1, where 0 ≤ aij ≤ p− 1, 1 ≤ i, j ≤ 2; if dim(M2) =1; or
(ii) xixj =

∑2
k=1 ak

ijyk, where 0 ≤ ak
ij ≤ p − 1; if dim(M2) = 2.

In case (i), the elements aij form a 2× 2 matrix A = (aij). If {1, x
′
1, x

′
2,

y
′
1, y

′
2} is another basis for R+ with corresponding matrix B = (bij), then

x
′
1, x

′
2 are linear combinations of x1, x2, y1, y2. By assuming that the

coefficients of y1, y2 are zero, we may write x
′
i = γ1ix1 + γ2ix2, so that

C = (γij) is the transition matrix from the basis {x1, x2} of M/M2 to
the basis {x′

1, x
′
2}. Similarly, let β ∈ F∗

p be the transition element from the
basis {y1} of M2 to {y′

1}. Now x
′
ix

′
j = bijy

′
1, and comparing coefficients of

y
′
1, we obtain the equations which, in matrix form is given by the equivalence

relation CT AC = βB.
Now, consider the matrices β−1CT AC. The representatives of the con-

gruence classes of matrices A in M2(Fq) may be given by the following: for
characteristic p 6= 2, we have;(

0 0
0 0

)
,

(
0 1
−1 0

)
,

(
1 0
0 0

)
,

(
1 0
1 0

)
,

(
g 0
0 0

)
,(

g 0
2g g

)
,

(
1 0
0 1

)
,

(
1 0
0 g

)
,

(
1 0
γ 1

)
,

(
1 0
γ g

)
,

where g is a non-square and γ runs over a complete set of coset represen-
tatives of {±1} in F∗

q ; and these are q + 7 altogether; and for characteristic
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p = 2, we have;(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
1 0

)
,

(
1 0
α 1

)
,

where α ∈ F∗
q ; and these are q + 4 in all.

Now, if |F | = 2, then there are 5 non-zero congruence classes and since
β = 1 in this case, these matrices also represent equivalence classes. For
|F | = p, p 6= 2, there are p + 6 non-zero congruence classes. If β = g is an

element of F∗
p, it is easy to see that the congruence class

(
g 0
2g g

)
is equiv-

alent to one of the classes of the form
(

1 0
γ 1

)
; and the classes

(
1 0
0 0

)
and

(
g 0
0 0

)
are equivalent. Therefore, the number of equivalence classes

in this case is p + 4 and this also gives the number and models for the
corresponding rings. Thus, the number of isomorphism classes of rings of
this type, characteristic p and of order p5, where dim(M/ann(M)) = 2 and
dim(M2) = 1 is 5 if p = 2 and p+4 if p 6= 2, and the number of commutative
rings of this type is 3 for every prime p.

In case (ii), the elements ak
ij form two linearly independent matrices A1 =

(a1
ij), A2 = (a2

ij) of size 2 × 2. In [5] page 249 and [6] page 234, Corbas
and Williams obtained numbers of equivalence classes of pairs of linearly
independent matrices over finite fields and we deduce from their results that
the number of isomorphism classes of these rings of characteristic p and of
order p5, where dim(M/ann(M)) = 2 and dim(M)2 = 2, is 10 when p = 2
and 3p + 5 when p 6= 2. Of these, 3 are commutative (for any prime p), the
others are not.

4.3. The case when dim(M/ann(M)) = 3.
It is clear in this case that dim(M2) = 1 since |R| = p5, and hence, R+ has

a basis {1, x1, x2, x3, y} with yM = My = (0), and xixj = aijy, where 0 ≤
aij ≤ p − 1, 1 ≤ i, j ≤ 3. The elements aij form a 3 × 3 non-zero matrix
A = (aij). If {1, x

′
1, x

′
2, x

′
3, y

′} is another basis for R+ with corresponding
matrix B = (bij), then x

′
1, x

′
2, x

′
3 are linear combinations of x1, x2, x3, y.

As before, since M3 = (0), we may assume, that the coefficient of y is zero
and write x

′
i = γ1ix1+γ2ix2+γ3ix3, so that C = (γij) is the transition matrix

from the basis {x1, x2, x3} of M/M2 to the basis {x′
1, x

′
2, x

′
3}. Similarly,

let β ∈ F∗
p be the transition element from the basis {y} of M2 to {y′}.

Now x
′
ix

′
j = bijy

′
, and comparing coefficients of y

′
, we obtain the equations

which, in matrix form, is given by the equivalence relation CT AC = βB. As
before, we consider the matrices β−1CT AC = B.
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The congruence classes of matrices A in M3(Fq) have the following rep-
resentatives: when characteristic of Fq is p 6= 2, we have; 0 0 0

0 0 0
0 0 0

 ,

 1 0 0
0 0 0
0 0 0

 ,

 ε 0 0
0 0 0
0 0 0

 ,

 1 0 0
0 1 0
0 0 0

 , 1 0 0
0 ε 0
0 0 0

 ,

 1 0 0
0 1 0
0 0 1

  1 0 0
0 1 0
0 0 ε

 ,

 µ 0 0
0 0 1
0 −1 0

 , µ 0 0
0 0 0
0 1 0

 ,

 µ 0 0
0 ε 0
0 2ε ε

 ,

 µ 0 0
0 1 0
0 γ 1

 ,

 µ 0 0
0 1 0
0 γ ε

 , µ 0 0
0 0 1
1 1 0

 ,

where µ ∈ {0, 1, ε}, with ε an arbitrary but fixed non-square in F∗
q , and γ

runs over a complete set of coset representatives of {±1} in F∗
q , and their

total is 3q + 16 ; and when characteristic of Fq is p = 2, we have; 0 0 0
0 0 0
0 0 0

 ,

 1 0 0
0 0 0
0 0 0

 ,

 1 0 0
0 1 0
0 0 0

 ,

 1 0 0
0 1 0
0 0 1

 , 0 0 0
0 0 1
0 1 0

 ,

 µ 0 0
0 0 0
0 1 0

 ,

 µ 0 0
0 1 0
0 γ 1

 ,

 1 0 0
0 0 0
1 1 0

 , 1 0 0
0 0 1
1 1 0

 ,

 1 0 0
0 0 1
α 1 1

 ,

where µ ∈ {0, 1}, γ ∈ F ∗ and X2 + αX + 1 is an arbitrary but fixed
irreducible polynomial of degree two over F. Their total is 2q + 8.

Now, suppose |F | = 2. Then we can deduce from the above list that
the number of non-zero congruence classes is 11. Since in this case β = 1,
these classes are also the equivalence classes, and hence the number of non-
isomorphic rings of this type and of characteristic p = 2.

If |F | = p, p 6= 2, then the list above gives 3p + 15 non-zero congruence
classes. As β runs over the elements of F∗

p, the congruence classes ε 0 0
0 0 0
0 0 0

 ,

 1 0 0
0 1 0
0 0 ε

 ,

 0 0 0
0 ε 0
0 2ε ε

 ,

 1 0 0
0 ε 0
0 2ε ε

 ,
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and

 ε 0 0
0 ε 0
0 2ε ε

 , become equivalent to

 1 0 0
0 0 0
0 0 0

 ,

 1 0 0
0 1 0
0 0 1

 , 0 0 0
0 1 0
0 γ 1

 ,

 ε 0 0
0 1 0
0 γ 1

 , and

 1 0 0
0 1 0
0 γ 1

 , respectively. Thus, the

number of equivalence classes is 3p + 10.
Collectively, the number of isomorphism classes of rings of this type of

characteristic p and of order p5, where dim(M/ann(M)) = 3 (and hence,
dim(M2) = 1), is 11 when p = 2 and 3p + 10 when p 6= 2, and the number
of commutative ones is 4, for every prime p. The models for these rings can
easily be deduced from the lists of congruence classes given above.

We summarize the results of this section in the following:

Proposition 4.1. The number of mutually non-isomorphic rings of this
type, of characteristic p and of order p5 is 27 when p = 2 and 7p + 20 when
p 6= 2. Of these, the number of commutative ones is 11 for every prime p.

5. Rings of characteristic P 2

Let R be a ring of the introduction, of order p5 and characteristic p2. All
possible isomorphism types for R will be described.

When charR = p2, the maximal Galois subring Ro of R is isomorphic to
Zp2 , and it will be convenient to identify Zp2 and Ro. Since |R| = p5, the
additive group R+ of R must then be isomorphic to one of the following:

(1) Zp2 ⊕ Zp ⊕ Zp ⊕ Zp; or (2) Zp2 ⊕ Zp2 ⊕ Zp.

5.1. The case where R+ = Zp2 ⊕ Zp ⊕ Zp ⊕ Zp.
It is clear in this case that M = pZp2 ⊕ Zp ⊕ Zp ⊕ Zp; and as such, we

have that p ∈ ann(M); and hence, either (i) p ∈ M2, or (ii) p /∈ M2.

5.1.1. Case(i). Suppose that p ∈ M2. Let x, y, z ∈ R, such that {p, x, y, z}
is a basis for the additive group M as a free Zp2−module. Obviously,
{1, x, y, z} is a basis for the additive group R+ of R (also as a Zp2−module).
Further, each element of R can be written (not necessarily uniquely) in the
form αo+α1x+β1y+γ1z where αo, α1, β1, γ1 ∈ Zp2 and px = py = pz = 0.
Thus Zp2 serves as a set of scalars for the ring R, as we have noted above.

(i) Now, suppose that dim(M/ann(M)) = 1 over Zp2/pZp2 . Then, obvi-
ously, dim(M2) = 1 and hence, we have that x2 = ap, with 0 < a ≤ p − 1,
and the rest of the other products are equal to zero. Thus R possesses
the element a as its structural constant. As in 4.1, a change of basis with
corresponding structural constant b leads to the relation b = γ2aβ, with
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γ, β ∈ (Zp2/pZp2)∗. Here, β = 1 as any ring homomorphism sends p to it-
self. Now, the set H = {γ2 : γ ∈ (Zp2/pZp2)∗} is a subgroup of (Zp2/pZp2)∗

and infact H =< (δ+pZp2)2 >, where δ ∈ Zp2 of multiplicative order p2−1.
However,

| < (δ + pZp2)2 > | =
p2 − 1

(p2 − 1, 2)
=

{
p2 − 1 if p = 2
p2−1

2 if p 6= 2.

Thus, for a fixed γ ∈< (δ + pZp2)2 >, the number of rings of this type
isomorphic to the ring with structural constant a is{

p2 − 1 if p = 2
p2−1

2 if p 6= 2.

Thus, the number of isomorphism classes of rings with property(T) of or-
der p5 and characteristic p2 in which p ∈ M2 and where dim(M/ann(M)) =
1 is 1 when p = 2 and 2 when p 6= 2. Moreover, these rings are all commu-
tative.

(ii) Next, suppose that dim(M/ann(M)) = 2 over Zp2/pZp2 . Then either
dim(M2) = 1 or 2.

Let us first consider the case where dim(M2) = 1. In this case, the ring
R is defined by one structural matrix A, where A is a 2× 2 non-zero matrix
with entries in Zp2/pZp2 . As in case(i) of 4.2, we have the relation which, in
matrix form is given by the equivalence relation β−1CT AC = B. Since any
isomorphism between two rings of this type sends the element p to itself, we
may take β = 1 in the above relation. Since Zp2/pZp2

∼= Fp, we may apply
the method of case(i) of 4.2 to conclude that the number of equivalence
classes of 2 × 2 matrices over Zp2/pZp2 is equal to the number of non-zere
congruence classes. Hence, the number of mutually non-isomorphic rings of
this type is 5 if p = 2, and p + 6 if p 6= 2. The number of commutative ones
is 3 when p = 2 and 4 when p 6= 2.

We now turn to the case where dim(M2) = 2. In this case, R has two
linearly independent matrices A1 and A2 as its structural matrices. From
case(ii) of 4.2, we deduce that the number of non-isomorphic rings of this
type is 10 if p = 2 and 3p + 5 if p 6= 2. Of these, only 3 are commutative for
every prime p, the others are not.

(iii) Finally, suppose that dim(M/ann(M)) = 3 over Zp2/pZp2 . Ob-
viously, dim(M2) = 1, and we can rewrite the basis for M in the form
{x1, x2, x3, p} and so xixj = aijp, with 0 ≤ aij ≤ p − 1, 1 ≤ i, j ≤ 3. The
elements aij form a 3×3 non-zero matrix A = (aij). By similar calculations
as in 4.3, we deduce that the number of isomorphism classes of rings of this
type, of characteristic p2 and of order p5, where dim(M/ann(M)) = 3 (and
hence, dim(M2) = 1), in which p ∈ M2 is 11 when p = 2 and 3p + 15 when
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p 6= 2 (since β = 1). Of these, the number of commutative rings is 4 when
p = 2 and 6 when p 6= 2. The models for these rings can easily be deduced
from the lists of congruence classes of 3 × 3 matrices given in 4.3.

This completes our description of rings of this type, of order p5 and charac-
teristic p2 in which p ∈ M2 and altogether, there are 27 with 11 commutative
ones, if p = 2 and 7p + 28 with 15 commutative ones if p 6= 2.

5.1.2. Case(ii). Suppose now that p ∈ ann(M) but p /∈ M2. Again, let
x, y, z ∈ R, such that {p, x, y, z} is a basis for the additive group of
M. Of course, as in the previous case, {1, x, y, z} is a basis for R+ and
each element of R can be written (not necessarily uniquely) in the form
αo + α1x + β1y + γ1z, where αo, α1, β1, γ1 ∈ Zp2 and px = py = pz = 0.
Thus Zp2 serves as a set of scalars for the ring R.

(i) Now, suppose that dim(M/ann(M)) = 1 over Zp2/pZp2 . Then, obvi-
ously, dim(M2) = 1 and hence, we have that x2 = ay, with 0 < a ≤ p − 1,
and the rest of the other products are equal to zero. Thus R possesses the
element a as its structural constant. A change of basis with structural con-
stant b gives the relation b = γ2aβ. Hence, we may select γ = 1 and β = a−1,
so that for a fixed a ∈ (Zp2/pZp2)∗, the number of rings isomorphic to one
with structural constant a is p2−1, for any prime p. Thus, we have precisely
one isomorphism class of rings of this type, of order p5 and characteristic p2

in which p ∈ ann(M) and p /∈ M2, and where dim(M/ann(M)) = 1 and
dim(M2) = 1.

(ii) Next, if dim(M/ann(M)) = 2 over Zp2/pZp2 , it is clear that dim(M2)
= 1 since p /∈ M2, and by similar calculations as in case(ii) of 3.2, we have
that the number of isomorphism classes of rings of this type is 5 when p = 2
and p + 4 when p 6= 2. Of these, 3 are commutative for every prime p.
Therefore, the total number of distinct rings of this type, of order p5 and
characteristic p2 in which p ∈ ann(M) −M2 is 6 with 4 commutative ones
if p = 2 and p + 5 with 4 commutative ones if p 6= 2.

To summarize the results in the case of rings of this type, of order p5

and characteristic p2 in which p ∈ ann(M), the number of mutually non-
isomorphic rings of this type has been shown to be 33 when p = 2 and
8p+33 otherwise. Only 15 are commutative when p = 2 and 19 when p 6= 2.

5.2. The case where R+ = Zp2 ⊕ Zp2 ⊕ Zp.
In this case, it is clear that p /∈ ann(M). Let x, y ∈ R such that

{1, x, y} is a basis for R+. Then, it is obvious that {p, x, y} is a basis
for the additive group M. Hence, each element of R can be written (not
necessarily uniquely) in the form αo + α1x + β1y, where αo, α1, β1 ∈ Zp2

and py = 0.
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Since p /∈ ann(M) and p2 = 0, it follows that there is no ring R of this
type for which dim(M/ann(M)) = 1. So, dim(M/ann(M)) ≥ 2.

(i) Suppose that dim(M/ann(M)) = 2 over Zp2/pZp2 . Then either
dim(M2) = 1 or 2. If dim(M2) = 1 , then px 6= 0 and we can find an

element a ∈ Zp2/pZp2 such that x2 = apx. Thus, R has
(

0 1
1 a

)
, as its

structural matrix.
Now, a ring R

′
is isomorphic to the ring R if it has a structural matrix

of the form β−1CT

(
0 1
1 a

)
C, where C ∈ GL(2, Zp2/pZp2), and β ∈

(Zp2/pZp2)∗. Since p2 = 0 in every ring of this type, the above matrix must

be of the form
(

0 α
α γ

)
, α ∈ (Zp2/pZp2)∗ and γ ∈ Zp2/pZp2 .

Now, if char(Zp2/pZp2) = 2 and a 6= 0, we can select β = a and

C =
(

1 0
0 1/a

)
; to see that the rings with structural matrices

(
0 1
1 a

)
and

(
0 1
1 1

)
are isomorphic. Thus, for a fixed a ∈ (Zp2/pZp2)∗, there

exist precisely one ring of this type; namely, the ring with structural matrix(
0 1
1 1

)
.

If a = 0, then it is clear that the ring with structural matrix
(

0 1
1 0

)
is not isomorphic to the one with structural matrix

(
0 1
1 1

)
as these two

matrices belong to different equivalence classes (see Section 4). Thus, if
char(Zp2/pZp2) = 2, there are precisely two isomorphism classes of rings of
this type.

Next, if char(Zp2/pZp2) 6= 2, we can select β = 1 and C =
(

1 0
1−a

2 1

)
,

to see that the rings with structural matrices
(

0 1
1 a

)
, for any a ∈

Zp2/pZp2 , and
(

0 1
1 1

)
are isomorphic. Therefore, if char(Zp2/pZp2) 6= 2,

there is exactly one ring of this type, up to isomorphism, namely, the ring

with structural matrix
(

0 1
1 0

)
. Thus, the number of isomorphism classes

of rings of this type is 2 when p = 2 and 1 otherwise. There rings are all
commutative.

If dim(M2) = 2, then we can find elements a and 0 6= c in Zp2/pZp2 such
that x2 = apx + cy and this leads to 10 or 3p + 5 mutually non- isomorphic
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rings according as p = 2 or p 6= 2. Of these, 3 are commutative, the others
are not (see case(ii) of 4.2).

(ii) Finally, suppose that dim(M/ann(M)) = 3. Then dim(M2) = 1 and
we can find elements α, β, γ, ε ∈ Zp2/pZp2 such that x2 = αpx, xy = βpx,

yx = γpx, y2 = εpx. These elements form a 3 × 3 non-zero matrix A,
and since p2 = 0, we apply methods of 4.3, to obtain 11 when p = 2 and
3p + 10 when p 6= 2, isomorphism classes of rings of this type. Only 4 are
commutative for each prime p.

To summarize the results in the case of rings of this type, of order p5

and characteristic p2 in which p /∈ ann(M), the number of mutually non-
isomorphic rings of this type has been shown to be 23 when p = 2 and
6p + 16 otherwise. Of these, the commutative ones are 9 when p = 2 and 8
when p 6= 2.

We can now state the following:

Proposition 5.1. The number of isomorphism classes of rings of this type,
of order p5 and characteristic p2 is 56 when p = 2 and 14p+49 when p 6= 2.
Of these, 24 are commutative when p = 2 and 27 when p 6= 2. The others
are not.

6. Rings of characteristic P 3

Let R be a ring of this type, of order p5 and characteristic p3. In this
section, we shall describe all possible isomorphism types of these rings.

When charR = p3, the maximal Galois subring Ro of R is isomorphic to
Zp3 , and we shall identify Ro and Zp3 . Since |R| = p5, the additive group
R+ of R must be isomorphic to one of the following:

(i) Zp3 ⊕ Zp ⊕ Zp; or (ii) Zp3 ⊕ Zp2 .

6.1. The case where R+ = Zp3 ⊕ Zp ⊕ Zp.
Let x, y ∈ R, such that {1, x, y} is a basis for the additive group

R+. Then each element of R can be written (not necessarily uniquely)
as αo + α1x + α2y, where αo, α1, α2 ∈ Zp3 . As before, the argument
proceeds by cases based upon the dimension, over Ro/pRo, of the vector
space M/ann(M). Obviously, Ro/pRo

∼= Fp.
(i) Suppose dim(M/ann(M)) = 1. Then dim(M2) = 1 and hence,

px = py = x2 = xy = yx = y2 = 0; p2 6= 0;

and this multiplication leads to precisely one ring up to isomorphism for any
prime p.

(ii) Suppose dim(M/ann(M)) = 2. Then dim(M2) = 1 or 2. If
dim(M2) = 1, we can find a non-zero element a ∈ Fp such that x2 = ap2,
and the other products are all equal to zero. As in 5.1(i) we have that the
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number of isomorphism classes of rings of this type is 1 when p = 2 and 2
when p 6= 2. These rings are all commutative.

If dim(M2) = 2, we can find elements a and 0 6= c in Fp such that
x2 = ap2+cy, and the rest of the products are zero. The structural matrices

in that definition of this ring are diagonal matrices of the form
(

1 0
0 a

)
(

0 0
0 c

)
. This leads to precisely one commutative ring for any prime.

(iii) Suppose dim(M/ann(M)) = 3. Then dim(M2) = 1, and we can
find elements α, β, γ, ε ∈ Zp such that x2 = αp2, xy = βp2, yx = γp2,
y2 = εp2 and the rest of the products are zero. These elements form a 3× 3

non-zero matrix

 1 0 0
0 α β
0 γ ε

 ,and we deduce from 5.1(i) that the number

of isomorphism classes of rings of this type is 5 when p = 2 and p + 6 when
p 6= 2. The commutative ones are 3 or 4, according as p = 2 or p 6= 2.

Thus, there are 8 with 6 commutative rings of this type when p = 2
and p + 10 with 8 commutative ones when p 6= 2, and this completes our
description of 6.1.

6.2. The case where R+ = Zp3 ⊕ Zp2.
Let x ∈ R such that {1, x} is a basis for R+. Then each element of

R can be written (not necessarily uniquely) in the form αo + α1x, where
αo, α1 ∈ Zp3 . Since px 6= 0 in this case, it follows that dim(M/ann(M)) >

1. Suppose dim(M/ann(M)) = 2. Then dim(M2) = 1 or 2. Again,
since px 6= 0, dim(M2) 6= 1. So, dim(M2) = 2 and therefore, we can find
elements a and c in Zp such that x2 = ap2 + cpx. This leads to precisely
one commutative isomorphism class of rings of this type, for any prime p.

We have thus proved the following:

Proposition 6.1. The number of isomorphism classes of rings of this type,
of order p5 and characteristic p3 is 9 when p = 2 and p + 11 when p 6= 2.
Of these, 7 are commutative when p = 2 and 9 when p 6= 2.

We now state the main result of this paper.

Theorem 6.2. The number of isomorphism classes of rings of this type and
of order p5 is 92 when p = 2 and 22p+80 when p 6= 2. Of these, the number
of commutative ones is 42 when p = 2 and 47 when p 6= 2.

Proof. This follows from Propositions 4.1, 5.1 and 6.1. ¤
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