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MULTIPLE STRUCTURES ON P1: RATIONAL ROPES

E. BALLICO

Abstract. Here we study the theory of rational ropes (multiple struc-
tures on P1 whose ideal sheaf, F , has square zero) introduced by
K. Chandler. F is a vector bundle on P1 and here we show that several
properties of the rope depend on the splitting type of F . We study the
moduli space of all rational ropes with F as ideal sheaf.

1. Introduction

K. Chandler introduced the following definition ([2]). Let Y be smooth
projective curve and x a positive integer. Let X be an algebraic scheme such
that Xred = Y and the ideal sheaf IY,X of Y in X satisfies IY,X

2 = 0. Thus
IY,X is the conormal sheaf of Y in X and it may be seen as an OY -sheaf.
Set F := IY,X when seen as an OY -sheaf. Assume that F has no torsion;
this is equivalent to require that the one-dimensional scheme X is locally
Cohen-Macaulay. Since Y is a smooth curve, F is locally free. It is called
the conormal module of X. Set x := rank(F ). The scheme X is called a
(x + 1)-rope over Y or with Y as support. A 2-rope is a ribbon in the sense
of [1]. Ribbons were studied in details in [1], [3] and [4]. The aim of this
paper is to extend several of their results (with appropriate definitions) to
the case of ropes. The main difference is that a t-rope is not Gorenstein
if t ≥ 3. We will mainly be interested in the case Y = P1. In this case
we will call X a rational rope. It is easy to describe all ropes with a fixed
vector bundle F over P1 as conormal module. Several geometric properties
of the rope depend only from the splitting type of F . In some cases (e.g.
F spanned) the rope X is uniquely determined by F , every vector bundle
on X is a direct sum of line bundles and the Brill-Noether theory of vector
bundles on X is trivial (see 3.5, 3.6, 4.6 and 4.7). An arbitrary rational rope
has a maximal subrope (perhaps reduced to Xred) with spanned conormal
module (see section 5). In section 5 we define the blowing ups of a rope, the
case of a 2-rope being introduced in [1]. As in [1] and [3] such notion seems
to be quite important. In section 6 we compute the number of blowing ups
needed to split a rational rope in terms of the restricted cotangent sequence
of the rope (see Theorem 6.3).
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vector bundles, cotangent complex, rope, ribbon.
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2. Foundations

We work over an algebraically closed base field K. In this section we
collect the easy foundational results on ropes. Let X be a (x + 1)-rope on
the smooth projective curve Y with the rank x vector F on Y as conormal
module. By the very definition of conormal module, IY,X

∼= F as coherent
OY -sheaves. Thus we have an exact sequence of OX -modules

(1) 0 → F → OX → OY → 0

The exact sequence (1) is an exact sequence of OY -modules if and only if
there is a retraction X → Y and in this case (1) is a split exact sequence of
locally free OY -sheaves. If this is a case, we will say that X is a split rope.
Set q := pa(Y ). We have χ(OX) = χ(F )+χ(OY ) = deg(F )+ (x+1)(1− q).
Set g := 1−χ(OX) = (x + 1)q − x− deg(F ). We have an exact sequence on
Y

(2) 0 → F → ΩX |Y → ΩY → 0

(the restricted cotangent sequence). Hence one may associate to any (x+1)-
rope on Y an extension class eX ∈ Ext1(Y ; ΩY , F ) ∼= H1(Y, F ⊗ωY

∗). Since
Y is smooth, the exact sequence (2) locally splits. Thus the structure of
(x+1)-rope is locally split and one can copy [1], p. 724-725, and the general
set-up of [6] and obtain the following result.

Proposition 2.1. For any rank x vector bundle F on the smooth projective
curve Y and every e ∈ H1(Y, F ⊗ωY

∗) there is a unique (x+1)-rope X on Y
with F as conormal module and e as associated extension class. Two (x+1)-
ropes on Y are isomorphic if and only if they have isomorphic conormal
modules and proportional extension classes.

Since IY,X
2 = 0, from (1) we obtain the exact sequence

(3) 0 → H1(Y, F ) → Pic(F ) → Pic(Y ) → 0

For every rank r vector bundle L on X the sheaf IY,X ⊗ L is a rank xr
vector bundle on Y isomorphic to F ⊗ (L|Y ). Set c := deg(L|Y ). We have
deg(F ⊗ (L|Y )) = cx + r(deg(F )). Thus χ(L) = χ(IY,X ⊗ L) + χ(L|Y ) =
(x + 1)c + (r + 1)deg(F ) + (xr + 1)(1 − q) = (x + 1)(deg(L|Y )) + 1 − g.

For every coherent sheaf L on X set deg(L) = χ(L) − χ(OX).
Let X be any (x + 1)-rope with a smooth curve Y as support, F as

conormal module and eX ∈ Ext1(Y ; ΩY , F ) ∼= H1(Y, F ⊗ ωY
∗) as extension

class. Let T be any scheme. The description of all morphisms f : X → T
given in [1], Th. 1.6 and part (1) of Th. 1.8, in the case x = 1 works verbatim
in the general case and we have the following result.



MULTIPLE STRUCTURES ON P1: RATIONAL ROPES 19

Proposition 2.2. Let T be any algebraic scheme. Let X be any (x + 1)-
rope with a smooth curve Y as support, F as conormal module and eX ∈
Ext1(Y ; ΩY , F ) as an extension class. Let γ : ΩX |Y → ΩY be the surjective
map appearing in (2). Fix a morphism f : Y → T . The set of all morphisms
h : X → T extending f is in one-to-one correspondence with the set of all
splittings of the exact sequence df∗(eX), i.e. with the set of all maps of
sheaves u : ΩT |Y → ΩY such that γ ◦ u = df .

Notice that any morphism h : X → T extending f induces a map αf :
f∗(If(Y )/(If(Y ))2) → F . As in part (1) of [1], Th. 1.8, we have the following
result.

Proposition 2.3. The morphism h is a closed immersion if and only if f
is a closed immersion and αf is surjective.

Remark 2.4. Proposition 2.3 gives a very strong criterion to say when a
(x + 1)-rope X over a smooth curve Y may be embedded in a prescribed
(y + 1)-rope T over Y . For all pairs of integers (x, y) with x < y and all
vector bundles (F,G) on Y with rank(F ) = x and rank(G) = y there is a
triple (X,T, j) such that:

(i) X is a (x + 1)-rope over Y with conormal module F ;
(ii) T is a (y + 1)-rope over Y with conormal module G;
(iii) j : X → T is a closed immersion such that j|Y is the identity

if and only if F is a quotient of G.

If Y = P1 we will say that the rope is rational. Set D := P1. Now we
will apply Proposition 2.2 to study the elliptic ropes over P1 and the finite
maps with elliptic ropes as target.

Definition 2.5. Let C be a (z + 1)-rope over D. We will say that C is an
elliptic rope if it has negative type (i.e. the splitting type a1 ≥ · · · ≥ az of
the conormal module of C has a1 < 0) and pa(C) = 1. By the genus formula
for rational (z + 1)-ropes, these conditions are equivalent to az = −2 and
ai = −1 for 1 ≤ i < z.

Remark 2.6. By Remark 3.5 below every elliptic (z+1)-rope C over D is a
split rope. Hence for any integer z ≥ 1 there is a unique elliptic (z +1)-rope
over D. By its very definition the conormal module of an elliptic (z+1)-rope
is semistable if and only if z = 1. Set G := OD(−2) ⊕ OD(−1)⊕(z−1). The
restricted cotangent sequence of C splits. Take any integer t ≥ 2 and any
degree t morphism f : D → D. We have f∗(G) ∼= OD(−2t)⊕OD(−t)⊕(z−1),
f∗(ΩD) ∼= OD(−2t) and f∗(ΩC |D) ∼= OD(−2t)⊕2⊕OD(−t)⊕(z−1). We have
a map df : f∗(ΩC |D) ∼= OD(−2t) → ΩD

∼= OD(−2). Hence Proposition 2.2
gives the following result.
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Proposition 2.7. Fix integers x, z with x > z ≥ 1 and let X be a (x + 1)-
rope over D with conormal module F . Let f : D → D be a degree t morphism
and C an elliptic (z + 1)-rope. Assume h0(D,F (2t)) 6= 0. Then there is a
morphism u : X → C lifting f and with u(X) not contained in D.

3. Rational ropes and the splitting type of F

Let X be a rational (x + 1)-rope with conormal module F := OD(a1) ⊕
· · · ⊕ OD(ax) with a1 ≥ · · · ≥ ax. We have pa(X) = −

∑
1≤i≤x ai − x. We

will say that X has negative type if a1 < 0. If X has negative type we will
call the integer −a1 the negative level of X. The deformation theory of a
split rope is equivalent to the deformation theory of the vector bundle F on
D. We will say that a rational rope is rigid if its conormal module F is rigid
as a vector bundle on D, i.e. if ax ≥ a1 − 1. We will say that a rational
rope is semistable if its conormal module is a semistable vector bundle on
D, i.e. if ax = a1. Since the multiplicative structure of F is trivial, every
OD-subsheaf J of F is an OX -ideal subsheaf of OX and hence it defines a
closed subscheme Spec(OX/J) of X with D as support. In particular for
every integer i with 1 ≤ i ≤ x the vector bundle Fi := OD(a1)⊕· · ·⊕OD(ai)
is a subbundle of F and any inclusion of Fi into F defines a closed subscheme
Spec(OX/Fi) of X. However, unless ai > aj for all pairs (i, j) with i < j,
these subschemes are not uniquely determined by F . Call y the number
of different integers in the set {a1, . . . , ax}, say {a1, . . . , ax} = {b1, . . . , by}
with bi > bj if i < j and with bi appearing ri times in the weakly decreasing
sequence a1 ≥ a2 ≥ · · · ≥ ax. The vector bundles F (i) :=

⊕
1≤j≤i OD(bj)⊕rj

are uniquely determined by F ; they give the Harder-Narasimhan filtration
of F . Set X(i) := Spec(OX/F (i)).

Remark 3.1. Let X be a rational (x + 1)-rope of negative type. Call c :=
−a1 the negative level of X. For every L ∈ Pic(X) with deg(L) < (x + 1)c
the restriction map H0(X,L) → H0(D,L|D) is injective.

Remark 3.2. Let X be a rational (x + 1)-rope of negative type. Call c the
negative level of X. Fix L,R ∈ Pic(X) with deg(L) < (x+1)c and deg(R) <
(x + 1)c. Since D is reduced and connected, the pairing H0(D,L|D) ⊗
H0(D,M |D) → H0(D,L⊗M |D) is non-degenerate in both variables. Since
the restriction maps H0(X,L) → H0(D,L|D) and H0(X,M) → H0(D,M |D)
are injective (Remark 3.1) the pairing α : H0(X,L)⊗H0(X,M) → H0(X,L⊗
M) is non-degenerate in both variables. Hence by a classical lemma of
Hopf we have dim(Im(α)) ≥ h0(X,L) + h0(X,M) − 1 and in particular
h0(X,L ⊗ M) ≥ h0(X,L) + h0(X,M) − 1.

From Remark 3.1 we immediately obtain the following result.
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Proposition 3.3 (Clifford’s inequality). Let X be a rational (x + 1)-rope
of negative type. Let 0 > a1 ≥ · · · ≥ ax be the splitting type of the conormal
module of X. For every L ∈ Pic(X) with 0 ≤ deg(L) ≤ (x + 1)(−a1 − 1) we
have h0(X,L) − 1 ≤ deg(L)/(x + 1).

Remark 3.4. Let X be a rational (x + 1)-rope of negative type. Using
Remark 3.1 we see that X splits if and only if there is L ∈ Pic(X) such that
deg(L) ≤ x + 1 and h0(X,L) ≥ 2.

Remark 3.5. Let X be a rational rope with conormal module F . Assume
that F has splitting type a1 ≥ · · · ≥ ax with ax ≥ −1. By (3) we have
Pic(X) ∼= Z and every line bundle L on X is uniquely determined by its
restriction to Xred, i.e. by the unique integer d such that deg(L) = (x+1)d.

Remark 3.6. Let X be a rational (x + 1)-rope whose conormal module
has splitting type a1 ≥ · · · ≥ ax with ax ≥ 0. By Remark 3.5 we have
Pic(X) ∼= Z. Call L(t) the unique line bundle on X with deg(L(t)) = (x+1)t.
The sequence of integers h0(X,L(−t)), t ≥ 0, uniquely determines all the
integers a1, . . . , ax; if ax = 0 to obtain this observation we use either that
every regular function on D is constant and hence that the restriction map
H0(X,OX) → H0(D,OD) is surjective or that X is a split rope.

Let X be a rational (x + 1)-ropes and F its conormal module. If X is
not of negative type, then h0(X,OX) ≥ 2 by the exact sequence (1). The
finite dimensional K-vector space H0(X,OX) has a K-algebra structure for
which it is a local ring whose maximal ideal m has m2 = 0. As a K-vector
space we have m ∼= H0(D,F ). For any coherent sheaf E on X the K-vector
spaces H0(X,E) and H1(X,E) are H0(X,OX)-modules.

4. Rational ropes, their moduli spaces and decomposition of F

In this section we will study the moduli space of all rational (x+1)-ropes
with fixed arithmetic genus (i.e. with conormal module of fixed degree) or
with conormal module of fixed splitting type. Let F := OD(a1)⊕· · ·⊕OD(ax)
be a rank x vector bundle on D with a1 ≥ · · · ≥ ax. Let F (≥t) (resp. F (≤t),
resp. F (>t), resp. F (<t)) be the direct sum of all factors OD(ai) of F with
ai ≥ t (resp. ≤ t, resp. > t, resp. < t). Since (ID,X)2 = 0, for any OD-
subbundle G of F there is a uniquely determined rational rope with F/G as
conormal module. If we take F (≥t) (resp. F (>t)) as G we will call X(<t)
(resp. X(≤t)) the corresponding rope.

Remark 4.1. Let F be a rank x vector bundle on D. By Remark 2.2
the set S(F ) of all non-split rational ropes with F as conormal module are
parametrized one-to-one by P(H1(D,F (2))). Hence if F = F (≥−1), then
every (x + 1)-rope with F as conormal module is split.
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Fix a (x + 1)-rope X over D with conormal module F and let eX ∈
H1(D,F (2)) the corresponding extension class, uniquely determined up to
a multiplicative non-zero constant (see Proposition 2.1). There is an exact
sequence of OX -modules

(4) 0 → F (≥0) → OX → OX(<0) → 0

Notice that H1(D,F (2)) ∼= H1(D,F (<0)(2)). This isomorphism maps the
extension class eX onto an extension class eX(<0) of X(<0).

Lemma 4.2. The inclusion of X(<0) into X has a retraction. The exact
sequence (4) is an exact sequence of OX(<0)-modules and it splits as an exact
sequence of OX(<0)-modules.

Proof. The lemma follows from the construction of a rope from its extension
class considered in Proposition 2.1. ¤

Lemma 4.3. The restriction map ρ : Pic(X) → Pic(X(<0)) is an isomor-
phism.

Proof. The injectivity of ρ follows from Remark 3.5. The surjectivity of ρ
follows from the existence of a retraction of X onto X(<0) (Lemma 4.2). ¤

Remark 4.4. Fix L ∈ Pic(X) and set t : = deg(L|D). Thus deg(L) =
(x + 1)t. First assume t < 0. Then by the exact sequence (4) we obtain
h0(X(<0), L|X(<0)) = 0 and h0(X,L) = h0(D,F (t)) = h0(X,F (≥0)(t)).
If t = 0 we have h0(D,F (≥0)) ≤ h0(X,L) ≤ h0(X,F (≥0))+1. Now assume
t > 0. We have h1(D,F (≥0)(t)) = 0. Hence from (4) we obtain h0(X,L) =
h0(X(<0), L|X(<0)) + h0(D,F (t)). Thus the Brill-Noether theory of X is
essentially determined by the Brill-Noether theory of X(<0).

The proof of Lemma 4.3 gives verbatim the following result.

Lemma 4.5. The restriction map from the set of all isomorphism classes of
vector bundles on X to the set of all isomorphism classes of vector bundles
on X(<0) is an isomorphism.

Corollary 4.6. Assume X(<0) = D, i.e. assume ax ≥ 0. Then every
vector bundle, E, on X is a direct sum of line bundles and E is uniquely
determined by E|D: if E|D ∼=

⊕
1≤i≤r OD(bi), then E ∼=

⊕
1≤i≤r OX(bi),

where OX(c), c ∈ Z, is the unique line bundle on X with OX(c)|D ∼=
OD(c), i.e. the unique line bundle on X with degree (x + 1)c. We have
h0(X,OX(c)) = h0(D,F (c)) + c + 1 and h1(X,OX(c)) = 0 for every c ≥ 0.
We have h0(X,OX(c)) = 0 if and only if c < −a1 and h1(X,OX(c)) = 0 if
and only if c ≥ −1.
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Remark 4.7. Corollary 4.6 gives a complete description of the Brill-Noether
theory of vector bundles on any rational rope of non-negative type. It is
remarkable that every vector bundle on a rational rope of non-negative type
is a direct sum of line bundles. We do not know any other locally Cohen-
Macaulay positive-dimensional projective scheme Z with this property and
Zred irreducible. Some (but not all) the reduced and connected projective
curves, T , with pa(T ) = 0 have this property.

Remark 4.8. Let X (resp. Z) be a split rational (x+1)-rope with conormal
module F (resp. G). Z is the flat limit of a flat family of ropes isomorphic
to X if and only if the vector bundle G on D is a specialization of G.

Proposition 4.9. Fix rank x vector bundles F and G on D with G spe-
cialization of F . Assume h1(D,F (2)) = h1(D,G(2)). Then there is an
irreducible family of (x + 1)-ropes, say parametrized by an irreducucible va-
riety T , whose general member has conormal module isomorphic to F and
such that every non-split rational (x+1)-ribbon with G as conormal module
occurs for at least one value of T .

Proof. The result follows from the definition of specializations of vector bun-
dles on D, Remark 4.2 and the theory of the relative Ext-functor ([5]). ¤

5. Blowing ups of a rope

Now we extend to the case of ropes the definition of blowing up introduced
in [1] for ribbons. For simplicity we consider only rational ropes but the
same definitions are obtained taking as D any smooth projective curve. Fix
P ∈ D, a vector bundle E on D and a surjection u : E → OP . The surjection
u : E → OP is uniquely determined by its restriction u|{P} : E|{P} → K,
where E|{P} is the fiber of E over P . Conversely, any surjective linear
map E|{P} → K induces a surjection E → OP . Set G := Ker(u). Since
P is a Cartier divisor of D, G is a vector bundle on D. We will say that
G is obtained from E making a negative elementary transformation sup-
ported by P . We have rank(G) = rank(E) and deg(G) = deg(E) − 1. For
every λ ∈ K\{0} we have Ker(λu) ∼= Ker(u). For every subsheaf A of
E with rank(A) = rank(E) and deg(A) = deg(E) − 1 there is a unique
Q ∈ D such that E/A ∼= OQ; A is obtained from E making a negative
elementary transformation supported by Q. We will say that G∗ is ob-
tained from E∗ making a positive elementary transformation supported by
P ; more precisely, G∗ is obtained from E∗ making the positive elementary
transformation dual to the negative elementary transformation associated
to u. E∗ is a subsheaf of G∗, rank(G∗) = rank(E∗), deg(G∗) = deg(E∗) + 1
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and G∗/E∗ ∼= OP . Conversely, for every vector bundle H and any in-
clusion j : E∗ → H with H/E∗ ∼= OP there is a unique (up to a non-
zero multiplicative constant) surjection u : E → OP such that H is iso-
morphic to the positive elementary transformation associated to u. Let
X be a rational (x + 1)-rope with conormal module F . Take any sur-
jection u : F ∗ → OP . We will prove the existence of a unique rational
(x + 1)-rope X(u) with Ker(u)∗ as conormal module and equipped with a
proper morphism φu : X(u) → X. For every λ ∈ K\{0} we will obtain
X(λu) ∼= X(u) and, modulo this isomorphism, φu = φλu. However, in
general X(u) will depend on the inclusion of Ker(u) in F , not just on the
isomorphism class of the vector bundle Ker(u). The surjection u induces an
inclusion j : F → H with H/j(F ) ∼= OP . The inclusion j induce a map
α : H1(D,F (2)) → H1(D,H(2)). Let eX ∈ H1(D,F (2)) be the extension
class (unique up to a non-zero multiplicative constant) associated to X. Let
X(u) be the rational (x+1)-rope with H as conormal module and α(eX) as
extension class. The rope X(u) is called a blowing up of X or the blowing
up of X at one point or the blowing up of X associated to u. Notice that if
X is a split rope, then X(u) is a split rope. We have pa(X(u)) = pa(X)−1.
For every L ∈ Pic(X(u)) the coherent sheaf φu∗(L) is a rank 1 torsion free
sheaf on X whose restriction to X\{P} is locally free. Since φu is finite,
we have h0(X,φu∗(L)) = h0(X(u), L) and h1(X,φu∗(L)) = h1(X,L). Since
pa(X(u)) = pa(X)−1, we obtain deg(φu∗(L)) = deg(L)+1. We may iterate
this construction and say when a vector bundle on D is obtained from the
vector bundle E making a sequence of t negative elementary transforma-
tions, t any positive integer, and when a rational (x + 1)-rope is obtained
from X making a sequence of t blowing ups. Let φ : X ′ → X be the com-
position of t blowing ups. For any L ∈ Pic(X ′) the coherent sheaf φ∗(L) is
a rank 1 torsion free sheaf on X which is is locally free outside P . Since φ
is finite, we have h0(X,φ∗(L)) = h0(X(u), L) and h1(X,φ∗(L)) = h1(X,L).
Since pa(X ′) = pa(X)− t, we obtain deg(φ∗(L)) = deg(L)+ t. For any fixed
vector bundle F on D and any P ∈ D the set of all isomorphism classes of
vector bundles on D obtained from F making a negative elementary trans-
formation supported by P is parametrized by a non-empty open subset of a
vector space and in particular it is parametrized by an irreducible variety.
Since D is irreducible, the set of all isomorphism classes of vector bundles
obtained from F making a negative elementary transformation supported by
a point of D is parametrized by an irreducible variety. The same is true for
positive elementary transformations. Hence for any rope X we are allowed
to say that a rope Y is obtained from X making a sequence of t generic
blowing ups. For any rope X let γ(X) be the minimal integer t such that
there is a split rope obtained from X making a sequence of t blowing ups.
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Thus γ(X) = 0 if and only if X is a split rope. The next lemma shows that
γ(X) < +∞ for every rope X.

Lemma 5.1. Let X be a rational (x + 1)-rope with conormal module F .
Then any rope obtained from X making a sequence of h1(D,F (2)) generic
blowing ups is a split rope. In particular γ(X) ≤ h1(D,F (2)).

Proof. Let G be a vector bundle on D and H a vector bundle obtained
from G making a general positive elementary transformation. We have
h1(X,H) = max{0,h1(X,G) − 1}. Iterating h1(D,F (2)) times this ob-
servation, we conclude. ¤

In 5.2, 5.3 and 5.4 we will see that the Brill-Noether theory of ropes with
low γ(X) is quite restricted.

Remark 5.2. Let X be a rational (x + 1)-rope. Take a split rational rope
Z such that there is a sequence φ : Z → X of γ(X) blowing ups. Let
L ∈ Pic(Z) the line bundle inducing the splitting of Z. Thus deg(L) = x+1
and h0(Z,L) ≥ 2. If Z is of negative type we have h0(Z,L) = 2. The gener-
alized line bundle φ∗(L) on X has degree x + 1 + γ(X) and h0(X,φ∗(L)) =
h0(Z,L) ≥ 2.

Proposition 5.3. Let X be a rational (x + 1)-rope and φ : Z → X the
composition of z blowing ups with Z split rope. Assume X not split. Let G
be the conormal module of Z and call b1 ≥ · · · ≥ bx the splitting type of G.
Assume b1 ≤ −2 and let t be a positive integer such that 0 < t < −b1. There
is no spanned line bundle L on X such that 0 < deg(L) ≤ t(x + 1).

Proof. Assume the existence of L ∈ Pic(X) such that 0 < deg(L) ≤ t(x+1)
and set M : = φ∗(L). We have deg(L) = deg(M) = (x + 1)y with y =
deg(L|D) and 1 ≤ y ≤ t. Let β : X → P(H0(X,L)∗) be the morphism
induced by M . Since Z is a split rope and y ≤ t < −b1, we have h0(Z,M) =
y +1. Since L is spanned, M is spanned by the image, W , of φ∗(H0(X,M))
into H0(Z,M). Fix a retraction u : Z → D, Since H1(Z,G) 6= 0, u is
not unique (use Remark 3.5), but any two retractions of Z differ by an
automorphism of Z whose restriction to D is the identity. The morphism
α : Z → P(H0(Z,M)∗) induced by M has as image a rational normal curve
of P(H0(Z,M)∗) and it is the composition of a retraction of Z and a linearly
normal embedding of D into P(H0(Z,M)∗). The morphism γ induced by
W must be obtained composing a retraction of Y with an embedding of D
into Pm, m := dim(W ) − 1. Since X is not split, no such morphism γ may
factor through φ and induce a morphism of X, contradicting the definition
of W . ¤

For any rational rope X there is a split rational rope Z and a morphism
φ : Z → X with φ composition of γ(X) blowing ups. By Lemma 5.3 if γ(X)
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is very low the conormal module of any such Z gives strong informations on
the Brill-Noether theory of Z. As an immediate corollary of 5.3 we obtain
the following result.

Corollary 5.4. Let X be a rational non-split (x + 1)-rope whose conormal
module F has spitting type a1 ≥ · · · ≥ ax with a1 ≤ −2 + γ(X). Then there
is no L ∈ Pic(X) with L spanned and 0 < deg(L) ≤ (x+1)(−a1−2−γ(X)).

Proof. Let φ : Z → X be a composition of γ(X) blowing ups with Z split
rope. Let G be the conormal module of Z and b1 ≥ · · · ≥ bx be its split-
ting type. Since G is obtained from F making γ(X) positive elementary
transformations, we have b1 ≤ a1 + γ(X). Hence we conclude by 5.3. ¤

6. Restricted cotangent sequence and splittings

In this section we study the restricted cotangent sequence of a (x + 1)-
rope over D with negative conormal module. Let X be a (x + 1)-rope
over D and F its conormal module. Set G := ΩX |D. Let a1 ≥ · · · ≥ ax

(resp. w1 ≥ · · · ≥ wx+1) be the splitting type of F (resp. G). Consider the
restricted cotangent sequence of X:

(5) 0 → F → G → OD(−2) → 0

Remark 6.1. Since every element of H1(D,F (2)) is an extension class for
a rational rope with F as conormal module, for any F and any G fitting
in an exact sequence (5) there is a rope X with F as conormal module, G
as restricted cotangent bundle and such that (5) is the restricted cotangent
sequence. The set of all such pairs (F,G) is completely described in [8] and
[7].

Remark 6.2. Assume a1 ≤ −3. The exact sequence (5) splits if and only
if w1 = −2. Since the extension class of (5) gives the isomorphism class of
X, the rope X is a split rope if and only if w1 = −2.

Theorem 6.3. Assume a1 ≤ −3. Then γ(X) = −w1 − 2.

Proof. Since a1 ≤ −3, we have w1 ≤ −2. If w1 = −2, the result is Remark
6.2. Assume w1 < −2. Take any vector bundle G′ obtained from G making
a positive elementary transformation. Then either this elementary transfor-
mation acts on the subbundle F of G or not, the latter case being the general
one. If this elementary transformation acts on F , then it produces a vector
bundle F ′ obtained from F making a positive elementary transformation
and fitting in an exact sequence

(6) 0 → F ′ → G′ → OD(−2) → 0

Every sequence of positive elementary transformations gives a sequence of
blowing ups of X. It is obvious the existence of a sequence of −w1 − 2
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positive elementary stransformations of G such that the vector bundle, H,
obtained in this way has splitting type c1 ≥ · · · ≥ cx+1 with c1 = −2:
at each step we increase by one the higher integer of the splitting type of
the corresponding bundle. Furthermore, −w1 − 2 is the minimal length
of any such sequence of positive elementary transformations. At the first
step we need to prove that as our first positive elementary transformation
of G we may choose a positive elementary transformation which induces a
positive elementary transformation of F . Since rank(G) = rank(F )+1, this
is obvious if w2 = w1. Thus we may assume w2 < w1. This implies that
there is a unique line subbundle of G with degree w1 and that OD(w1) is
the first step of the Harder-Narasimhan filtration of G. For any P ∈ D
and any vector bundle H on D, let H|{P} be the fiber of H over P ; thus
H|{P} is a K-vector space of dimension rank(H). Fix P ∈ D. There is
a positive elementary transformation of G supported by P which increases
the value of w1 and which induces a positive elementary transformation of
F supported by P if and only if OD(w1)|{P} is contained in the hyperplane
F |{P} of G|{P}. The inclusions of F in G and of OD(w1) in G induces a map
u : F ⊕OD(w1) → G. Since to prove the existence of the positive elementary
transformation we are looking for we may assume that F does not contain
OD(w1), the map u is an injective map of sheaves. We have rank(F ⊕
OD(w1)) = rank(G). Since w1 < −2, u cannot be an isomorphism. Thus
Coker(u) is a non-zero skyscraper sheaf. For every P ∈ Supp(Coker(u))
we may find a positive elementary transformation of G inducing a positive
elementary transformation of F (i.e. inducing an exact sequence (6)) and
transforming the subbundle OD(w1) of G into the subbundle OD(w1 +1) of
G′. Since G′ has splitting type w1 + 1 > w2 ≥ · · · ≥ wx+1, we may iterate
the proof taking the pair (F ′, G′) instead of the pair (F,G). ¤
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