MULTIPLE STRUCTURES ON \mathbf{P}^1: RATIONAL ROPES

E. BALLICO

Abstract. Here we study the theory of rational ropes (multiple structures on \mathbf{P}^1 whose ideal sheaf, F, has square zero) introduced by K. Chandler. F is a vector bundle on \mathbf{P}^1 and here we show that several properties of the rope depend on the splitting type of F. We study the moduli space of all rational ropes with F as ideal sheaf.

1. Introduction

K. Chandler introduced the following definition ([2]). Let Y be a smooth projective curve and x a positive integer. Let X be an algebraic scheme such that $X_{\text{red}} = Y$ and the ideal sheaf $I_{Y,X}$ of Y in X satisfies $I_{Y,X}^2 = 0$. Thus $I_{Y,X}$ is the conormal sheaf of Y in X and it may be seen as an O_Y-sheaf. Set $F := I_{Y,X}$ when seen as an O_Y-sheaf. Assume that F has no torsion; this is equivalent to require that the one-dimensional scheme X is locally Cohen-Macaulay. Since Y is a smooth curve, F is locally free. It is called the conormal module of X. Set $x := \text{rank}(F)$. The scheme X is called a $(x+1)$-rope over Y or with Y as support. A 2-rope is a ribbon in the sense of [1]. Ribbons were studied in details in [1], [3] and [4]. The aim of this paper is to extend several of their results (with appropriate definitions) to the case of ropes. The main difference is that a t-rope is not Gorenstein if $t \geq 3$. We will mainly be interested in the case $Y = \mathbf{P}^1$. In this case we will call X a rational rope. It is easy to describe all ropes with a fixed vector bundle F over \mathbf{P}^1 as conormal module. Several geometric properties of the rope depend only from the splitting type of F. In some cases (e.g. F spanned) the rope X is uniquely determined by F, every vector bundle on X is a direct sum of line bundles and the Brill-Noether theory of vector bundles on X is trivial (see 3.5, 3.6, 4.6 and 4.7). An arbitrary rational rope has a maximal subrope (perhaps reduced to X_{red}) with spanned conormal module (see section 5). In section 5 we define the blowing ups of a rope, the case of a 2-rope being introduced in [1]. As in [1] and [3] such notion seems to be quite important. In section 6 we compute the number of blowing ups needed to split a rational rope in terms of the restricted cotangent sequence of the rope (see Theorem 6.3).

Key words and phrases. Projective line, multiple structure on a smooth curve, moduli, vector bundles, cotangent complex, rope, ribbon.

This research was partially supported by MURST and GNSAGA of INdAM (Italy).
2. Foundations

We work over an algebraically closed base field K. In this section we collect the easy foundational results on ropes. Let X be a $(x+1)$-rope on the smooth projective curve Y with the rank x vector F on Y as conormal module. By the very definition of conormal module, $I_{Y,X} \cong F$ as coherent O_Y-sheaves. Thus we have an exact sequence of O_X-modules

$$(1) \quad 0 \rightarrow F \rightarrow O_X \rightarrow O_Y \rightarrow 0$$

The exact sequence (1) is an exact sequence of O_Y-modules if and only if there is a retraction $X \rightarrow Y$ and in this case (1) is a split exact sequence of locally free O_Y-sheaves. If this is a case, we will say that X is a split rope.

Set $q := p_a(Y)$. We have $\chi(O_X) = \chi(F) + \chi(O_Y) = \deg(F) + (x+1)(1-q)$. Set $g := 1 - \chi(O_X) = (x+1)q - x - \deg(F)$. We have an exact sequence on Y

$$(2) \quad 0 \rightarrow F \rightarrow \Omega_X|Y \rightarrow \Omega_Y \rightarrow 0$$

(the restricted cotangent sequence). Hence one may associate to any $(x+1)$-rope on Y an extension class $e_X \in \text{Ext}^1(Y; \Omega_Y, F) \cong H^1(Y, F \otimes \omega_Y^*)$. Since Y is smooth, the exact sequence (2) locally splits. Thus the structure of $(x+1)$-rope is locally split and one can copy [1], p. 724-725, and the general set-up of [6] and obtain the following result.

Proposition 2.1. For any rank x vector bundle F on the smooth projective curve Y and every $e \in H^1(Y, F \otimes \omega_Y^*)$ there is a unique $(x+1)$-rope X on Y with F as conormal module and e as associated extension class. Two $(x+1)$-ropes on Y are isomorphic if and only if they have isomorphic conormal modules and proportional extension classes.

Since $I_{Y,X}^2 = 0$, from (1) we obtain the exact sequence

$$(3) \quad 0 \rightarrow H^1(Y, F) \rightarrow \text{Pic}(F) \rightarrow \text{Pic}(Y) \rightarrow 0$$

For every rank r vector bundle L on X the sheaf $I_{Y,X} \otimes L$ is a rank xr vector bundle on Y isomorphic to $F \otimes (L|Y)$. Set $c := \deg(L|Y)$. We have $\deg(F \otimes (L|Y)) = cx + r(\deg(F))$. Thus $\chi(L) = \chi(I_{Y,X} \otimes L) + \chi(L|Y) = (x+1)c + (r+1)\deg(F) + (xr+1)(1-q) = (x+1)(\deg(L|Y)) + 1 - g$.

For every coherent sheaf L on X set $\deg(L) = \chi(L) - \chi(O_X)$.

Let X be any $(x+1)$-rope with a smooth curve Y as support, F as conormal module and $e_X \in \text{Ext}^1(Y; \Omega_Y, F) \cong H^1(Y, F \otimes \omega_Y^*)$ as extension class. Let T be any scheme. The description of all morphisms $f : X \rightarrow T$ given in [1], Th. 1.6 and part (1) of Th. 1.8, in the case $x = 1$ works verbatim in the general case and we have the following result.
Proposition 2.2. Let T be any algebraic scheme. Let X be any $(x+1)$-rope with a smooth curve Y as support, F as conormal module and $e_X \in \text{Ext}^1(Y; \Omega_Y, F)$ as an extension class. Let $\gamma : \Omega_X|Y \to \Omega_Y$ be the surjective map appearing in (2). Fix a morphism $f : Y \to T$. The set of all morphisms $h : X \to T$ extending f is in one-to-one correspondence with the set of all splittings of the exact sequence $df^*(e_X)$, i.e. with the set of all maps of sheaves $u : \Omega_T|Y \to \Omega_Y$ such that $\gamma \circ u = df$.

Notice that any morphism $h : X \to T$ extending f induces a map $\alpha_f : f^*(I_{f(Y)}/(I_{f(Y)})^2) \to F$. As in part (1) of [1], Th. 1.8, we have the following result.

Proposition 2.3. The morphism h is a closed immersion if and only if f is a closed immersion and α_f is surjective.

Remark 2.4. Proposition 2.3 gives a very strong criterion to say when a $(x+1)$-rope X over a smooth curve Y be embedded in a prescribed $(y+1)$-rope T over Y. For all pairs of integers (x, y) with $x < y$ and all vector bundles (F, G) on Y with $\text{rank}(F) = x$ and $\text{rank}(G) = y$ there is a triple (X, T, j) such that:

(i) X is a $(x+1)$-rope over Y with conormal module F;
(ii) T is a $(y+1)$-rope over Y with conormal module G;
(iii) $j : X \to T$ is a closed immersion such that $j|Y$ is the identity if and only if F is a quotient of G.

If $Y = \mathbb{P}^1$ we will say that the rope is rational. Set $D := \mathbb{P}^1$. Now we will apply Proposition 2.2 to study the elliptic ropes over \mathbb{P}^1 and the finite maps with elliptic ropes as target.

Definition 2.5. Let C be a $(z+1)$-rope over D. We will say that C is an elliptic rope if it has negative type (i.e. the splitting type $a_1 \geq \cdots \geq a_z$ of the conormal module of C has $a_1 < 0$) and $p_n(C) = 1$. By the genus formula for rational $(z+1)$-ropes, these conditions are equivalent to $a_z = -2$ and $a_i = -1$ for $1 \leq i < z$.

Remark 2.6. By Remark 3.5 below every elliptic $(z+1)$-rope C over D is a split rope. Hence for any integer $z \geq 1$ there is a unique elliptic $(z+1)$-rope over D. By its very definition the conormal module of an elliptic $(z+1)$-rope is semistable if and only if $z = 1$. Set $G := O_D(-2) \oplus O_D(-1)^{\oplus(z-1)}$. The restricted cotangent sequence of C splits. Take any integer $t \geq 2$ and any degree t morphism $f : D \to D$. We have $f^*(G) \cong O_D(-2t) \oplus O_D(-t)^{\oplus(z-1)}$, $f^*(\Omega_D) \cong O_D(-2t)$ and $f^*(\Omega_C|D) \cong O_D(-2t)^{\oplus2} \oplus O_D(-t)^{\oplus(z-1)}$. We have a map $df : f^*(\Omega_C|D) \cong O_D(-2t) \to \Omega_D \cong O_D(-2)$. Hence Proposition 2.2 gives the following result.
Proposition 2.7. Fix integers x, z with $x > z \geq 1$ and let X be a $(x + 1)$-rope over D with conormal module F. Let $f : D \to D$ be a degree t morphism and C an elliptic $(z + 1)$-rope. Assume $h^0(D, F(2t)) \neq 0$. Then there is a morphism $u : X \to C$ lifting f and with $u(X)$ not contained in D.

3. Rational ropes and the splitting type of F

Let X be a rational $(x + 1)$-rope with conormal module $F := \mathcal{O}_D(a_1) \oplus \cdots \oplus \mathcal{O}_D(a_x)$ with $a_1 \geq \cdots \geq a_x$. We have $p_a(X) = -\sum_{1 \leq i \leq x} a_i - x$. We will say that X has negative type if $a_1 < 0$. If X has negative type we will call the integer $-a_1$ the negative level of X. The deformation theory of a split rope is equivalent to the deformation theory of the vector bundle F on D. We will say that a rational rope is rigid if its conormal module F is rigid as a vector bundle on D, i.e. if $a_x \geq a_1 - 1$. We will say that a rational rope is semistable if its conormal module is a semistable vector bundle on D, i.e. if $a_x = a_1$. Since the multiplicative structure of F is trivial, every \mathcal{O}_D-subsheaf J of F is an \mathcal{O}_X-ideal subsheaf of \mathcal{O}_X and hence it defines a closed subscheme $\text{Spec}(\mathcal{O}_X/J)$ of X with D as support. In particular for every integer i with $1 \leq i \leq x$ the vector bundle $F_i := \mathcal{O}_D(a_1) \oplus \cdots \oplus \mathcal{O}_D(a_i)$ is a subbundle of F and any inclusion of F_i into F defines a closed subscheme $\text{Spec}(\mathcal{O}_X/F_i)$ of X. However, unless $a_i > a_j$ for all pairs (i, j) with $i < j$, these subschemes are not uniquely determined by F. Call y the number of different integers in the set $\{a_1, \ldots, a_x\}$, say $\{a_1, \ldots, a_x\} = \{b_1, \ldots, b_y\}$ with $b_i > b_j$ if $i < j$ and with b_i appearing r_i times in the weakly decreasing sequence $a_1 \geq a_2 \geq \cdots \geq a_x$. The vector bundles $F(i) := \bigoplus_{1 \leq j \leq y} \mathcal{O}_D(b_j)^{\oplus r_j}$ are uniquely determined by F; they give the Harder-Narasimhan filtration of F. Set $X(i) := \text{Spec}(\mathcal{O}_X/F(i))$.

Remark 3.1. Let X be a rational $(x + 1)$-rope of negative type. Call $c := -a_1$ the negative level of X. For every $L \in \text{Pic}(X)$ with $\deg(L) < (x + 1)c$ the restriction map $H^0(X, L) \to H^0(D, L|D)$ is injective.

Remark 3.2. Let X be a rational $(x + 1)$-rope of negative type. Call c the negative level of X. Fix $L, R \in \text{Pic}(X)$ with $\deg(L) < (x + 1)c$ and $\deg(R) < (x + 1)c$. Since D is reduced and connected, the pairing $H^0(D, L|D) \otimes H^0(D, M|D) \to H^0(D, L \otimes M|D)$ is non-degenerate in both variables. Since the restriction maps $H^0(X, L) \to H^0(D, L|D)$ and $H^0(X, M) \to H^0(D, M|D)$ are injective (Remark 3.1) the pairing $\alpha : H^0(X, L) \otimes H^0(X, M) \to H^0(X, L \otimes M)$ is non-degenerate in both variables. Hence by a classical lemma of Hopf we have $\dim(\text{Im}(\alpha)) \geq h^0(X, L) + h^0(X, M) - 1$ and in particular $h^0(X, L \otimes M) \geq h^0(X, L) + h^0(X, M) - 1$.

From Remark 3.1 we immediately obtain the following result.
Proposition 3.3 (Clifford’s inequality). Let X be a rational $(x+1)$-rope of negative type. Let $0 > a_1 \geq \cdots \geq a_x$ be the splitting type of the conormal module of X. For every $L \in \text{Pic}(X)$ with $0 \leq \text{deg}(L) \leq (x+1)(-a_1-1)$ we have $h^0(X,L)-1 \leq \text{deg}(L)/(x+1)$.

Remark 3.4. Let X be a rational $(x+1)$-rope of negative type. Using Remark 3.1 we see that X splits if and only if there is $L \in \text{Pic}(X)$ such that $\text{deg}(L) \leq x+1$ and $h^0(X,L) \geq 2$.

Remark 3.5. Let X be a rational rope with conormal module F. Assume that F has splitting type $a_1 \geq \cdots \geq a_x$ with $a_x \geq -1$. By (3) we have $\text{Pic}(X) \cong \mathbb{Z}$ and every line bundle L on X is uniquely determined by its restriction to X_{red}, i.e. by the unique integer d such that $\text{deg}(L) = (x+1)d$.

Remark 3.6. Let X be a rational $(x+1)$-rope whose conormal module has splitting type $a_1 \geq \cdots \geq a_x$ with $a_x \geq 0$. By Remark 3.5 we have $\text{Pic}(X) \cong \mathbb{Z}$. Call $L(t)$ the unique line bundle on X with $\text{deg}(L(t)) = (x+1)t$. The sequence of integers $h^0(X,L(-t)), t \geq 0$, uniquely determines all the integers a_1, \ldots, a_x; if $a_x = 0$ to obtain this observation we use either that every regular function on D is constant and hence that the restriction map $H^0(X,\mathcal{O}_X) \to H^0(D,\mathcal{O}_D)$ is surjective or that X is a split rope.

Let X be a rational $(x+1)$-ropes and F its conormal module. If X is not of negative type, then $h^0(X,\mathcal{O}_X) \geq 2$ by the exact sequence (1). The finite dimensional K-vector space $H^0(X,\mathcal{O}_X)$ has a K-algebra structure for which it is a local ring whose maximal ideal \mathfrak{m} has $\mathfrak{m}^2 = 0$. As a K-vector space we have $\mathfrak{m} \cong H^0(D,F)$. For any coherent sheaf E on X the K-vector spaces $H^0(X,E)$ and $H^1(X,E)$ are $H^0(X,\mathcal{O}_X)$-modules.

4. Rational ropes, their moduli spaces and decomposition of F

In this section we will study the moduli space of all rational $(x+1)$-ropes with fixed arithmetic genus (i.e. with conormal module of fixed degree) or with conormal module of fixed splitting type. Let $F := \mathcal{O}_D(a_1) \oplus \cdots \oplus \mathcal{O}_D(a_x)$ be a rank x vector bundle on D with $a_1 \geq \cdots \geq a_x$. Let $F(\geq t)$ (resp. $F(\leq t)$, resp. $F(> t)$, resp. $F(< t)$) be the direct sum of all factors $\mathcal{O}_D(a_i)$ of F with $a_i \geq t$ (resp. $\leq t$, resp. $> t$, resp. $< t$). Since $(I_{D,X})^2 = 0$, for any \mathcal{O}_D-subbundle G of F there is a uniquely determined rational rope with F/G as conormal module. If we take $F(\geq t)$ (resp. $F(> t)$) as G we will call $X(< t)$ (resp. $X(\leq t)$) the corresponding rope.

Remark 4.1. Let F be a rank x vector bundle on D. By Remark 2.2 the set $S(F)$ of all non-split rational ropes with F as conormal module are parametrized one-to-one by $\mathbb{P}(H^1(D,F(2)))$. Hence if $F = F(\geq -1)$, then every $(x+1)$-rope with F as conormal module is split.
Fix a \((x + 1)\)-rope \(X\) over \(D\) with conormal module \(F\) and let \(e_X \in H^1(D, F(2))\) the corresponding extension class, uniquely determined up to a multiplicative non-zero constant (see Proposition 2.1). There is an exact sequence of \(O_X\)-modules
\[
0 \to F(\geq 0) \to O_X \to O_X(\langle 0 \rangle) \to 0
\]
Notice that \(H^1(D, F(2)) \cong H^1(D, F(\langle 0 \rangle)(2))\). This isomorphism maps the extension class \(e_X\) onto an extension class \(e_{X(\langle 0 \rangle)}\) of \(X(\langle 0 \rangle)\).

Lemma 4.2. The inclusion of \(X(\langle 0 \rangle)\) into \(X\) has a retraction. The exact sequence (4) is an exact sequence of \(O_X(\langle 0 \rangle)\)-modules and it splits as an exact sequence of \(O_X(\langle 0 \rangle)\)-modules.

Proof. The lemma follows from the construction of a rope from its extension class considered in Proposition 2.1. \(\square\)

Lemma 4.3. The restriction map \(\rho : \text{Pic}(X) \to \text{Pic}(X(\langle 0 \rangle))\) is an isomorphism.

Proof. The injectivity of \(\rho\) follows from Remark 3.5. The surjectivity of \(\rho\) follows from the existence of a retraction of \(X(\langle 0 \rangle)\) onto \(X(\langle 0 \rangle)\) (Lemma 4.2). \(\square\)

Remark 4.4. Fix \(L \in \text{Pic}(X)\) and set \(t := \deg(L|D)\). Thus \(\deg(L) = (x + 1)t\). First assume \(t < 0\). Then by the exact sequence (4) we obtain
\[
h^0(X(\langle 0 \rangle), L|X(\langle 0 \rangle)) = 0 \quad \text{and} \quad h^0(X, L) = h^0(D, F(t)) = h^0(X, F(\geq 0)(t)).
\]
If \(t = 0\) we have \(h^0(D, F(\geq 0)) \leq h^0(X, L) \leq h^0(X, F(\geq 0)) + 1\). Now assume \(t > 0\). We have \(h^1(D, F(\geq 0)(t)) = 0\). Hence from (4) we obtain
\[
h^0(X, L) = h^0(X(\langle 0 \rangle), L|X(\langle 0 \rangle)) + h^0(D, F(t)).
\]
Thus the Brill-Noether theory of \(X\) is essentially determined by the Brill-Noether theory of \(X(\langle 0 \rangle)\).

The proof of Lemma 4.3 gives verbatim the following result.

Lemma 4.5. The restriction map from the set of all isomorphism classes of vector bundles on \(X\) to the set of all isomorphism classes of vector bundles on \(X(\langle 0 \rangle)\) is an isomorphism.

Corollary 4.6. Assume \(X(\langle 0 \rangle) = D\), i.e. assume \(a_x \geq 0\). Then every vector bundle, \(E\), on \(X\) is a direct sum of line bundles and \(E\) is uniquely determined by \(E|D\): if \(E|D \cong \bigoplus_{1 \leq i \leq r} O_D(b_i)\), then \(E \cong \bigoplus_{1 \leq i \leq r} O_X(b_i)\), where \(O_X(c), c \in \mathbb{Z}\), is the unique line bundle on \(X\) with \(O_X(c)|D \cong O_D(c)\), i.e. the unique line bundle on \(X\) with degree \((x + 1)c\). We have \(h^0(X, O_X(c)) = h^0(D, F(c)) + c + 1\) and \(h^1(X, O_X(c)) = 0\) for every \(c \geq 0\). We have \(h^0(X, O_X(c)) = 0\) if and only if \(c < -a_1\) and \(h^1(X, O_X(c)) = 0\) if and only if \(c \geq -1\).
Remark 4.7. Corollary 4.6 gives a complete description of the Brill-Noether theory of vector bundles on any rational rope of non-negative type. It is remarkable that every vector bundle on a rational rope of non-negative type is a direct sum of line bundles. We do not know any other locally Cohen-Macaulay positive-dimensional projective scheme Z with this property and Z_{red} irreducible. Some (but not all) the reduced and connected projective curves, T, with $p_a(T) = 0$ have this property.

Remark 4.8. Let X (resp. Z) be a split rational $(x+1)$-rope with conormal module F (resp. G). Z is the flat limit of a flat family of ropes isomorphic to X if and only if the vector bundle G on D is a specialization of G.

Proposition 4.9. Fix rank x vector bundles F and G on D with G specialization of F. Assume $h^1(D,F(2)) = h^1(D,G(2))$. Then there is an irreducible family of $(x+1)$-ropes, say parametrized by an irreducible variety T, whose general member has conormal module isomorphic to F and such that every non-split rational $(x+1)$-ribbon with G as conormal module occurs for at least one value of T.

Proof. The result follows from the definition of specializations of vector bundles on D, Remark 4.2 and the theory of the relative Ext-functor ([5]).

5. Blowing ups of a rope

Now we extend to the case of ropes the definition of blowing up introduced in [1] for ribbons. For simplicity we consider only rational ropes but the same definitions are obtained taking as D any smooth projective curve. Fix $P \in D$, a vector bundle E on D and a surjection $u : E \to O_P$. The surjection $u : E \to O_P$ is uniquely determined by its restriction $u|\{P\} : E|\{P\} \to K$, where $E|\{P\}$ is the fiber of E over P. Conversely, any surjective linear map $E|\{P\} \to K$ induces a surjection $E \to O_P$. Set $G := \text{Ker}(u)$. Since P is a Cartier divisor of D, G is a vector bundle on D. We will say that G is obtained from E making a negative elementary transformation supported by P. We have $\text{rank}(G) = \text{rank}(E)$ and $\text{deg}(G) = \text{deg}(E) - 1$. For every $\lambda \in K \setminus \{0\}$ we have $\text{Ker}(\lambda u) \cong \text{Ker}(u)$. For every subsheaf A of E with $\text{rank}(A) = \text{rank}(E)$ and $\text{deg}(A) = \text{deg}(E) - 1$ there is a unique $Q \in D$ such that $E/A \cong O_Q$; A is obtained from E making a negative elementary transformation supported by Q. We will say that G^* is obtained from E^* making a positive elementary transformation supported by P; more precisely, G^* is obtained from E^* making the positive elementary transformation dual to the negative elementary transformation associated to u. E^* is a subsheaf of G^*, $\text{rank}(G^*) = \text{rank}(E^*)$, $\text{deg}(G^*) = \text{deg}(E^*) + 1$.
and $G^*/E^* \cong O_P$. Conversely, for every vector bundle H and any inclusion $j : E^* \to H$ with $H/E^* \cong O_P$ there is a unique (up to a non-zero multiplicative constant) surjection $u : E \to O_P$ such that H is isomorphic to the positive elementary transformation associated to u. Let X be a rational $(x+1)$-rope with conormal module F. Take any surjection $u : F^* \to O_P$. We will prove the existence of a unique rational $(x+1)$-rope $X(u)$ with $\text{Ker}(u)^*$ as conormal module and equipped with a proper morphism $\phi_u : X(u) \to X$. For every $\lambda \in \mathbb{K}\setminus\{0\}$ we will obtain $X(\lambda u) \cong X(u)$ and, modulo this isomorphism, $\phi_u = \phi_{\lambda u}$. However, in general $X(u)$ will depend on the inclusion of $\text{Ker}(u)$ in F, not just on the isomorphism class of the vector bundle $\text{Ker}(u)$. The surjection u induces an inclusion $j : F \to H$ with $H/j(F) \cong O_P$. The inclusion j induce a map $\alpha : H^1(D, F(2)) \to H^1(D, H(2))$. Let $e_X \in H^1(D, F(2))$ be the extension class (unique up to a non-zero multiplicative constant) associated to X. Let $X(u)$ be the rational $(x+1)$-rope with H as conormal module and $\alpha(e_X)$ as extension class. The rope $X(u)$ is called a blowing up of X or the blowing up of X at one point or the blowing up of X associated to u. Notice that if X is a split rope, then $X(u)$ is a split rope. We have $p_a(X(u)) = p_a(X) - 1$. For every $L \in \text{Pic}(X(u))$ the coherent sheaf $\phi_{u*}(L)$ is a rank 1 torsion free sheaf on X whose restriction to $X \setminus \{P\}$ is locally free. Since ϕ_u is finite, we have $h^0(X, \phi_{u*}(L)) = h^0(X(u), L)$ and $h^1(X, \phi_{u*}(L)) = h^1(X, L)$. Since $p_a(X(u)) = p_a(X) - 1$, we obtain $\deg(\phi_{u*}(L)) = \deg(L) + 1$. We may iterate this construction and say when a vector bundle on D is obtained from the vector bundle E making a sequence of t negative elementary transformations, t any positive integer, and when a rational $(x+1)$-rope is obtained from X making a sequence of t blowing ups. Let $\phi : X' \to X$ be the composition of t blowing ups. For any $L \in \text{Pic}(X')$ the coherent sheaf $\phi_{*}(L)$ is a rank 1 torsion free sheaf on X which is is locally free outside P. Since ϕ is finite, we have $h^0(X, \phi_{*}(L)) = h^0(X(u), L)$ and $h^1(X, \phi_{*}(L)) = h^1(X, L)$. Since $p_a(X') = p_a(X) - t$, we obtain $\deg(\phi_{*}(L)) = \deg(L) + t$. For any fixed vector bundle F on D and any $P \in D$ the set of all isomorphism classes of vector bundles on D obtained from F making a negative elementary transformation supported by P is parametrized by a non-empty open subset of a vector space and in particular it is parametrized by an irreducible variety. Since D is irreducible, the set of all isomorphism classes of vector bundles obtained from F making a negative elementary transformation supported by a point of D is parametrized by an irreducible variety. The same is true for positive elementary transformations. Hence for any rope X we are allowed to say that a rope Y is obtained from X making a sequence of t generic blowing ups. For any rope X let $\gamma(X)$ be the minimal integer t such that there is a split rope obtained from X making a sequence of t blowing ups.
Thus $\gamma(X) = 0$ if and only if X is a split rope. The next lemma shows that $\gamma(X) < +\infty$ for every rope X.

Lemma 5.1. Let X be a rational $(x + 1)$-rope with conormal module F. Then any rope obtained from X making a sequence of $h^1(D, F(2))$ generic blowing ups is a split rope. In particular $\gamma(X) \leq h^1(D, F(2))$.

Proof. Let G be a vector bundle on D and H a vector bundle obtained from G making a general positive elementary transformation. We have $h^1(X, H) = \max\{0, h^1(X, G) - 1\}$. Iterating $h^1(D, F(2))$ times this observation, we conclude.

In 5.2, 5.3 and 5.4 we will see that the Brill-Noether theory of ropes with low $\gamma(X)$ is quite restricted.

Remark 5.2. Let X be a rational $(x + 1)$-rope. Take a split rational rope Z such that there is a sequence $\phi : Z \to X$ of $\gamma(X)$ blowing ups. Let $L \in \text{Pic}(Z)$ the line bundle inducing the splitting of Z. Thus $\deg(L) = x + 1$ and $h^0(Z, L) \geq 2$. If Z is of negative type we have $h^0(Z, L) = 2$. The generalized line bundle $\phi_*(L)$ on X has degree $x + 1 + \gamma(X)$ and $h^0(X, \phi_*(L)) = h^0(Z, L) \geq 2$.

Proposition 5.3. Let X be a rational $(x + 1)$-rope and $\phi : Z \to X$ the composition of z blowing ups with Z split rope. Assume X not split. Let G be the conormal module of Z and call $b_1 \geq \cdots \geq b_x$ the splitting type of G. Assume $b_1 \leq -2$ and let t be a positive integer such that $0 < t < -b_1$. There is no spanned line bundle L on X such that $0 < \deg(L) \leq t(x + 1)$.

Proof. Assume the existence of $L \in \text{Pic}(X)$ such that $0 < \deg(L) \leq t(x + 1)$ and set $M := \phi_*(L)$. We have $\deg(L) = \deg(M) = (x + 1)y$ with $y = \deg(L|D)$ and $1 \leq y \leq t$. Let $\beta : X \to \mathbf{P}(H^0(X, L)^*)$ be the morphism induced by M. Since Z is a split rope and $y \leq t < -b_1$, we have $h^0(Z, M) = y + 1$. Since L is spanned, M is spanned by the image, W, of $\phi_*(H^0(X, M))$ into $H^0(Z, M)$. Fix a retraction $u : Z \to D$, Since $H^1(Z, G) \neq 0$, u is not unique (use Remark 3.5), but any two retractions of Z differ by an automorphism of Z whose restriction to D is the identity. The morphism $\alpha : Z \to \mathbf{P}(H^0(Z, M)^*)$ induced by M has as image a rational normal curve of $\mathbf{P}(H^0(Z, M)^*)$ and it is the composition of a retraction of Z and a linearly normal embedding of D into $\mathbf{P}(H^0(Z, M)^*)$. The morphism γ induced by W must be obtained composing a retraction of Y with an embedding of D into \mathbf{P}^m, $m := \dim(W) - 1$. Since X is not split, no such morphism γ may factor through ϕ and induce a morphism of X, contradicting the definition of W.

For any rational rope X there is a split rational rope Z and a morphism $\phi : Z \to X$ with ϕ composition of $\gamma(X)$ blowing ups. By Lemma 5.3 if $\gamma(X)$
is very low the conormal module of any such Z gives strong informations on the Brill-Noether theory of Z. As an immediate corollary of 5.3 we obtain the following result.

Corollary 5.4. Let X be a rational non-split $(x + 1)$-rope whose conormal module F has splitting type $a_1 \geq \cdots \geq a_x$ with $a_1 \leq -2 + \gamma(X)$. Then there is no $L \in \text{Pic}(X)$ with L spanned and $0 < \deg(L) \leq (x+1)(-a_1-2-\gamma(X))$.

Proof. Let $\phi : Z \to X$ be a composition of $\gamma(X)$ blowing ups with Z split rope. Let G be the conormal module of Z and $b_1 \geq \cdots \geq b_x$ be its splitting type. Since G is obtained from F making $\gamma(X)$ positive elementary transformations, we have $b_1 \leq a_1 + \gamma(X)$. Hence we conclude by 5.3. \qed

6. Restricted cotangent sequence and splittings

In this section we study the restricted cotangent sequence of a $(x + 1)$-rope over D with negative conormal module. Let X be a $(x + 1)$-rope over D and F its conormal module. Set $G := \Omega_X|D$. Let $a_1 \geq \cdots \geq a_x$ (resp. $w_1 \geq \cdots \geq w_{x+1}$) be the splitting type of F (resp. G). Consider the restricted cotangent sequence of X:

(5) \[0 \to F \to G \to O_D(-2) \to 0 \]

Remark 6.1. Since every element of $H^1(D, F(2))$ is an extension class for a rational rope with F as conormal module, for any F and any G fitting in an exact sequence (5) there is a rope X with F as conormal module, G as restricted cotangent bundle and such that (5) is the restricted cotangent sequence. The set of all such pairs (F, G) is completely described in [8] and [7].

Remark 6.2. Assume $a_1 \leq -3$. The exact sequence (5) splits if and only if $w_1 = -2$. Since the extension class of (5) gives the isomorphism class of X, the rope X is a split rope if and only if $w_1 = -2$.

Theorem 6.3. Assume $a_1 \leq -3$. Then $\gamma(X) = -w_1 - 2$.

Proof. Since $a_1 \leq -3$, we have $w_1 \leq -2$. If $w_1 = -2$, the result is Remark 6.2. Assume $w_1 < -2$. Take any vector bundle G' obtained from G making a positive elementary transformation. Then either this elementary transformation acts on the subbundle F of G or not, the latter case being the general one. If this elementary transformation acts on F, then it produces a vector bundle F' obtained from F making a positive elementary transformation and fitting in an exact sequence

(6) \[0 \to F' \to G' \to O_D(-2) \to 0 \]

Every sequence of positive elementary transformations gives a sequence of blowing ups of X. It is obvious the existence of a sequence of $-w_1 - 2$
positive elementary transformations of G such that the vector bundle, H, obtained in this way has splitting type $c_1 \geq \cdots \geq c_{x+1}$ with $c_1 = -2$; at each step we increase by one the higher integer of the splitting type of the corresponding bundle. Furthermore, $-w_1 - 2$ is the minimal length of any such sequence of positive elementary transformations. At the first step we need to prove that as our first positive elementary transformation of G we may choose a positive elementary transformation which induces a positive elementary transformation of F. Since rank(G) = rank(F) + 1, this is obvious if $w_2 = w_1$. Thus we may assume $w_2 < w_1$. This implies that there is a unique line subbundle of G with degree w_1 and that $O_D(w_1)$ is the first step of the Harder-Narasimhan filtration of G. For any $P \in D$ and any vector bundle H on D, let $H\{|P\}$ be the fiber of H over P; thus $H\{|P\}$ is a K-vector space of dimension rank(H). Fix $P \in D$. There is a positive elementary transformation of G supported by P which increases the value of w_1 and which induces a positive elementary transformation of F supported by P if and only if $O_D(w_1)\{|P\}$ is contained in the hyperplane $F\{|P\}$ of $G\{|P\}$. The inclusions of F in G and of $O_D(w_1)$ in G induces a map $u : F \oplus O_D(w_1) \to G$. Since to prove the existence of the positive elementary transformation we are looking for we may assume that F does not contain $O_D(w_1)$, the map u is an injective map of sheaves. We have rank($F \oplus O_D(w_1)$) = rank(G). Since $w_1 < -2$, u cannot be an isomorphism. Thus Coker(u) is a non-zero skyscraper sheaf. For every $P \in \text{Supp}(\text{Coker}(u))$ we may find a positive elementary transformation of G inducing a positive elementary transformation of F (i.e. inducing an exact sequence (6)) and transforming the subbundle $O_D(w_1)$ of G into the subbundle $O_D(w_1 + 1)$ of G'. Since G' has splitting type $w_1 + 1 > w_2 \geq \cdots \geq w_{x+1}$, we may iterate the proof taking the pair (F', G') instead of the pair (F, G). □

References

E. Ballico
DEPARTMENT OF MATHEMATICS
UNIVERSITÀ DI TRENTO
38050 POVO (TN) - ITALY
e-mail address: ballico@science.unitn.it
fax: Italy + 0461881624
(Received August 19, 2002)