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EVEN-DIMENSIONAL MANIFOLDS STRUCTURED BY
A CONSTANT T -PARALLEL CONNECTION

Filip DEFEVER and Radu ROSCA

Abstract. Geometrical and structural properties are proved for even-
dimensional manifolds which are equiped with a constant T -parallel con-
nection.

1. Introduction

Manifolds structured by a T -parallel connection have been defined in [17]
and have also been studied in [13]. The present paper continues the study
of the structural properties of manifolds endowed with a T -parallel connec-
tion in the presence of additional geometric structures; as such the present
investigation can be situated in the prolongation of the recent publications
[3] [4] [5]. A general discussion of the geometrical structures which appear
here and in the sequel can be found in the standard references [16] and [26]
which also contain more background information and additional references
(see also [1] [7] [20] for further reading).

Let now M be a 2m-dimensional C∞-manifold and ea(a ∈ {1, . . . , 2m})
an orthonormal vector basis. We recall that if M carries a globally defined
vector field T and the connection forms satisfy

θa
b = 〈T , eb ∧ ea〉,

where ∧ denotes the wedge product of vector fields, then one says that M
is structured by a T -parallel connection. In the present paper we assume
in addition that T is constant. Introducing the notation β = T [, β will be
called the structural pfaffian. Defining 2t = ‖T ‖2, we consequently see that
this quantity is also constant.

For the above mentioned structure, we prove the following properties:
(i): M is a hyperbolic space-form, i.e. for the curvature forms Θa

b one
has that

Θa
b = −2t ωa ∧ ωb,

where {ωa} denotes the cobasis of the vector basis {ea};
(ii): M carries a locally conformal symplectic form Ω having β(= T [)

as covector of Lee [9], i.e.

dΩ = 2β ∧ Ω,
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and T defines a relative conformal transformation [19] [12] of Ω, i.e.

d(LT Ω) = 8tβ ∧ Ω;

(iii): T is torse forming [23] (see also [12] [19] [21]); moreover, with T
there is associated a second vector field X which defines an infini-
tesimal automorphism [10] (see also [11]) of Ω, i.e.

LXΩ = 0;

(iv): both vector fields T and X turn out to be biconcircular (in the
sense of Okumura [14], see also [24]) and exterior concurrent [18]. In
addition, T has also the property to be an affine vector field [16], i.e.

LT ∇T = 0.

Finally, if we define the function s by s = 〈T , X〉, one also finds that

ds = −sβ,

and one further derives that

grad s = 2ts2,

div grad s = 2t(2 − tm)s,

which shows that s is an isoparametric function [22].
In Section 4 we consider some properties of the tangent bundle manifold

TM having the manifold M , studied in Section 3, as basis. On TM the
canonical vector field V (V a) (a = 1, . . . , 2m) is called the Liouville vector
field [6]. We will denote the adapted cobasis in TM by B∗ = {ωa, dV a}.
Then, the complete lift ΩC [25] of the 2-form Ω is given by

ΩC =
m∑

a=1

(dV a ∧ ωa∗
+ ωa ∧ dV a∗

), a∗ = a + m.

One can deduce that
dΩC = β ∧ ΩC ,

which shows that the 2-form ΩC is, just as Ω, also a conformal symplectic
form. Next, since the Liouville vector field V is given by

V =
2m∑
a=1

V a ∂

∂V a
,

the basic 1-form µ (also called the Liouville form) associated with the canon-
ical vector field V (i.e. µ = V [) can be written as [8]

µ =
2m∑
a=1

V aωa.
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Taking the Lie differential of ΩC , one finds that

LV ΩC = ΩC ,

which expresses that the 2-form ΩC is a homogeneous 2-form of class 1 [8]
on TM . Some further properties of the tangent bundle manifold TM are
also discussed.

2. Preliminaries

Let (M, g) be a Riemannian C∞-manifold and let ∇ be the Levi-Civita
operator with respect to the metric tensor g. Let ΓTM = Ξ(M) be the set
of sections of the tangent bundle, and

[ : TM
[→ T ∗M and ] : TM

]← T ∗M

the classical isomorphisms defined by g (i.e. [ is the index lowering operator,
and ] is the index raising operator).

Following [16], we denote by

Aq(M,TM) = ΓHom(ΛqTM,TM),

the set of vector valued q-forms (q〈dimM), and we write for the covariant
derivative operator with respect to ∇

d∇ : Aq(M,TM) → Aq+1(M,TM).

It should be noticed that in general d∇
2

= d∇◦d∇ 6= 0, unlike d2 = d◦d = 0.
We denote by dp ∈ A1(M,TM) the canonical vector valued 1-form of M ,
which is also called the soldering form of M [2]. Since ∇ is symmetric one
has that d∇(dp) = 0.

A vector field Z ∈ Ξ(M) which satisfies

(1) d∇(∇Z) = ∇2Z = π ∧ dp ∈ A2(M,TM); π ∈ Λ1M

is defined to be an exterior concurrent vector field [17] (see also [13]). The
1-form π in (4) is called the concurrence form and is defined by

(2) π = λZ[, λ ∈ Λ0M.

Let O = vect{ea|a = 1, . . . , 2m} be a local field of adapted vectorial frames
over M and let O∗ = covect{ωa} be its associated coframe. Then the
soldering form dp is expressed by

(3) dp =
2m∑
a=1

ωa ⊗ ea,
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and E. Cartan’s structure equations can be written in indexless manner are

∇e = θ ⊗ e,(4)
dω = −θ ∧ ω,(5)
dθ = −θ ∧ θ + Θ.(6)

In the above equations θ (respectively Θ) are the local connection forms in
the tangent bundle TM (respectively the curvature 2-forms on M).

3. Manifolds with constant T -parallel connection

Let (M, g) be a 2m-dimensional C∞-manifold and

T = T aea,

be a globally defined vector field. Let θa
b (a, b ∈ {1, . . . , 2m}) be the local

connection forms in the tangent bundle TM. Then, by reference to [17] [13],
(M, g) is said to be structured by a T -parallel connection if the connection
forms θ satisfy

(7) θa
b = 〈T , eb ∧ ea〉,

where ∧ means the wedge product of vector fields. Making use of Cartan’s
structure equations (4), we can see that

(8) θa
b = T bωa − T aωb.

In consequence of (8), the equations (4) take the form

(9) ∇ea = T adp − ωa ⊗ T .

In the sequel we assume in addition that T a are the components of a constant
vector field T , called the structure vector field of M .

Let

(10) T [ = β =
2m∑
a=1

T aωa

be the dual form of T , then by E. Cartan’s structure equations (5) one
derives that

(11) dωa = β ∧ ωa.

Hence, by (11) it follows that all the elements ωa of the covector basis O∗

are exterior recurrent forms [2]. Consequently, the pfaffian β can be seen to
be in fact a closed form, i.e.

(12) dβ = dT [ = 0.

Under the present conditions, by (8) and (11) one finds that

(13) dθa
b = β ∧ θa

b ,
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which expresses that all the connection forms θa
b are exterior recurrent [2]

with β as recurrence form. Under these conditions, the structure equations
(6) involving the curvature forms Θa

b are expressed by

(14) Θa
b = −2t ωa ∧ ωb,

where we have set

(15) 2t = ‖T ‖2 = const..

It is well known that the equation (14) thus shows that the manifold M
under consideration is a space form of hyperbolic type. We remark that in
view of (11), one derives that

(16) dΘa
b = 2β ∧ Θa

b ,

which means that all curvature forms are exterior recurrent; we therefore
agree to call β the basic pfaffian on M .

In another perspective, we consider on M the local almost symplectic
form Ω given by

(17) Ω =
m∑

a=1

ωa ∧ ωa∗
, a∗ = a + m.

Taking the exterior derivative of Ω, and in view of (11), one finds that

(18) dΩ = 2β ∧ Ω,

which shows that Ω is a locally conformal symplectic form having β as
covector of Lee [9].

Taking first the Lie derivative of Ω with respect to the vector field T , we
get

LT Ω =
m∑

a=1

LT ωa ∧ ωa∗
+

m∑
a=1

ωa ∧ LT ωa∗
,

where LT ωa can be calculated as follows.

LT ωa = (i(T ) ◦ d + d ◦ i(T ))ωa (a = 1, · · · , 2m)

Taking into account equation (11) for dωa and the definition (15) of 2t, it
follows that

LT ωa = 2tωa − 2T aβ, (a = 1, · · · , 2m).
Continuing now the calculation of LT Ω leads to

LT Ω = 4tΩ + 2β ∧ [T ,

where
[T = −iT Ω =

m∑
a=1

(
T a∗

ωa − T aωa∗
)

.
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Exterior differentiation of LT Ω gives

d(LT Ω) = 4tdΩ + 2dβ ∧ [T − 2β ∧ d( [T ).

One can verify directly that d( [T ) = 0, and recalling that the 1-form β = T [

is closed, the above expression reduces to

d(LT Ω) = 4tdΩ.

Replacing dΩ through equation (18), finally yields

(19) d(LT Ω) = 8tβ ∧ Ω.

Hence, following a known definition [19] (see also [12]), the above equation
means that T defines a relative conformal transformation of Ω.

Further, consider the vector field

(20) X =
2m∑
a=1

Xaea.

Taking the Lie differential of Ω w.r.t. X, yields

(21) LXΩ = −
m∑

a=1

(dXa + βXa) ∧ ωa∗
+

m∑
a=1

(dXa∗
+ βXa∗

) ∧ ωa.

Therefore, the necessary and sufficient condition for X to define an infini-
tesimal automorphism [10] (see also [11]) of Ω, namely

(22) LXΩ = 0,

can be seen to be

(23) dXa + βXa = 0.

We now introduce the notation

(24) α = X[ =
2m∑
a=1

Xaωa

for the dual form of X.
Taking the exterior derivative of (24) gives

dα =
2m∑
a=1

dXa ∧ ωa +
2m∑
a=1

Xadωa.

Replacing in the above formula dXa using (23), and dωa using (11), yields

dα = −
2m∑
a=1

βXa ∧ ωa +
2m∑
a=1

Xaβ ∧ ωa.
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From this it follows that

(25) dα = 0,

which shows that X is also a closed vector field.
Further, calculating the covariant differentials of the vector fields T and

X under consideration and invoking (15), one obtains that

(26) ∇T = 2tdp − 2β ⊗ T ,

and

(27) ∇X = sdp − α ⊗ T − β ⊗ X,

where we have put

(28) s = g(X, T ).

Equation (26) expresses that the structure vector field T is torse forming
[23] (see also [12] [19] [21]); in this context we will call X an almost torse
forming vector field, and by standard terminology [21] 2t = ‖T ‖2 is the
energy of the torse forming vector field T .

Moreover, we notice that any 2 vector fields Z,Z ′ ∈ Ξ(M) satisfy

(29) 〈∇ZT , Z ′〉 = 〈∇Z′T , Z〉,
〈∇ZX,Z ′〉 = 〈∇Z′T , Z〉.

According to Okumura [14] (see also [24]), the relations (29) show that T
and X are gradient vector fields. On the other hand, since ∇ acts inductively
one also derives that

d∇(∇T ) = 2tT [ ∧ dp, (T [ =: β)(30)

d∇(∇X) = 2tX[ ∧ dp. (X[ =: α)(31)

The above equations mean that both T and X are exterior concurrent vector
fields [18]. Therefore, if R denotes the Ricci curvature, it follows from (30),
(31) and [15] that

(32) R(T , Z) = −(2m − 1)2tg(T , Z),
R(X,Z) = −(2m − 1)2tg(X,Z).

We remark that calculating the Lie differential of ∇T with respect to T
reveals that

(33) LT ∇T = 0,

which shows that T is an affine vector field [16]. We recall that with respect
to an orthonormal vector basis {ea} the divergence of a vector field Z is
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calculated according to the formula

(34) div Z =
2m∑
a=1

〈∇eaZ, ea〉;

when applied to the case under consideration, this gives

(35) div T = (2m − 1)2t = const..

Furthermore, since the components T a are constant, one finds by differen-
tiation of the equality s = g(T , X) that

(36) ds = −sβ.

Consequently one may write that

(37) grad s = −sT =⇒ ‖grad s‖2 = 2ts2,

from which one also derives that

(38) div(grad s) = 2t(2 − tm)s.

We remind that a function f : Rn → R is called isoparametric [22] if both
‖grad f‖2 and div(grad f) are functions of f. We may therefore conclude
that s is an isoparametric function.

Summing up, we state the following

Theorem 3.1. Let M(Ω, T , g) be a 2m-dimensional manifold with almost
symplectic form Ω, and structure constant vector field T , such that the con-
nection forms satisfy

θa
b = 〈T , eb ∧ ea〉.

Then the following properties hold :
(i): M is a hyperbolic space-form;
(ii): Ω is a conformally symplectic form and has β(= T [) as covector

of Lee;
(iii): the differential of the Lie derivative with respect to T defines a

relative conformal transformation of Ω, i.e.

d(LT Ω) = 8tβ ∧ Ω, 2t = ‖T ‖2;

(iv): a vector field X which satisfies

dXa + βXa = 0

defines an infinitesimal automorphism of Ω, i.e.

LXΩ = 0;

(v): T is a torse forming vector field, as well as an exterior concurrent
vector field ;
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(vi): the vector field X is also an exterior concurrent vector field, and
both T and X are gradient vector fields;

(vii): the scalar s = 〈T , X〉 is an isoparametric function.

4. Geometry of the tangent bundle

In this section we will discuss some properties of the tangent bundle man-
ifold TM having as basis the manifold M studied in Section 3. Denote by
V (V a) (A = 1, . . . , 2m) the Liouville vector field (or the canonical vector
field on TM [8]). Accordingly, one may consider the set

B∗ = {ωa, dV a|a = 1, . . . , 2m}
as an adapted cobasis in TM (see also [13]). Following [25] the complete lift
ΩC of the conformal symplectic form Ω of M is the 2-form of rank 4m on
TM given by

(39) ΩC =
m∑

a=1

(dV a ∧ ωa∗
+ ωa ∧ dV a∗

), a∗ = a + m.

On the other hand, the Liouville vector field V is expressed by

(40) V =
2m∑
a=1

V a ∂

∂V a
.

It is also known that the associated basic 1-form

(41) µ =
2m∑
a=1

V aωa

is called the Liouville form (see also [8]). (Alternatively, one can also write
that µ = V [.) Then, on behalf of (11), the exterior differential of ΩC is
given by

(42) dΩC = β ∧ ΩC .

Hence, the complete lift ΩC of Ω defines on TM a conformal symplectic
structure, as Ω does on M ; this result is meaningful, since it should be
stressed that conformal properties are not preserved by complete lifts in
general. On behalf of (40) one has that

(43) iV ΩC =
m∑

a=1

(V aωa∗ − V a∗
ωa),

and in view of (42) and (43) one gets

(44) LV ΩC = ΩC .

Equation (44) shows that ΩC is a homogeneous 2-form of class 1 [8] on TM.
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Further, taking the exterior differential of the Liouville form µ, one derives
by (41) that

(45) dµ = β ∧ µ + ψ,

where we have introduced the notation

(46) ψ =
2m∑
a=1

dV a ∧ ωa.

By reference to (46) and (11), it follows that

(47) dψ = β ∧ ψ,

which shows that ψ is an exterior recurrent form with β as recurrence form.
Since the 2-form ψ is of maximal rank, we will refer to ψ as the canonical
conformal symplectic form of M . One finally gets that

(48) LV ψ = ψ,

which shows that, as ΩC , the form ψ is also a homogeneous 2-form of class
1.

We remind that the vertical operator iV in the sense of [6] possesses by
definition the following properties (see also [8]):

(49) iV λ = 0, iV ωa = 0, iV dV a = ωa,

from which one calculates by (46) that

(50) iV ψ = 0.

Together with (47) we conclude from this that ψ is a Finslerian form [6].

Theorem 4.1. Let TM be the tangent bundle manifold having as basis the
manifold M(Ω, T , β) considered in Section 3. Let V, and µ, be the Liouville
vector field, and the Liouville form of TM respectively. One has the following
properties:

(i): the complete lift ΩC on TM is a conformally symplectic form, and
is a homogeneous 2-form of class 1, i.e.

LV ΩC = ΩC ;

(ii): µ satisfies

dµ = β ∧ µ +
2m∑
a=1

dV a ∧ ωa,

where

ψ =
2m∑
a=1

dV a ∧ ωa,



MANIFOLDS STRUCTURED BY A CONSTANT T -PARALLEL CONNECTION 143

is the canonical conformal symplectic form and turns out to be a
Finslerian form.
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